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CONCURRENT PROGRAMMING!

R. E. Bryant
J- B. Dennis
Massachusetts Institute of Technology

1. Introduction -

Concurrency of activities has long been recognized as an important feature
in many computer systems. These systems allow concurrent operations for. a
number of reasons of which three are particuiarly common. First, by executing
several jobs simultaneously, multiprogramming and time-sharing systems can
make fuller use of the computing resources. Second, real-time transaction systems,
such as airline reservation and point-of-sale terminal systems, allow a number of
users 1o access a single database concurrently and to obtain responses in
reai-time.  Finally, high speed parallel computers such as. array processors
dedicate a number of processors to the execution of a single program to speed up
completion of a computation. '

In developing the software for some of the early multiprogramming
systems, programmers  soon  discovered a need for an  abstract and
machine-independent means of expressing the behavior of systems which
involve concurrent activities. They found that machine Jevel programming was
tedious and very difficult to do torrectly. When many tasks are to protecd
concuirentiy, the problems of allocating system resources, of scheduling the order
in which tasks are performed, and of preventing concurrent activities from
disasterously interfering with one another are difficult to deal with without
assistance from a high level programming language,

One of the first concepts to emerge in an atterapt to satisfy this need for a
more abstract view of concurrent systems was the process concept.  In this view,
the sequence of actions performed during execution of a sequential program Is
viewed as an abstract entitity called a process, and details such as which physical
processor is used and the time of execution are ignored. For example, in a
typical multiprogramming system the different user Jjobs, the interrupt routines,
and the IfO channel program executions may be viewed as separate processes.
During system operation, the processors and memory may be switched among the
processes, so all processes are carried forward, even though no process retains
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of Defense, monitored by the Office of Naval Research under contract humber
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exclusive coniro} of all the resources it needs nor runs in one continuous
sequence. '

Traditional, high level prugramming languages such as Fortran, Algot,
and Cobol express computations as independent, noninteracting processes. The
processes in a concurrent system, however, may interact with each other for
several reasons. First, one process may convey data to another. This is called
communicafion. Second, processes may interact to ensure a correct sequencing of
events. Process interaction which serves to control the order in which processes
execute is called synchronizetion. These synchronization operations may be
required for several different reasons, of which two are particularly commeon.
First, if one process must perform some task before a second can proceed, there is
a precedence consiraint between the twe processes. For example, the second
process may need data which is corpuled by the first. Conversely, if one process
produces data-to be used by another, then the producer process cannot produce
more data than the buffer between them can hold until the consumer process has
used some of the old data. Hence, precedence constraints can exist in both
directions between producers and consumers of data. Second, processes which
share cammon resources such as processors, memery locations, or tnputfoutput
devices require synchronization so the resources will be allocated in a systematic
way. This allocation may be a simple form of mufual exclusion, in which a
process retains exclusive control of a resource until the process voluntarily
releases it, at which time the resource is granted to any process waiting for the
resource. More compiex allocation schemes can involve such features as allowing
several processes to use a resource simultaneously, assigning different priorities to
processes contending for a resource, or allowing one process to forcibly remove a
resource from the control of some other process.  Traditional programming
languages are not powerful enough to express these types of interactions.
Instead, a program must invoke operating system routines to perform the
necessary communication and synchronization with other processes in the system.

Besides the inability 1o express the interactions between processes,
traditional, high level languages cannet express nondelerminate computations.
That is, they can only express computations whose output values depend only on
the values of inputs. In a nondeterminate computation, on the other hand,
autput values can depend on other factars, such as the times at which events
occur in the system. For example, suppose agents at two different remote
terminals of an anline reservation system both request the last seat on the same
fight.  Cmne will be granted this seat and one will not, but which one recetves
which response depends on the relative arder in which the requests are received
and processed. Nondeterminacy is essential in many concurrent systems.
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The need for high level programming janguages which can express the
operation of a’system of concurrent: processes has led to the development of
programming constructs with which one can express these communication and
synchronization operations. Some of these approaches, such as semaphores [13)
and monitors [4,520], suppose systems in which al) processes have access 1o a
single, shared memory. Others assume that processes communicate by sending
messages to ane another [2,21,21] Languages based on actor semantics [16,17,i8)
carry the message-passing concept even further by considering all primitive
operations to be carried out by separate, message-passing processes.  Other
approaches to concurrent programming have been developed which, instead of
viewing a system as a number of communicating, sequential processes, view a.
Program as an unordered set of instructions and permit an  instruction to be
executed any time its operands are réady. This form of program execution can
potentially achieve a higher degree of concurrency than is possible with
sequential processes. lLanguages based on this approach arve called data flow
languages (1,10,12,25,30], '

Several issues must be considered when designing programming languages
to sitpport concurrent computation. Of primary importance s expressive power.
The expressive power of a tanguage, in the context of concurrent systems, means
the forms of concurrent operations, and the types of communication,
synchronization, and nondeterminacy which can be expressed in the language. A
language which lacks expressive power will force the programmer to rely on a
suitable set of operating system routines to implement desired behaviors. A
properly designed language, on the other hand, should have sufficient richness to
express these functions directly, Furthermore, if the language lacks expressive
power, a programmer may need to resort to awkward or inefficient programming
techniques to achieve desired results,

A second issue in the design of a language for concurrent programming is
the clarity of programs written in the language, that is, how easily the effect of
executing a program can be understood by looking at the program. A properly
designed Janguage can provide a programmer with the tools needed to write
clear and concise programs. To meet this goal, the language must allow
programs to be written in a modular fashion, so that the sections of the program
can be viewed independently of one ancther. This property is critical in
concurrent system design, since the sections of the programs which are executed
concutrently can often affect each other in subtle ways, and these effects can
ultimately lead to deadlocks, hazards, or other forms of incorrect behavior.
Furthermore, these effects may cause problems only under relatively rare
combinations of circumstances, and as a result the errors may remain undetected
even after a long period of system operation. Hence, a modular program in
which it is quite clear how the concurrent activities in the systemn can affect each
other would be of great value to the programmer, and to anyone who wishes to
modify the program later. A programming language can also help the
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programmer write clear and concise programs by providing high level constructs
to express the synchronization, communication, and nondeterminacy within the
system, This will not only make programming less tedious, it will reduce the
chance of error and make the programs more readable. If concurrent
programming languages are to describe the operation of large and complex
systems, it is important for these languages to have a clarifying rather than an
ohscuring effect on the programs

Ultimately, one must be concerned with implementation issues. These
inclute the ease of implementation of the language- whether it can be
implemented on existing computer systems, whether slight modifications to an
existing system will be sufficient, or whether it will require a whole new approach
to comptter design. A second factor in implementation is its efficiency, that is
whether concurrency expressed in programs can be exploited without undue
overhead. This desire for a language which is easy to implement, yet runs
efficiently, often seems in conflict with the goals of expressive power and clarity
of programs, and these two goals can themselves conflict with each other.
Inevitably, trade-offs must be made, and hence the decision of which approach to
use cdepends to a large degree an design priorities.

In this chapter, the main approaches to constructing concurrent programs
will be presented and compared. As a basis for comparison, two exampies of
systems incorparating concurrent aperations have been chosen, and programs for
these examples will be presented using the different approaches to concurrent
programming. Of particular interest are the semantic Issues in language. design,
ie. how the computation is expressed, rather than the detailed syntax of the
languages  Hence, in the interest of uniformity, the example programs witl be
written in PASCAL [22], modified to include the necessary constructs. As shall
he seen, the different approaches to concurrent programming differ greatly in
their expressive power, clarity of expression, and ease and efficiency of
implementation.

2. Example Sy steﬁl.s

Two examples have been chosen as representative of systems for which
concurrent programming is required.  The first is an airline reservation system,
in which a number of users {agents) can perform transactions interactively with a
single database. In such a system concurrency in processing transactions is
required to enable sharing of data, reasonable throughput, and real-time,
interactive use. The second example is an input/output buffer system in which
several input devices can read different files and send these files, via a buffer, to
any of several output devices. By aliowing the input and output devices to
operate concurrently, this system can utilize hardware resources more effectively
than would be possibie otherwise.
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The examples have been chosen to convey the basic features of concurrent
systems.  They have been simplified considerably to avoid the farge amounts of
detail typically required in reai-life systems. For example, neither system has any
form of error-checking, nor is there any provision for terminating systemn
operation.  Of course, it is difficult to draw conclusions about the merits of
programming language features on the basis of such simple examples. in
considering these programs, one must also consider how difficult it would be to
add more sophistication to the system designs.

The database for the airline reservation system centains information about
the flights for a single airline. Initially, each flight has 100 seats available. The
System can accept two types of commands, To reserve seats on a flight, an agent
gives the command Creserve’, f,n}. If at least » seats are available on flight £, -
the seats will be reserved, and the system will respond with the message (true).
If that many seats are nat available, no seats will be reserved, and the system wiil
respond with the message (falee). To find out how many seats are available on
flight 1, a system user gives the command {'info’ »f). The system will respond
with the number of seats which are available on the flight at the time the
command is processed. '

The input/output buffer system cantains input devices inputl, input2, ..,
inputj, output devices owipnel, output2, .., autputk, and a single buffer. During
operation, the input devices read their respective blocks of data concurrently.
Cnce a block has been read in, it is leaded into the buffer, at which time the
input device can begin reading a new biock. The block in the buffer is then
moaved to the local storage of one of the cutput devices and written out. Each
output device is capable of writing any of the output blocks, hence a block in
the buffer can be transferred to the first available output device rather than 1o a
particular, predetermined one. The buffer can hold only one block at a time,
hence the readers must contend with each other for use of the buffer. Similarly,
each biock is to be written out by only one output device, hence the autput
devices must contend for the output biocks. It is assumed that the buffering
operations {i.e. moving a biock from the input device to the buffer and from the
buffer to the output device) are much faster than the input and output
operations, so the buffer wilt not form a battleneck in the system.

3. Processes Executing Within a Gjobal Environment

The earhiest organized approach to concurrent programming was to view a
System as a number of sequential processes which execute concurrentiy in a
common, global environment. This view is a natural abstraction of the operation
of a multiprogramming system, which typically contains one or more central
processing units and several inputfoutput processors, all of which can access a
singte, shared memory. The processors communicate with one another by
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reading or writing mutually agreed 'upun memory locations according to some
convention. Thus, we can view execution of a set of instructions by a processor
as an abstract process and the common memory locations as the global
environment for these processes. Assignment statements with global variables on
either the left or the right-hand side express the communication between
processes.

Some mechanism is required to synchronize accesses to the global variables.
In practice this is done using the program interrupt facility of the hardware.
Examples of abstract synchronization mechanisms include the semaphores of
Dijkstra {i2) and the monitors of Brinch Hansen [45]) and Hoare [20). Other
synchronization mechanisms have been deveioped {8,28], but none have received
as much attention as semaphores and monitors. A semaphore is a special type of
shared variable upon which several primitive synchronization operations can be
perfarmed. A monitor, on the other hand, is a set of programmer-defined
procedures which can be called by the processes to gain access to global
variables.

3L Process Synchronization by Semaphores

A semaphore § is an integer variable initialized to some valve. Associated
wilh the semaphore 15 a queue which holds names of processes. Two operations
are defined an the semaphore: wait{§) and signal{$}, (Dijkstra called these P
and V, respectively) If a process P executes wait(§), then the value of § is
decremented. IF this new value is negative, the name of P is placed on the queue
associated with the semaphore, and P is blocked from executing. If, on the other
hand, § is nonnegative, P is allowed to continue. If a process P executes
signat |8}, then the value of § is incremented. if the new value of S is less than
or equal to zero, then the name of one process is removed from the queue, and
this process is allowed to resume execution, ‘

Semaphores provide a means to suspend execution of a process until
certain conditions are satisfied. 1f processes perform semaphore operations in
conjunction  with their accesses of the global variables, the necessary
synchronization in the system can be achieved. For example, a semaphore with
mitial value | can be used ta maintain mutual exclusion of processes accessing a
shared vatiable. A process which is updating the database in the airline
reservation system, for instance, must have exclusive control of the database so
that the database will remain in a consistent state during each transaction. Hénce,
to reserve n seats on flight f, a process would execute the foliowing code segment:
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wait (mutex};
if availablelfl > n
then
begin .
availeble{f]: = aveilable [f1 - n;
successi= trun
end
olre
suceess: = falso;
signal lmutex) ;

In the abave program, mutex is a semaphore with initiat value 1, and the array
areilable is a global variable which represents the shared database. a

If several processes wish 1o access the database without changing the
database’s siate, these accesses can proceed concurrently.  Furthermore, if a
process wants to read only one word in the database, there is no danger of
finding the database in an inconsistent state, hence this access can proceed even
while other processes are updating the database. To find out how many seats
are avaitable on the flight, a process would simply execute the statement

ni= aveilable [flight]. :
Qf cotirse, in a more realistic airline reservation an agent would want to knaw
more about a flight than the number of seats available. Hence, processing an
"infa’ vequest wauld require reading several words of memory. If the database
Is altered in the middle of these reads, the information returned to the agent may
contain inconsistericies. To program a more sophisticated reservation system, we
would divide the types of transactions into two classes: those which only read the
database (the readers), and those which alter the database (the writers) A
number of readers can proceed concurrently, but a writer must have exclusive
control of the database. Programs which solve the readers-writers problem
(9,17,20] are considerably more complex than our simple example.

Semaphores can also be used to control the order in which processes access
resources.  For example, the input and output processes in the inputfoutput
buffer system would execute codes as follows:
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Inputj ' Outputy

while true de while truec do
baprin begin

read (inj, infilej) ; wail [loaded] ;

wait {frael outk:= buffer;

huffer:= inj; signal (freel ;

signal (lpadad) wrilelouik, oui filek)
il : ’ end '

Initial values: frer = 1, loaded = B,

In the above program, the global variable buffer serves as the buifer between
the input and output processes. The semaphores frae and loaded are used to
maintain correct sequencing between input and output processes. Furthermore,
the semaphore free is used to guarantee that enly one input process can load a
value into the buffer at a time, and the semaphore loaded guarantees that only
one output process will print a particular buffer value. Thus, the two
semaphores enforce both precedence constraints and mutual exclusion in the
system. '

The semaphore construct is sufficient ta solve a wide variety of process
synchronization problems, although sometimes with great difficuity. Two
concepts which are found in many computer systems, however, are noticeably
lacking. The first is the concept of the time at which events occur. For
example, a process cannot pause for a specified amount of time before continuing
execution. The second is that one process cannot force another process to stop
exccution. These two features were left out intentionally, since the process
abstraction removes the time at which events actually occur in the system from
the programmer’s control, and a process can be affected by other processes only
when 1t makes reference to the global environment.

Cne type of system whose operations cannot be fully expressed with a
semaphore program is a system in which the processes do not execute within a
single, plobal environment. If the system consists of processors connected logether
by a communication network [27], the processes execute within a number of local
environments and hence cannot access global variables or semaphores. The
notion of a global environment does not reflect the architecture of such a system.
For example, in the airline reservation systern, one cannot cause information to
be transferred between the remote terminals and the central computer except by
caling on the operating system to perform these operations.

The semaphore concept was a major step forward in making programs
involving process synchronization easier to understand, but it still has several
flaws as a programming tool. The first is the primitiveness of the semaphore
operations. Semaphores provide a very simple form of process synchronization.
it is left to the programmer to develop conventions about how semaphores will’
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he used to provide the desired behavior. Complex forms of process
synchronization, in which different processes have different priorities, such as the
variotis salutions to the reader's-writer’s problem [9), typically have very obscure
semaphore programs.  Unless the conventions are carefully documented, the
programs may be difficult to modify at a later date. Moreover, if just ane process
fails to obey the conventions as to how resources are to be accessed, the system
may deadlock or in some other way behave improperly.

The second flaw is a total lack of modularity in the programs. Information
about how a shared resource is utilized and how the synchronization is provided
is distributed throughout the programs for the individual processes. For
example, it is difficult to locate ali sources of nondeterminacy in the system. The
processes in the input/eutput buffer system would have the same programs if
there were only one input process and one output process as it does with several
input and several output processes. In the first case, the system is dererminate,
whereas it is not in the second. This lack of modularity, coupled with the
primitiveness of semaphore operations, makes jt very difficult for someone
tooking at a semaphore program to determine whether a resource I3 being
accessed properly,

Regarding  implementation, semaphores and their corresponding
synchronization operations can be implemented without great difficulty on any
system  whose architecture reflects the idea of a global state, such as a
multiprogramming system. The T.H.E. systems of Dijkstra [14] is an example of a
simple, but elegant operaling system which uses semaphores to synchronize
Processes.

3.2, Process Synchronization by Monitors

Monitors were developed to allow a more structured format for concurrent
programs than is possible with semaphores. Unlike semaphore programs, all
information about a set of shared resources and how they are used is contained
N a single area of the program: the declaration of a monifor. The declaration of
a monitar includes a number of procedures which define operations on the
shared resoutces. These procedures are available to all processes in the system.
When a process wishes to access a shared resource, such as a global varlable or a
shared hardware resource, it must do so by executing one of the procedures of
the corresponding monitor. It should be emphasized that a monitar does not
itself cause any action in the system. Tnstead, it is merely a collection of
procedures which can be executed by the processes in the system. This idea of
limiting the ways in which a shared resource ctan be accessed to the operations
performed by a small set of procedures was originally proposed in conjunction
with conditional critical sections 19,31 )
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Monitors are implemented in such a way that the execution of the
procedures of a particular maonitor are mutually exclusive. Hence, a process
retains exclusive control of the resources of a monitor while executing one of the
monitor's procedures, until it surrenders its contrel. A process can surrender its
control of the monitor in one of several ways. First, it can complete execution of
the monitor procedure, at which time some other process can begin execution of
one of the monitor’s procedures. This form of control-passing is sufficient to
implement mutual exclusion of processes. The airline reservation system, for
example, utitizes only this form of control-passing. Other forms of
control-passing are provide by condition variables along with the operations delay’
and continne {(Hoare calls these wait and signal} A condition variable has no
visible value, although it does have an initially empty queue associated with it.
When a process executes the statement delay (cond) in the body of a monitor
[rocedure, the process’ name is placed on the queve for cond, the process is
blocked from executing further, and control of the monitor is reteased. When a
process executes the statement continue lcond), this process is tempararily blocked
{unless the queue for cand is empty), and one of the processes on the queue for
cond is tesumed. QOnce this reawakened process leaves the monitor procedure,
the process which executed the continuc{cond] statement is resumed.

In the airline reservation system, accesses to the database would be
controlied by a monitor detabeze With procedures reserve and info as follows:

manitor datahese;
var availablc:array(l..limit] of inleger; i:inlcger:

procedure entry reserse {f, 0t intleger; fuceoess: boolean) ;
begin
il availablef1 2 n
then
begin
sureosst= Lrue;
grailable [J]1t = availeble[fT - n;
eml
elee suecesst= false
end reserong

procedure entry info (f, n:integer) s
bepin n:= available [f]
end info;

begin _
for ¢ = L 1o limit do aveilablalil:= 188
o,

The monitor datehase controls all accesses to the array aweilable, where
availeble [f] is the number of seats available on flight /. During system
operation, some process initializes the monitor by executing the statement init
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datahnse. This causes the body of the manitor program to be executed, setting all

elements of availeble to 100. Then, to reserve n seats on Might f, a process

executes the statement :

database, reservelf, n, suceess),

and to find out how many seats are available, it executes
detabase.info{f, nl.

For the inputfoutput buffer system, the buffer would be controlled by a
menitor F/Q_buffer with procedures deliver and retrieve as follows:

monitor I/0_poffer;

var buffor: block: inuse: boolcan; fren, loaded: conditiony

procedure entry deliver (in: block) ;
begin ' '
if iruse then delay (frea) ;
baffer:= in;
inuse:= true:
continue ({oaded)
emd deliver;

procedure entry retrieve (out: block) ;
begin
if noL inuse then delay (oaded);
oult= huffer;
inuset = lalse;
conlinue{ free)
end retrieve:

hegin
inose: = falge
md.

During system operation some process must initialize the monitor by executing
the statement init 1O_buffer. This causes the variable inuse to be set o false.
Thereafter, the input and output processes execute programs as follows:

Inputj - Qutputy
while truc de while troe do
begin begin
read ling, infilaj) 1/0_buffer, retriave (outk) ;
HO_huffer, doliver ling) write (outk, outfilek)
end end

The expressive power of monitors Is equivalent to that of semaphores in
the sense that one can write a program for a manitor semaphore, with procedures
toait and signal which models the behavior of a semaphore, and conversely one
can write a semaphore program which models the behavior of a monitor.
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However, if one wishes to follow the convention that a shared reseurce in the
system can be accessed only by calling a procedure of the carresponding monitor,
then all accesses to that resource must be mutually exclusive. For examplé, in the
airline reservation systern several processes cannot execute the procedure
datahase.info concurrently.  Only by relaxing the restrictlons, so. that the
database could be accessed directly by the processes could the full concurrency in
the system be realized. This, however, would compromise the goal of collecting
together all information about how a resource is utilized into one section of the
system specification.

The monitor construct provides more modularity than semaphores, and
this yields more understandable programs. ‘The ways in which a resource may
be accessed are contained in a single section of the system specification, rather
than in the programs for each process. This modularity also makes the system
easier to modify. For example, if we wish to modify the inputfoutput buffer
system so that several blocks could be buffered at once, we need only modify the
monitor procedures. The change would not affect the process programs.

The mutual exclusion of procedure calls, while it is a restriction in terms of
expressive power, helps make monitor procedures easier to write than the
equivalent semaphore programs. Monitor procedures are less susceptibie to
subtle timing errors than they would be if several processes could access the
resources controlled by the monitor simultaneously. Perhaps a carefully designed
extension to the monitor formalism could be developed which allows procedure
calls to proceed concurrently under some circumstances, while retaining the
modularity and clarity of the monitor concept. '

As with semaphores, monitors can be implemented without major
difficulties on a muitiprogramming system.  The Solo eperating system of
Brinch ansen [67] is written mainly in Concurrent Pascal [5), an extended
version of Pascal which supports monitors. The ability to write an operating
system in a high level language, including the communication and
synchronization between processes, is an important advance in concurrent
programming.

4. Processes Communicating by Message Passing

In one more modular view of concurrent systems each process executes
within a local environment that cannot be accessed or altered by any other
process. For two processes to interact with each other, one process must send a
message to the other, and the receiving process must accept the message. One of
the first system designs which followed this approach was the Regnecentralen
RC4000 computer system {2] in which the system contained a single CPU yet
supported a number of independent, message-passing processes.
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To iltustrate how message-passing semantics might be supported by a
programming language, we shall use 2 language extension in which a message is
a triple {destination, source, contents), where destinetion is the name of the
receiving pracess, source is the name of the sending process, and contents is the -
information which the message is to convey. Messages in this language are of
type record. Thus, for example, the contents field of a message m is referenced
by the expression m.contenis. Execution of the command seml{m} by process P,
where szt is of type message, will cause a message (m. destination, P, m. contents)
to be sent to the process m.destination. Each process has a single input queue
into which all incoming messages are placed. Execution of the function reccive
will first cause the process to wait until a message is placed in its input queue, if
one is not already present. Then the first message is removed from the queue
and returned as the value of the function.

These two message-passing operations are sufficient to solve the airline
reservation system problem. Whereas in the global environment approach, the
database is a global variable accessed by a number of different processes, with
the message-passing approach we shall define a process transaet which has sole
access (o the database. Al transactions are initiated by sending messages to
transact. T he contents fields of these messages can have one of two formaits:

Craserve’, flight, number)
and
Cinfo’, flight)
The program for the pracess transact is as foliows:
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process fransoct;
var anaifahlesarray{l..limit] of integor;
request, reply: message:  f, niinteger;

begin
for n = 1 to limit do availableln):= 1808;
while true de
begin
request: = reenive;
CASE requesi.comienis. type of
‘roserve’ s begin
Fi= request,contents, flights
ni= request.contents, numberi
if evnilable(f] = n
then
begin
reply. contenist = trues
aveilable [f1 1= aveflablelf}) - n:

end
rlen
reply.contents: = false
end;
Tinfa': reply.contemiz: = available (request. coniener. flight)
ol g
reply. destination: = request. tource;
gond (reply) '
end '
eml.

MNotice that this program does not realize all potential concurrencies in the system.
The database transactions are processed sequentially, much as they were in the
monitor program, because the process yransect has exclusive access to the
database, and it is a sequential process. : '

For the 1/Q buffer example, we shall use a process uffer_conirel to control
the buffering between input and output processes. An input process will send a
message containing the input block to buffer_control which in turn will send this
block to one of the output processes. Each output process must naotify
buffer_control when it is ready to receive a block, or eise buffer_eontrol would’
have no way of knowing what output processes are free.  This can be
accomplished by sending a 'rendy' message. Hence, the contents field of
messages sent to huffer_control can have one of two formats:

(*daza’ | inblock],
and
(" ready').

Unlike the processes in the airline reservation system, the process buffar_control
cannot always service its input messages in the order received. Far example, it
may receive several 'ready’ messages before receiving any ‘deta’ messages.
Hence. some means of storing messages in internal queues is required. For this
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reason we will use a data type quecue on which the operations enqucue and
dequcue are defined, as well as the boolean-valued function empty. The program
for buffer_eanirof is as follows:

pracess bhuffer_control:
var dataq, readyq: quene of message;
inputm, autpuim, delam, readyin: message;

hepin
while true do
" bepin
inpuims: = recnives
case inpuim, contents, type of
"date’ : il empty(readyq] then t:nqueue{t'npufm,dqmq}

clsc
begin
readym:= dequeue (readyq) §
outpulm.cohtentst = inputm.contents. inblock;
outputm. destinetiont = readym, rouree;
send (ontprtm)
Omi:
“ready’: if cmplyldataq) then enqueuc linpuem, read yq)
elre :
hogin
datems = degueve (datay) ;
auipuln, contanis: = datem. conterts. inblock;
outputm. destination: = inputm. source}
gend (out puim)
el
el
cmj
cmil.
The input and output processes execute the following codes:
Inputj Outputy
begin begrin
mj.destinationt = 'buffer_control’; mk. dastinetions = "buffer_control’ ;
mj.contonts. typet= "dela’; mk. cantents, type: = “ready’ ;
while truc de while Lrue do
hegin : begin
read (inf, infilaj} rend {mk) 3
mj.contents. inblockt = inj; oulmk: = receive:
senl (1 f) ' write loutmk. contents, out filek)
cnid . ond '
end. eml.

Nate that in the above set of programs, there is na means of timiting the
number of blocks buffered by buffer_control. If the Input processes send blocks
to bhuffer_cantral at a higher rate than hujfer_control sends them to the output
processes, the number  of blocks stared in the queue dateq will grow without.
limit. In order ta limit this buffering, additional control messages must be sent
between the input processes and buffer_control For example, an input process
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may send a message ‘ready_lo_send’ t0 buffer_control which, when it had
sulficient space, would reply 'send”.  Only when an input process receives
permission would it send a block.  Thus, message-passing can accomplish
synchronization as well as communication between processes.

This view of processes as independent entities which can interact only by
sending messages to one another is certainly more modular than the view of
processes executing within a global environment. As a resuly, it is much clearer
to the programmer exactly how the processes can affect one another.
Furthermore, this view correspends more closely to the way in which processes
are implemented on a distributed computer system. For example, the program
for the airline reservation system very nalurally expresses the way in which such
systems are implemented. In a typical system, remote, “intelligent” terminals
assemhble messages requesting operations on the database. These messages are
then sent to a central computer, which performs the operations and sends back
reply messages. Control messages such as the ones sent between processes in the
input/output buffer system correspond closely to the control signalling between
the components of a distributed system. When the programming language
reflects the underlying system design, a programmer can understand more fully
how the program will be executed and hence can design programs which run
cfficiently on the system. Both the modularity and the closeness to the
implementation make this approach to concurrent programming atiractive for
many important applications '

'T“e message passing operations described so far are clearly too primitive
fer a high level programming language. Like semaphares, they provide only a
simple form of process communication and synchronization, leaving the
programmer to determine what types of processes are required, what types of
control and data messages must be sent between processes, and at what points in
the programs the messages should be sent.

Mote sophisticated languages have been proposed [21,24] which provide
the programmer with 3 higher level view of the cooperation of message-passing
processes.  Whereas the illustrative language used for our examples requires a
separate program for each process, a program written in either Kahn's [24] or
Hoare’s (1] language specifies the operahon of a number of processes. A
program is a set of coroutines, where each activation of a coroutine may be
executed by a separate process. This approach provides a more concise view af
the system and also eliminates some of the duplication in effort needed to write
separate process programs. One can specify a set of similar computations as a
“coroutine array,” in which a set of processes execute the same coroutine program
with different input parameters, Processes are dynamically created and
terminated by invoking or completing execution of a coroutine. Kahn's
languagg achieves an additional degree of semantic elegance by treating the
sequencd of messages sent from one process to another as a single data object
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called a stream. He defines primitive operations on streams which are analogous
to the commands send and receive, However, since the sequence of messages sent
between each pair of processes is a separate stream, a process can decide which
process to receive its next message from. This enables the pragrammer to limit
the sources of nondeterminacy in the system. In fact, programs written in
Kahn's language are inherently determinate. A process must decide in advance
which slream to remove the next message from, hence the order in which
Mmessages arrive at a process has no effect on the outcome of the program. If the
language were modified so that several- processes could enter messages
concurtently into a single stream, however, nondeterminate computations could
be expressed. Both Hoare’s and Kahn's languages are at very preliminary stages
of development and implementation. More work will be required before these
concepts are fully developed and become tools of programming practice.

Hewitt and Atkinson (17) have proposed a program structure cailed a
serializer 1o provide a more structured and higher level view of concurrent
Programming in a message-passing environment. The purpose of the serializer
construct is to provide the programmer with a general framework for resource
controllers which is then customized to fit a particular application, much as the
monitor construct provides a general framework for a resource controiler
operating in a global environment. In addition the serializer design tries ta
correct some of the weaknesses in monitors, such as the complexity of the
operations delay and continue, and the limited amount of concurrency. The
behavior of a serializer is defined in terms of the actor mode! of cornputation
{50618}, a model in which message-passing is viewed as the fundamental
operation. In this model every action is performed by an actor, where each acior
behaves like a message-passing process. That is, it receives input messages,
performs an operation on the input, generates output messages, and possibly
changes its internal state. Uplike processes, however, actors can be dynamically
created and abandoned. With this model a wide variety of activities can be
expressed, such as concurrent operations, dynamic systern creation and
reconfiguration, and nondeterminacy.  Furthermore, the actor model aflows
highly concurrent computations to be expressed more naturally than the
sequential process model does, because the only sequencing constraints between
aclor activities are those imposed by the messages. T his great expressive power
of the actor model allows a serializer to have a much more saphisticated
behavior than can be expressed in a programming language such as PASCAL
exrended with message-passing commands. Furthermore, since the designers of
“the serializer were nat constrained by the limited types of bebavior exhibited by
sequential, message-passing processes, they couid develop a cleaner structure with
greater patential for concurrency. Serializers, as well as the actor model are still
i0 an early stage of development. Their influence on future language design and y
programming practice remains to be seen. :
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Sequential processes that communicate by message passing can be
implemented without great difficulty. The processes can be carried out by a
number independent processors, such as one typically finds in a distributed
computer system, or even by a mere traditional multiprogramming system, such
as the RC4000 computer system. By extending the RC4000 system with
semaphore operations, Lauesen [26] was able to develop an operating system
which is provably free of deadlocks, Few operating systems which use machine
synchrenization instructions can claim this achievement.

A system consisting of a small pumber of sequential, message-passing
processes can achieve only a limited amount of concurrency, as was seen in the
airline reservation example. Since a resource can be accessed by only one
process, and this process operates sequentially, cancurrent accesses to a single
resource cannot be expressed. In some cases, a large resource can be partitioned
imto a number of paris, and each part managed by a separate process. For
examplie, the information about each flight in the airline reservalion system could
be maintained by a separate process. However, if we want to add new flights to
the database or remove old ones, some method of dynamically creating and
abandoning processes is required. When the system is divided into many small
jparts which can be dynamically created and abandoned, it no longer seems
justified ta call these parts processes; rather they are more like actors. Exactly
where the dividing line between the process model and the actor model lies is a
matter of debate, as are many other issues in developing highly concurrent
systems which operate in a message-passing environment.

5. Data Driven Program Execution

The programming languages discussed so far (with the exception of those
based on actor semantics) have been based on the concept of communicating,
sequential processes. That is, a system is viewed as a number of processes which
can proceed concurrently, but within each pracess only one action is performed at’
a time. Programming languages designed to express the behavior of these
systems are similar to traditional languages. with constructs added Lo express
process communication and synchronization.  An alterpative to sequentiai
processes is to view a program as an unordered set of instructions, each of which
defines how a set of values is to be computed and what identifier is to be
associated with each value. Within an environment, an identifier must refer to a
unigque value. Rather than executing in strict, sequential order, instructions can
be execded as soon as their inpul operands are ready, ie. as soon as the values
required 1o compute the expressions have themsetves been computed. This form
of program execution is said to be data driven, since the arrival of the operands,
rather than the indication of a program counter determines when an instruction
will be executed. Languages which express programs for data driven execution
are often called data flow languages {110,12,25,20).
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To express an unambiguous tomputation, instructions in a data flow
language must be side-effect free. That is, the effect of executing an instruction
can only be to compute a set of values for a set of identifiers, It cannot alter the
definition of any other identifier in the program. Furthermore, the program
must abey the “single assignment rule”, meaning that each identifier is defined
only once within an environment. Considering the importance of side-effects and
multiple assignments to variables in traditional programming languages, one
naturally wonders how a language could eliminate both of these properties and
yet be able to express useful computations. Data flow languages can make up for

these restrictions with recursive procedures and with data streams [2330).

Recursion eliminates the need for iteration, a control structure which relies
heavily on side effects and multiple assignments. Streams allow the programmer
1o view @ sequence of elementary data values as a single entity. Thus, by writing
a procedure that accepts inputs that are data streams, one can express program
units which perform operations on entire sequences af input values. Procedures
which have streams as inputs and  return streams as results will be called
modules to differentiate them from procedures which opérate on individual data
values.  For the airline reservation system example, we shall define a module
transact with inputs request_stream: stream of message and
arvailable:arvay [1..limit]  of  inicper, which  will tampute  an output
reply_stream:sircam of message. That s, the module will receive a sequence of
requests from the remote terminals and an initial state of the data base, and it
will produce a sequence of replies.

To make use of streams, we must define some operations on them. To
extract the values from a stream s, we define two functions: [irst (s} which
returns the first value in the sequence, and restis) which returns the stream
consisting of all elements 1n s except for the first one. To construct a stream, we
define a function cons where the value of cons (x, £} is the stream consisting of x
(which cannot be a stream) fallowed by the elements of stream s. Furthermore,
we must define a rule for procedure jnvocation in data flow. In the earlier
definitions for data flow languages [0, a procedure Pix,y,x} cannot be
invoked until alf input arguments «, ¥, and z are ready. With streams, however,
this rule is modified somewhat. If, for example, x is a stream, then P could be
invoked as soon as the first element of stream x is ready. Hence the module
Iransact can be invoked as soon as the first request has arrived.

With a few modifications to the PASCAL syntax, we can arrive at a
language which is suitable for expressing data flow programs. Most importantty,
to emphasize the idea that an instruction is a definition of how a set of values is
to be computed, assignment statements ‘

<id>:= <erp>
will be replaced by identifier definitions
fet <id> = <exp>,
Furthermore, a_side-effect free analogy to “updating” the array available is
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required. We will defime the function medify(/,i,¢) which returns an array
which is identical to /], except that the ith element 15 equal to v. Despite the
syntactic similarities, however, the semantics of the data flow language are
entirely different frem PASCAL. In particular, the order in which statements are
listed does not dictate the order in which they are executed.

The program for transact is as follows:

metdule transect (reqnest_sivenm: siream of mossages
araiflable: array[..limit) of intcger}y

returns reply_stream: sircam of message;

var roquost, roply: message: [, nzinteger;
newseates array (1. . limit) of integer;

begin
et request = litst (requesi_siream) ;
case reguest, coniends. iype of
"reserve’ s begin
let f' = request,contenis. flight;
Jet = request.contents. rumbor;
il available[f) 2 n
then
bhegin
Ict reply.conients = true;
ict rewstate =

modily (available, [, aveilable [f) -n}
ond

clre
begin
Ict reply.contents = falso;
Ict meanstate = ovailable
ond '
end;
Yinfo' 1 begin -
let f = request.contents. flight;
let reply. contents = aveilable (f];
ler newstate = geeilable '
ol
ond ¢
et reply. deslination = request. rource;
ket reply_stream =
cons Lreply, tronsact (rest{raquest_siream, newstate)))
ond .

The module transact receives its input requests in the form of a single
strear.  This stream is composed of elements produced by a number of separate
modules that transmit request messages from agent terminals. So far, no means
for generating such a stream has been discussed. In fact, the data flow language
which has been presented can express only determinate computations: the result
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of program execution depends only on the vaiues of the inputs, and not on the
order in which they are received. The airline reservation system, however,
behaves ‘nondeterminately, hence some means expressing nondeterminate
operations in the language is required. For this purpose, we will define a
primitive operation merge, where the value of mergefal,s2) is a stream
containing all elements of streams sl and <2, such that the ordering of elements
from sl is preserved, as is the ordering of elements from 2, but the order in
which an element from si and an element from s2 eccur is arbitrary. This
operation is sufficient to express a wide variety of nondeterminate computations.
For example, suppose the airline reservation system contains three terminal
modules which produce streams requesisl, requests2, and regeests3. We can write
the program which computes the three output streams as follows:

maodule system (request], requesid, request3: suream of measage:
avatlebla: arrayll.,limit) of inleger} ;

returns repliasl, replies?, replics3: stream of mcssage;

bogin
let vl = tag(requestl,1);
let v2 = tag(requestZ,2);

let 13 = taglrequest3,3}; . _

lel requests = mergnirl, merge(r2, r31]

let replios = transact lrequests, pvailable)

let repliesl , replies? , replies3 = rort{roplins}
ond,

In this program the messages in the three streams of input requests are first
tagged with the stream number. These three lagged streams are merged together
into a single stream which serves as the input stream to trenseet. The output
stream from transeet i$ sorted according to the tag values into three streams of
replies- one for each terminal module.

A data flow program for the tnput/ovtput buffer system will not be given
here, because it does not demonstrate any new concepts,

Data flow languages seem very promising for expressing computations for
concurrent execution, since the only restrictions on the concurrency are those
impased by data dependencies. Although side-effects and identifier redefinition
are excluded, the combination of recursive procedures and data streams yields a
surprisingly rich language. Furthermore, the single, nondeterminate operator
merge i sulficient to express numerous types of nondeterminate system behavior.
Not enough experience has been gained, however, to fully evaluate the
eXpressive power of the language. Suggestions for extensions have been made
[}, for example, which allow communication links between modules to be created
dynamically. Just how Mecessary such a feature js, and how impottant other
features may be, are open questions.
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Data flow languages permit programs to be written which are far more
modular than §s possible with traditioral languages. Each module of a program
can be described fully in terms of its inpttfoutput behavior. Due to the absence
of side effects, sections of the program can interact only in limited and
well-defined ways. In fact; each instruction executes in its own Jocal environment:
it campules a result based only on its operands. This high degree of modularity
leads to programs which more clearly describe what computations the system is to
perform. In addition, data flow languages allow the programmer to explicitly
limit the sources of nondeterminacy in the system. Nondeterminacy can occur
only where it is exphcitly ailowed through the use of the merge operator.
Considering that unwanted nondeterminacy Is a major source of errors in
concurrent systems, a means of controiling it is of great significance.

The implementation of data fiow languages is currently at a rather
primitive state. Due to the high degree of concurrency and the asynchronous
nature of instruction execution, these janguages may require totally new forms of
computer architecture. Several designs have been proposed [11,29), but numerots
problems remain to be solved before practical data flow machines can be realized.
Hence the state of the art for data flow language design is well ahead of the state
of the art for architectures which support these languages.

6. Conclusion

The three major approaches to concurrent programming discussed here
differ greatly in their fundamental views of how a computer system operates.
With the global environment approach, one views a system as a number of
processes which execute "under one roof” and communicate with one another by
altering the surrounding environment. With message-passing processes, one
views a syslem as a number of processes which execute under their own roofs
and send telegrams to one another. With data-driven pragram execution, the
system is viewed as a network of operators, each of which receives data values,
computes new data vaiues, and sends these output vatues to the next cperator jn
the network. Furthermore, this network dynamically expands as recursive
procedures are invoked and contracts as they are completed. The three
approaches differ in the amount of concurrency which they can achieve, the
clarity of the programs, and the ease with which they can be implemented given
the current state of computer system design.

No system composed of communicating, sequential processes can realize the
full degree of concutrency latent in high level programs. However, a number of
processes can often proceed concurrently. With semaphore-based programs, the

number of active, concurrent processes is limited only by the cleverness of the

programmer subject to the need to. maintain a consistent global state. With
monitar-based programs, one must choose between completely protecting each
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resource with a monitor and hence precluding concurrent accesses to this
resource, ot allowing processes to access a resource directly, thereby compramising
the modularity provided by the monitor concept. With message-passing
processes a resource can be directly accessed by only a single process. Hence,
unless the resource can be partitioned into a number of parts, each of which is
Managed by a separate process, concurrency in the system is restricted. In
contrast to programming languages based on sequential processes, data flow
languages and actor-based systems can express all forms of concurrency aflowed
by the algorithm, although no existing machine architectures can fully exploit
their benefits, '

Evaluating how clearly each approach can express the operations of a
system is a subjective judgement. However, such features as modularity, limited
sources of nondeterminacy, and high-level language constructs are clearly
desirable goals. In terms of modularity, the approaches to concurrent
programming have been presented in order of increasing modularity. First, a
semaphore-based language allows little modularity- the processes can affect each
other in numerous and often subtle ways. Nex!, monitors provide more
madularity by restricting the ways-in which each process can access global
resources. Languages based on message-passing processes carry the modularity
one step further by eliminating the ginbal environment altogether. Finally, data
flow languages, by eliminating all side effects achieve a degree of modularity in
which each program module can be viewed as defining a function from input
values to output values. As for Iimiting the sources of nondelerrninacy, only
Kahn's stream language and data flow languages provide means of stating
explicitly where nondeterminacy is allowed in the system.  Operations on
semaphores, gilobal variable accesses, monitor procedure calls, and
Message-passing, on the other hand, are ail potential sources of nondeterminacy.
Wheu nondeterminacy is not wanted, the programmer must be careful to use
these operations in a way which will not aliow nondeterminate behavior.

With the exception of monitors and sertalizers, high-level language
support  for concurrent programming s largely nonexistent. .~ With bath
semaphore-based systems and message-passing systems, the language constructs
presented  express very elementary forms of process *communication and
synchronization.  The programmer must devise conventions for using these
constructs to achieve the desired behavior. Data flow languages would also
benefit from more sophisticated constructs. For example, a construct similar to a
monitor has been proposed for data flow languages (1] which eliminates the need
for the programmer to construct a tagged stream from several input streams and
then to sort the output stream into its constituent parts.  Designing high level
programming tools which are sufficiently generat and modular, yet do not restrict
the concurrency exploitable in their Implementation is one of the most difficult
challenges 1o the designer of future high-level languages.
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Given the current state of computer design, one has little choice of which
programming approach to use if a practical implementation is required. Both
approaches which assume a global environment fit most naturally on a
multiprogramming system consisting of processors sharing memory. Such systems
are common, and as a result a large proportion of the work in cencurrent
programming bhas been directed toward this global environment approach.
Message-passing processes, on the other hand, describe most naturally the.
opetation of a system of independent processors connected by communication
channels.  Such systems are becoming increasingly common, due largely to a
desire to distribute the processors geographically, and also to the availability of
small, low priced processors. Most programming of these systems is still done at
the machine language level.  No  machine-independent languages for
message-passing processes have come into accepted use. Finally, languages which
express higher degrees of concurrency than can be achieved by communicating,
sequential pracesses, such as actor-based and data fiow languages have not yet
been implemented lo take advantage of this greater concurrency. Whereas the
other approaches could be implemented by modifying existing machine designs,
these high concurrency languages appear to require totally new approaches to
computer design if the latent concurrency is to be realized. While the design of
languages for concurrent programming s an interesting field of study in its own
right, a Janguage is of littie use unless it can be effectively implemented. Hence,
the design of computer systems to support languages which express high degrees
ol concurrency is also an important field of study.
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