LABORATORY FOR
COMPUTER SCIENCE

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

~

\-

CLU Information Package

Computation Structures Group Memo 154
November 1977

Rohert W. Scheifler
Alan Snyder

This research was supported in part by the Advanced Research Projects Agency of
the Depastment of Defense, monitored bl{l the Office of aval Kescarch under
contract NOOO14-75-C-0661, and in part by the National Science Foundation under

grant DCR4-21892.

~

545 TECHNOLOGY SQUARFE, CAMBRIDGE, MASSACHUSETTS {213%

This memo is intended as a temporary source of information about CLU, in conjunction with (1]
and [2], while the new rcference manual is in preparation. This document Is in four parts. Part A
describes the current syntax of CLU, using an extended BNF grammar: Part B defines the ob jects
and operations . of ‘the basic types. Ahﬁough no changes in the syntax are anticipated, new

. operations related to input/output eventualiy will be added to the basic types, but their design has
not beeﬁ completed. Part C gives a simple example of a cluster, an implementation of priority
queues. Part D presents a more complex program, a text formatter.

-Table of Contents

Part A - CLU Synta:i ... 2
Part B - Basic Types and Type Generators......c..oorrammrereeenn. rerereesseves Feerermasranasreresrioines 12
Part C - Priority Queus CIUSIEr.......cocvvrereioinmoniersrsrsmmmeinie s tnisseeasiostessianananansasieesren s 27
Part D — Text FOFMBEEToooveirersriorsssesesssrmseesiaaemsessssassnissssnetesannnnenannanssstosssmesnssranss W0
References

1. Liskov, B, Snyder, A, Atkinson, R, and Schaffert, C. Abstraction Mechanisms in CLU. Comm.
ACM 20, 8 (Aug 197D, 564-576.,

2. Liskov, B., and Snyder, A. Structured Exception Handling. Computation Structures Group
Memo, Laberatory for Computer Science, M.1.T., Cambridge, Mass., forthcoming.

Part A - CLU Syntax

1. Lexical Considerations

A CLU module is written as a sequence of tokens and separators. A foken is a sequence of ASCil
"printing” characters {octal 37 < value < octal 1771 representing a reserved word, a name, an
identifier, a literal, an operator, or a punctuation symbol. A separater is a "blank™ character
(space,l VT, HT, CR, NL, FF) or a comment. [n general, any number of separators may appear

between tokens. Tokens and separators are described in more detail in the sections below.
1.1 Reserved Words

T he foliowing character sequences are reserved words:

any cor False itertype rep true
array cvt for nil return type
begin do force null returns up
bool down has -oneof signal . when
break else - if others signals where
cand elseif in proc . string while
char end int proctype tag yield
ciuster except is real tagcase yields
continue exit iter record then

: Uppef and lawer case leiters are not distinguished in reserved words. For example, 'end’, 'ENDY’,

and 'eNd’ are all the same reserved word.
1.2 Idns and Names

An idn lidentifier) is a sequence of letters, digits, and underscores that begins with a leiter or
underscore, and is not a reserved word. As in reserved words, upper and lower case leiters are not
distinguished in idns. Idns have scope, and are used primarily for variables, parameters, module

names, and as abbreviations for constants.

1. Spaces usuallf serve as separators, but can be vsed within character and string literals.

A name is textuaily the same as an idn, and upper and lower case letters are not distinguished.
Names have no scope, and are used primarily in naming operations of types and selectors of

records and oneofs.

1.3 Literals

T here is one ob ject of type null; the reserved word nil is used as a literal for this ob ject.
The reserved words true and falge are used as literals for the two objects of type bool.
An integer literal is a sequence of one or more decimal digits.

A real !iu-ral is a mantissa with an {(optional} exponent. A mantissa is either a sequence of one or
more decimal digits, or two sequences, one of which may be null, joined by a period. A mantissa
must contain at least one digit. An exponent is 'E', "E+’, or 'E-' (or '€, ‘e+’, 'e-"} followed by one or
more decimal digits. An exponent is required if the mantissa does not contain a period. Ekamples
of real literals are:

34 3.14E0 3i4e-2 0314E+2 3. 14

. A character literal for a “printing” ASCI character, other than single quote or backslash, is that
~ character enclosed in single quotes. Literals for other characters are formed by enclosing one of the

following escape sequences in single quotes:

escape sequence character

\’ ' {single quote
\" " {double quote)
A\ \ {backslash)

\n NL (newiine}

\t ‘HT {(horizontal tab)
\p FF {newpage)

b BS {backspace

\r CR (carriage return}
\v VT (vertical tab
*s% specified by octal value (s is an octal digit)

The escape sequences may be written using upper case letters. Examples of character literals are:
T " " \B' \Tr

A string literal is a sequence of zero .ur more character representations enclosed in double quotes,
Within a string literal, a "printing” ASCII character other than double quote or backslash is
represented by itself. Other characters can be represented by using the escape sequences listeu
abave. Examples of string literals are:

“Item\tCost”
1.4 Operators and Punctuation Symbols

The foliowing cha racter sequences are used as operators and punctuation symbols:

{ < ~e + [}

} ; <= ~cm ~ T
{ , = arm * rr
} >m = / &
L 3 > ~> _ i

] = o

1.5 Comments and Other Beparators

A comment is a sequence of characters that begins with %', ends with a newline character (NL), and
contains only "printing” ASCII characters and horizontal tabs (HT) in between. For example:
o z := alid + X a comment in an expression
blil;
A separator is a "blank” character {space, YT, HT, CR, NL, FF) or a cc;mment. Zero or more
séparators may appear between any two Lokens, except that at least one separator is required
between any two ad jacent non-self -terminating tokens: reserved words, idns, names, integer literals,

and real literals. This rule is necessary to avoid lexical ambiguities.
2. CLU Syntax

We use an extended BNF grammar to define the syntax.. The general form of a production is:

nonterminal: alternative
| alternative

| alternative

The following €xtensions are used:
{a} stands for (elalaalaaa|...)
.[a] stands for (e | a)

% begms a meta-comment that continues to the end of the line
All semicolons are optional in CLU; for simplicity, they appear in the syntax without meta-brackets.

Nonterminal symbols appear in normal face. Reserved words appear in bold face. ANl other

terminal symbols are non-alphabetic, and appear in normal face.

full_module: ;{ equate ;} [module;]

madule: procedure
| iterator
| cluster

procedure: idn = proc [parms] args [returns] [signals] [where]
body
end idn

% The two idns must match.

iterator: idn- = iter [parms] args [yiei;ls.] [signals] [where]
ond e

% The two idns must match.

cluster: idn = cluster [parms] is id_n{ ,idn } [where]
¢_equates

operation :{ operation ; }
~ end idn

© % The first and last idn must match.
parms: - [parm { , parm }]
parm: idn {-. idn } : type.
| idn{ ,idn } - type_spec
args: ([dect{ .ae1 }]*
decl: idn { , idn } : type_spec
returns: returns (type_spec { , type_spec §)

yields:

signals:

exception:

where:

restriction:

Lype_set:

oper_deck
op_name:;

canstant:

" body:

¢_equates:

operation:

equate:

| idn in type_set
% The'idn must be a type parameter.
{ idn | idn has oper_decl{ » oper_deci } ;{"equate ;} }

% The two idns must match.

yields (type_spec { , type_spec })

name [{ type_spec { , typ_e,_}pec } }]

~ signals (exceptim{ .exr.eptim})

where restriction { , restriction }

idn has oper_dec! { , oper_dect }

| idn

% The idn must be equated to a type_set.
' op_name{ , Op_name } : type._spec

% It must be possible to evaluate the expression at compile-time.

name [{ constant { . consnnt-}]]

expression

type_spec

-;{ equate;} { statement;}'
_;{ equate;} rep = type_spec; {aquau;}

procedure‘

iterator

idn -'cpnstant
- idn = type set

type_spec:

field_spec: -

null
bool

|

| real

| char

| string

| any

% any Is the union of al types.

| rep

¥ rep may be used only within clusters.
| evt

% cvt may be used only at the top ievel of the args, returns, yields, and signals
% clauses of cluster operation headings.

| array [type_spec]

| record field_spec { , Field_spec } 1

| oneof [fiekl_spec { , fleld_,spa:}) .
| proctype([type _s.pec{ , type_spec 3]) [returns | [signals]
| itertypet { type_spec § , type_spec }]2 [yietas] [signals]

| idn T constant § , constant } J

| idn '

name{ , name } : typespec

statement:

deci
ide : type_spec := expression

I
| decl { decl } := invocation
] idn { , idn } := invocation .
| idn{ ,idn } := expression { , expression §
% The number of idns must equai the number of expressions.
| primary . name := expression
| primary (expression] := expression
| invocation _
| while expression do body end
| for [deci { ,dect }]in invocation do body end
| tor [idn { ,idn }] in invocation do body end
% The invocations in the above two stztements must be of- an iterator.
| if expression then body
- { elseif expression then body}
[else body]

end
| tagcase expression

tag_arm { tag_arm }

' . [others : body]
end

% The otl'iersi arm is prese;-u if and only if selectors are missing on the tag_arms.
| return [{ expression { . expression })]

| yield [¢ expression { , expression })]

| signal name [{ expression { , expression } }]

| exit name [{ expression { , expresslon })]

| break
| continue

% break and continue must cccur within a while or for statement.

| begin body end

] stat;:mmt ; excepl { when_arm}

[others [(idn : type_spec)]: body]
and

% The named exceptions arising from stafement are caught by the arms.
% The type_spec must resolve to string. At least one arm must be present.

tag_arm: tag name { , lame } [{idn: tmml] : body
when_arm: when name { , hame } [{ dacl{ , decl })] + body
| when m_lme{ .name} {s):body

expression: ex pressionl s+ expression
' expression // expression
“expression / expression

5 (precedence)
1

4
expression s expression
expressién i expfession
expression + expression
' expression - expression
expression < expression
eXpression <= expression
' expression = expression

expression ~< expression
expression ~<= expression
eXPression ~= expression
ex pression a>e expression
expression ~> expression

MR KN M NNNNSNDN

expression & expression
expression cand expression

%
%
%
%
X
%
%
]
%
]
expression >= expression %
%
%
2
%
%
p S
%
%
expression | expression %
%

|
|
l
|
|
|
|
|
l
|
| expression > expression
|
|
|
I
|
|
|
|
|

expression COF expression
| prim

% The higher the precedence the tighter the binding.
% All operators are left associative except s+, which is right associative,

_prlm:

primary:

invocation:

field:

-10-

~ prim

| - prim

| ¢ expression)
| primary

nil

true

false
int_literal
real_literal
char_literal
string_literal
idn

idn [constant { , tonstant }]
type_spec $ name [{ constant { » constant } }]
primary . name

primary [expression]
invocation

type_spec § { Field § , field } }

% The above is a record _constructc;r.

| _‘ type_spec $ [expression :] [expmsion{ , expression }]]

ﬁ The above is an array constructor.

| force(type_spec] |

% forcelT] is a procedure which takes any ob ject and checks that its type is T.

| up (expression)
| dawn { expression)

% up and down are used within cluster operations to convert between the abstract
% and representation types.

primaty (_[expression { . Expression }] }

name { , hame } : expression

-1-

3. Bugarings

Below is a complete list of operation “sugarings” and their corresponding expansions. These are
equivalent in semantics and type-cosrectness. In the following, x, 3. and z are expressions, T, is the

syntactic type of %, and n is a name.

Sugar Expansion
x.n T, Sgetnix}
XM= : T Sput_nix, 2!
xly] _ TS etchix, y}
%[yl =z ' T $storelx, v, 2
X £x ¥ . szwx, ,}
x /1y T $mod(x, y}
x/y T'Sdhr(x, Vi
X%y o T $mukx, y)
xly ' T, Sconcat(x, y)
X+ : T Saddix,
X -y ' _ T $sublx,)
X<y T Shix, y
X <=y - T Sielx,
X =Y T ,Sequakx, y)
X o=y T Sgeix, y)
x>y T,Sgt(-x, Y
X ~< Y ~lx <y
X wem ¥ : : X <= Y
X~y _ ~x =y
X a>my : adx >w y)
X Ay ' . ~Axay
x &y Txhnd(x, 7
xly A T Sor(x, y!
~X - T Snotlx} .

-X ' . T $minusix)

-12-
Part B - Basic Types and Type Generators

1. Introduction

The Foliowing sections describe the basic types and the types produced by the basic type generators.
For each type, the ob jects of the type are characterized, and all operations of the type are defined.

In defining an operation, ergl, arg2, ec, refer to the arguments (the objects, not the syntactic
expressions), and res refers to the result of the operation. If execution of an operation terminates
in an exception, we say the exception “accurs”. The order in which exceptions are listed in the

operation type is thé order in which the various conditions are checked.

The definition of an operation consists of an “interface specification” and an explanation of the
relation between arguments and results. An interface specification has the form
name: type_spec ' side_effects
restrictions :

If side_effects is null, no side-effects can occur. “PSE” (primary side-effect) indicates that the state
of argl may change, "SSE" (secondary side-effect) indicates that a state change may occur in some
ob ject that is, or is contained in, an argumlsnt.1 Restrictions, if present, is either a standard where
clause, or a clause of the form ‘

where each T, has oper_decl,
which is an abbreviation for

where T, has oper_decl,, .., T, has oper_deci,
Arithmetic expr;essions and comparisons used in defining operations are to be computed over the
domain of mathematical integers or the domain of mathematical reals; the particular domain will

be clear from context.

Definitions of several of the types will involve tuples. A tuple is written <e, .., e >; & is called the

i'™ element. A tuple with n elements is called an n-tuple. We define the following functions on

1. Secondary side-effects occur when a subsidiary abstraction performs unwanted side-effects. For
example, side-effects are not expected when arraylTI$simitar calls T$similar, but their absence
cannot be guaranteed.

tuples:

-8~

Sizel<e,, .., e>) = N
A = B if and only if (Size(A) = Slu(B)} A Yil lslssnc(ﬁm[al =b]

<, .., b>ll <, .., d> = <a, .., b, & ., d>

Front{<a, .., b, ¢>} n <a, .., b>

Taik<a, b, .., >} m <b, ., C>

TaiPA) = A and Tail™A) = TalTaiA)
OccurstA, B, D = (3CDN(B = CH AHD) A (5i2e(0) =i - 1)

1f Occurs(A, B, i} holds, we say that A occurs in B at index 4.

2. Null

" There is one immutable ob ject of type null, denoted nil.

equal: proctype (null, null) returns (bool?

similar: procetype (null, nuib returns (bool)
Both operations always return true.

copy: proctype (nulb returas (null}
Copy aiways returns nil.

3. Bool

There are twa immutable objects of type bool, denoted true and false. These ob jects represent

logical truth values.

and:
or:
not:

equat.

similar:

copy:

proctype (bool, bool} returns (baol)
proctype (boo!l, bool} returns (bool)
proctype (kaob returns (boal}

These are the standard logical operations.

proctype (bool, bool) returns (bool)
proctype (bool, beol) returns (baol)

These two operations return true if and only if both arguments are the same ob ject.

proctype (bool) returns tbool

Copy simply returns its argument.

4. Int

- 14 -

Ob jects of t;rpe int are immutable, and are intended to model the mathematical integers. However,

the only restriction placed on an impilementation is that some closed interval [Int Min, Int Max)

be represented.'with Ini_Min <0 and Int_Max > 0. An overflow exception is signalled by an

operation If the result of that operation would lie outside this interval

add:
sub:
mul:

minus:

div:

mod:

power:

proctype (int, inb) returns (int) signales (overfiow)
proctype (int, in) returns (int) signals (overfiow)
proctype (int, inb) returns (int) signals (overfiow)

The standard integer addition, subtraction, and multiplication operations.

proctype (int) returns (int) signals (overflow)
Minus returns the negative of its argument.

proctype (int, int) returns (int) signals (zero_divide, overflow)

Div computes the integer quotient of argl and arg2:
Ir O s 1 <larg2) A (argl = arg2eres + r}). Zero_divide occurs if arg2 « 0.

proétype (int, int} returns (int} signals (zero_divide, overflow)

Mod computes the integer remainder of dividing argl by arg2. That is,
3q U0 < res <larg2]) A largl = arg2eq + res)). Zero_divide occurs if arg2 = 0.

proctype (int, int) returns (int) signals (negative_exponent, overflow)

This operation computes argl/ raised to the arg2 power. Power(0,0) =1
Negative_exponent occurs if arg2 < 0.

from_to_by: itertype (int, int, in) yields (int)

le:
ge:
gl

This iterator yields, in succession, argl, argl + arg3, argi + 2earg3, etc, as long as the
value to yield, x, satisfies arg/ < x S arg2 when arg? >0, or crgz $x Sargl when
arg,'v‘ < 0. The iterator continuaily yields argl if arg? = 0.

. proctype (int, int) returns (bool}

proctype (int, int} returns (bool
proctype (int, int) returns (bool)
proctype (int, int} returns (bool

The standard ordering relations.

~15-

equal: proctype (int, inl} returns (bool
similar: proctype int, int} returns (bool}

“These two operations return true if and only if both arguments are the same ob ject.

copy: proctypé (int) returns Gnb

Copy simply returns its argument.
5. Real

Objects of type real are immutable, and are intended to modei the mathematical real numbers.
However, only a subset of o

D = [-Real_Max, -Real_Min] U {0) U [Real_Min, Real_Max)
need be represented, where 0 < Real_Min <1 < Reai_Max. Call this subset Real. We require that

both 0 and 1 be elements of Real It the exact value of a real jiteral lies in D, then the value in

CLU is given by a function Approx, which satisfies the'follo#ing axioms.

YreD - Approxir} ¢ Real

¥ r ¢ Real Approx(r} « v

YreD l(Apprexin - n/n <10F pz6

YrseD r £ s - Approx(r} s Approx{s)
- NreD Approx{-r) = Approxin

The constant # is the precision of the approximation.

add: proctype (real, rea returns (rash signals (overflow, underfiow}

sub: proctype {real, real) returns (rea) signals (overflow, underflow}

mul: proctype (real, real} returns {read signals (overflow, underfiaw)

minus: proctype (real returns {reah :

div: proctype (real, real) returns (resh signals (zero_divide, overflow, underflow)

These operations satisfy the following axioms:

) (ab20wvab s 0 - adda, b « Approxia « b}
9) add{a, b) = (1 + €¥a + b} ld<W0P
3) add{a, 0} = a
4 add(a, b) = addlb, a}
5 a < a' - add(a, b) £ add(a’, b)
6} minus{a) = -a -
N subfa, b} = add{a, -b}
)] mul{a, b} = Approx{a s b}
@ div(a; b) = Approx(a / b}

. In axlom 2, the value of p is the same as that used in defining Approx. Note that the

infix and prefix expressions above are computed over the mathematical real numbers.

power:

i?r

r2i:

trunc:

[4

le:
ge:
gt:

equal '

- similar:

copy:

-16 -

The axioms only hold if no exceptions occur. An exception occurs if the result of an

- exact computation lies outside of D; overfiow occhrs if the magnitude exceeds

Real_Max, and underflow occurs if the magnitude js less than Real_Min. Zero_divide
occurs if arg2 = 0. '
proctypa (real, resl) returns (realt

. signals (zero_divide, complex_result, overflow, underflow)

This operation computes argl raised to the arg2 power, Zero_divide occurs if
argl =0 narg2 <0. Complex_resuit occurs if argl <0 and arg2 is non-integral.
Overflow and underflow occur as explained above.

“proctype (int) returns (real) signals (overflow)

12r returns a real number corresponding to the argument: res = Approx{argl). Overflow
occurs if ergl lies outside the domain D.

proctype (reab returns (int) signals (overfiow)

'R2i ‘rounds to the nearest integer, and (oward 2ero in case of a (e

lires - argll < /2 A liresl <largh + 1/2. Overflow occurs if the resuk lies autside the
domain for CLU integers.

proctype (real) returns (int) signals (overflow)

- Trunc truncates its argument toward zero: fires - argll < 1) A {Iresi S larglll. Overflow
, occurs if the result lies outside the domain for CLU integers.

proctype (real, real) returns (bool
proctype (real, real) returns (boobh

. proctype (real, real) returns {boab

proctype (real, real) returns (bool
The standard ordering relations.

proctype (real, resd returns (baoh
proctype (real, real) returns (baol

These two operations return true if and only if both arguments are the same ob ject.

proctype (real) returns (real)

Copy simply returns its argument.

-17-

8. Char

Ob jects of type char are immutable, and represent characters. Every 1mplementanon must provide
at least 128, but no more than 512, characters. Charaoters are numbered from 0 to some Char Top,
and this numbering defines the ordering for the type The first 128 characters are the ASCII

characters in their st;ndard order.

i2¢c: proctype (int) returns (char) signals (illegal_char)
' " |2 returns the character corresponding to the argument. [ilegal_ char occurs if the
argument is not in the range (0, Char_Top).
c2i: . proctype tchar) returns (int)
- This operation returns the number corresponding to the argument.

It proctype (char, char) returns (baol)
le: proctype (char, char) returns (bood
ge: proctype (cher, char} returns (bool)
gt: proctype (char, char) returns (bool)

The ordering relations consistent with the numbering of characters.

equal: proctype (char, char) returns (boal)
similar: proctype {(char, char) returns {bool)

These two operations return krue if and only if the two arguments are the same ob ject.

copy: proctype (char) returns (char}

Copy simply returns its argument.
7. String

Objects of type string are immutable. Each string represents a tuple of characters. The it
character of the string is the i™* element of the tuple. There are an infinite number of strings. but
an implementation need only support a finite number. Attempts to constrict Iliegal strings result in

a failure exception.

size: proctype (string) returns (nt)
This operation simply returns the size of the tuple respresented by the argument.

indexs:

indexc:

c2s:

cancat:

append:

fetch:

rest:

substr:

s2ac:

acls:

-18 -

proctype (string, string) returns (int)

If argl occurs in arg2, this operation returns the least index at which argi occurs:
res = mindi | Occursiargl, arg2, i, Note that the result is 1 if argl is the O-tuple. The
result is O if argl does not occur. :

proctype (char, string) raturns (int)

If <argl> occurs in arg2, the result is the least index at which <argl> occurs:
res = minli | Occurs(<argl>, arg2, D1 The result i3 0 if <argl> does not occur.

proctype (chan returns (string

This operation returns the string representing the I-tuple <argl>.

proctype (string, string) returns (string
Concat returns the string representing the tuple arg! | arg2.

proctype (string, char) returns {striﬁgl

This operation returns the string representiﬁg the tuple argl il <arg2>.

proctype (string, int} returns (char} signals (bounds}

Fetch returns the arg2™ character of argi. Bounds occurs if

Aarg2 < 1) v (arg2 > sizelargh).

proctype (string, int) returns (string signale (bounds)

The result of this operation is Tail*®Yargh). Bounds occurs f
larg2 < 1} v larg2 > sizelargh +).

proctype (string, int, int) returns (string} signals {(bounds, negative_size)

If arg3 < sizelrestlargl, arg2)), the result is the siring representing the tuple of size arg3
which occurs in argl at index erg2. Otherwise, the resuk is restlargl), arg2}. Bounds
occuts if {arg2 <) v (arg2 > sizelargh +). Negative_size occurs if arg? < 0.

proctypa (string) returns (arrayichar)
This operation places the characters of the argument as elements of a new array of

_ characters The low bound of the array is 1, and the size of the array is sizelargh). The

' element of the array is the i'™ character of the string.

prgctype {arrayicharl} returns (string

Ac2s serves as the inverse of s2ac. The result is the string with characters in the same
order as in the argument. That is, the I™ character of the resukt is the
(i + lowtargh - D'* element of the argument.

-19-

. chars; itertype (string yields (chan
This iterator yields, in order, each character of the argument.

It: proctype (string, string! returns (bool
ie: proctype tstring, string) returns (baol)
ge: proctype (string, string) returns (bool
gt: proctype (string. string) returns (boob

These are the usual Jexicographic orderings based on the ordering for characters. The
It operation is equivalent to the following:

It = proc {x, y: string) returns (bool);
size_x: int := stringdsize(x);
 size_y: int = stringSsize(y);
min: int;
if tize_x <= size_y
then min := size_x;
else min := size_y;
end;
far i: int in int$from_to_by(l, min,) do
if x01) < ylil
then returnitrue),
end;
end;
returnisize_x < size_y);
end i;

eqﬁal_: proctype (string, string) returns (bool)
similar: proctype (string, string! returns (bool

These two operations return true if and only if both argumeﬁts are the same ob ject.

copy: proctype (string} returns (string)

Copy simply returns its argument.
8. Array Types

The array type generator defines an infinite class of types. For every type T there is a- type
array[T). Array objects are mutable. The state! of an ob ject of type arrayiT] consists of:

a) an integer Low, called the low bound, and
b a tuple Elts of objects of type T, called the elements.

1. For an array A, we should properly write Low,, etc, ta refer to the state of that particular ab ject,
but subscripts will be dropped when the assoctation seems clear.

-26-

 We aiso define Size = Size(EItsl, and High » Low + Size - 1. We want to think of the elements of

Elts as being numbered from Low, so we define the array_index of the i'® element to be

{i + Low -).

For any array, Low, High, and Size must be legal integers. Any attempts to create or modify an

array in violation of this rule results in a failure exception. Note that for all array operations, if

an exception other than failure occurs, the states of all array arguments are unchanged from those

create:

new.

predict:

Taw:
high:
size:

~ set_low:

trim:

" at the time of invocation.

broctypa (int) returns (arraylT))
This operation returns a new array for which Low is argf and Els is the O-tuple.

proctype) returns (arraylTh
This is equivalent to create(l),

proctype (int, int) returns (arraylTD

Predict is essentially the same a:z createlargl}, in that it returns a new array for which
Low is argl and Elts is the O-tuple. However, if arg2 is greater than (less than} 0, it 15

- assumed that at least larg2l addh’s (addl's) will be performed on the array. These

subsequent operations may execute somewhat faster.

proctype (array{ T retwns (int)
proctype (array(iT] returns ({int)
proctype (arrayt T]) returns ¢inb

These operations return Low, High, and Size, rﬁpectlv'ely.l

proctype (arrayl T, int) . PSE

Set_low makes Low equai to arg2.

proctype (array(T], int, In) signals (bounds, negative_size} PSE-

This operation makes Low equal to arg2, and makes Elts equal to the tuple of size
minlarg3, High' - arg2 + 1} which occurs In Elts' at index arg2 - Low’ + 1} That is,
every element with array_index less than arg2, or greater than or equal to erg2 + arg3,
is removed. Bounds occurs if (arg2 < Low) v larg2 > High' + I). Negative_size occurs
if arg7 < 0. Note that this operation is somewhat like siring$substr.

1. Elts’, High', etc. refer to the state just prior to invoking the operation.

fill:

fill_copy:

fetch:

battom:
top:

store:

addh:

addt

remh:

-9 -

prnctypb Gint, int, T} returns (arraylT} signals (negative_size)

FLIl creates a new array for which Low is argl and Elts is an arg2-tuple in which every
element is arg3. Negative_size occurs if arg2 < 0.

proctype (int, int, T) returns (array(T]} signals (negative _size}
where T has copy: proctype (T} returns (T)

This operation is equivalent ta the following:

fill_copy = proc (nlow, nsize: int, elt: T returns (a0 signals (negative_size);
at = arrayiT}; o
if nsize < 0
then signal negative_size;
end
x: at := atSpredicti(nlow, nsizek;
far i: int in int$from_to_by(l, nsize, I} do
at$addhix, TScopy(elti};
end;
returnix);
end fill_copy;

proctype (array(T], Int) returns (T} signals {(bounds

Fetch returns the element of argl with array_index arg2. Bounds occurs if
(arg2 < Low) v (arg2 > High.

- pfoctype (arraylT] returns (T) signais (bounds)

proctype (arraylT]} returns (T} signals (bounds}

These operations return the elements with array_indexes Low and High, respectively.
Bounds occurs if Size = 0.. '

proctypa (arraylT], int, T} signals (bounds) : PSE

Store makes Elts a new tuple which differs from the old in that arg3 is the element with

“array_index arg2. Bounds occurs if (arg2 < Low} v {arg2 > High).

proctype (array(T], T} ' - - PSE
This operation makes Eits the new tuple Eits’ § <arg2>.

~ proctype (arraylT1, T) ' ' PSE

This operation makes Low equal to Low' - 1, and makes Elts the tuple <arg2> i Elts’,
Decrementing Low keeps the array_indexes of the previous elements the same.
proctype (arrayiTD returhs (T) signals (bounds} - | o PSE

Remh makes Eits the tuple Front{Elts?, and returns the deleted element. Bounds occurs
if Size'=0.

‘remk:

elements:

indexes:

equak:

similar:

sirmilarl:

copyi:

proctype (arrayiT)) returns (T) signals (bounds) PSE

Reml makes Low equal to Low’ + I, makes Elts the tuple TaiKElts), and returns the
deleted element. Incrementing Low keeps the array_indexes of the remaining elements
the same. Bounds occurs if Size' = 0.

itertype (arraylT) vields (T) signals (bounds)

Elements with array_indexes in the range [Low’, High') are yielded in order. If the state
of argl is changed after the iterator has ylelded an element, it is possible that when the
iterator js resumed there is no element for the next array_jndex. Bounds occurs in such
a case.

itertype lari'ay[T]l yields (int)
This iterator is equivalent to int$from_to_by(Low", High', D).

proctype (array(T), arraylT? returns (bool)

Equal returns true if and only if both arguments are the 3ame ob Ja:t

proctype (array(T), arraylT) returns (booh SSE
where T has similar: proctype (T, T) returns (bool) '

This qp'eration is equivalent to the following:

similar = proc (x, y: at) returns (bool)
where T has similar: practype (T, T} returns (bool};
at = arrayl[T]);
if atblow(x) ~= atSlowly} cor at$size(x) ~= at$sizely}
then returnifaise); :
end;
for i: int in at$indexes(x) do
if ~TSsimitar(x(i], ylil}
then returnifalse);
end;
end;
returnitruel;
end similar;

proctype (arraylT], array(T)} returns (bool) SSE
~where T has equal: practype (T, 1) returns (tboal

Similarl works in the same way as simiiar, except that TSequal is used instead of
TSsimilar.

practype (arrayiT)) returns (arraylTD

Copyl creates a new array with the same state as the argument.

capy:

proctype (array(T]) returns (array(TD _ 5SE
where T has copy: proctype (T) returns (T}

This operation is equivalent 1o the following:

copy = proc (x: at returns (at)
where T has copy: prectype (T) retlurns (T);
at = arrayiT];
x = at$copylix);
for i: int in atSindexes(x} do
x[i) ;= TScopy(x(ily;
end
returnix};
end copy;

©. Record Types -

The recard type generator defines an infinite class of types. For every tuple of name/type pairs

<N, T}, .., (N, T ,)> where ail the names are distinct, in lower case, and in lexicographic order,

there is a type recordiN,T,, .. N;TJ. {However the user may write this type with the pairs

permured; and may.use upper case letters in names) Records are mutable abjects. The state of a

. record of type recordN,T,,., N T 1 is an n-tupie; the i™ element of the tuple is of type T,

The i™ element is also called the N ~component

create:

get_N,:

put_N. :

equal:

_proctype (T, .., T)) returns (recordN T, ., NyTI}

This operation returns a new record with the tuple <argl, -, argN> as its state. This
operation is not available to the user; its use Is implicit in the record constructar.

proclype (record(N T, ., N;T D returns (T)

This operation returns the N,-component of the argument. There is a get_N. operatian
for each N, :

proctype (record(N T, ., N T 1L TP | , PSE

This operation makes the state of argl a new tuple which differs from the old in that
the N.~component is arg2. There is a put_N, operation for each N,

proctype (recordIN T, .., N T], recordN ;T , .., NyT] returns (bool)

Equal returns true if and only if both arguments are the same ob ject.

similar:

similarl:

copyl:

CIQP)':-

-24 -

proctype (recordiN . T , .., N;T J, recordIN,:T, .. N.T D returns (bool) SSE

where each T, has similar: proctype (T, T} returns (bool

.Cbrresponding components of argl and arg2 are compared In (lexicographic) order,

using T $similar for the N-components. (The N.-component of argl/ becomes the first
argument) If a comparison results in fatse, the resuk of the operation is f8lse, and no
further comparisons are made. If all comparisons return true, the result is true.

proctype (recordiN :T, ., N T], recordN T, ., N;T I} returns (bool» SSE
where each T, has equak proctype (T, T) returns (bool

Similarl works in the same way as similar, except that T Sequal is used instead of
T $similar.

proctype (reéord'N 1Ty e NGT) returns (recordN T, ., N;T D
Copyl returns a new record with the saime state as the argument.

proctype (recordN :T, .., N;T I} returns (recordIN, T, ... N;T,) SSE
where each T, has copy: proctype (T} returns (T)

This operation is equivalent to the following (note that the N, are in lexicographic
order):

copy = proc (x: rt) returns (ro
where T, has copy: proctype (T) returns (T),

: T, has copy: proctype (T) returns (T);
rt = recordiN :T,, .., N;T
X = rt$copyl(x);
%.N| = T $copy(x.N};

XN, = T Scopy(x.N};
returnixy;
end copy;

10. Oneof Types

The oneof type generator defines an infinite class of types. For every i:uple of name/type pairs

<N T,) (N, T >, where all of the names are distinct, in lower case, and in lexicographic

order, there is a type oneof(N T, ., N_T). (However the user may write this type with the

pairs permuted, and may use upper case letters in names) Oneof objects are immutable. Each
ob ject represents a nam‘q!obpct pair (N, X), where X is of type T. For each object X of type T,
there is an object for the pair (N, X). N, is calied the tag of the oneof, and X is called the vaiue.

make_N, :

s N, :

.25

proctype (T) returns (oneoftN T, ., N;T '
This operation returns the oneof object for the pair (N, argD. There is a make N,

-operation for each N, :

proctypé (oneofiN :T,, ., N;T,J} returns (bool)

‘ This operation returns true if and only if the tag of the argument is N, There is an

value N, :

equak

similar:

copy:

is N, operation for each N,

proctype (oneoliN :T,, ., N, T D returns (T) signais (wrong_tag)

If the argument has tag N, the result is the value part of the argument. Wrong _tag

occurs if the tag is other than N, 'I_'here is a valoe_N, operation for each N,

proctype (oneofiN :T,, ., N;TJ, oneofiN T, .. N;:Tﬂli returns (bool SSE
where each T, has equak proctype (T, T) returns (bool}

If argl and arg2 have different tags, the result is false. If both tags are N, the result
is that of invoking T $equal with the two value parts. :

proctype (oneofiN T, .., N:T,), oneofiN,:T, ., N;T J returns (boch SSE

‘where each T, has simiiar: prectype (T, T) returns (bool)
If argl and arg2 have different tags, the result is false. 1€ both tags are N, the result

is that of invoking T $similar with the two value parts.

proctype (oneof[N T, .., N;T J! returns (oneof(N,:T, .. N.T,D SSE
where each T, has copy: proctype (T) returns (T}

If argl represents the pair (N, X), then the resuk is the oneof object for the pair
{N, T $copy(X). ’

11. Procedure and Iterator Types

Let A R, L,, ... L, be ordered lists of types, and let N,, ... N, be distinct names In lower case and
in lexicographic order. Then there is a type
proctype (A) returns (R) signals (N (L), ... NL D

and a type

itertype (A yields (R) signals (N,(L,), ., NXL).
(The user may permute the N(L}'s, and may use upper case letters in names. if R is empty then
"returns (R)" is not written, (L)" Is not written if L; is empty, and “signals ()" is not written if

n -O-}

- og.

The create operations are not available to the user; their use is implicit in the procedure and

iterator constructors.

" Let T be a procedure {or iterator) type in the following.

- equak proctype (T, T) returns (boob
similar; proctype (T, T) returns (bool)

These operations return true if and only if both arguments are the same
-implementation of the same abstraction, with the same parameters.

copy: proctype (T) returns (T)
' Copy 'simply returns its argument.

12. Any

The type any is the union of all types. There are ho operations for the type any. Thus, for
example, no arvaylanylScopy operation exists.

remove = proc {x: evl) relurns {t} mgnoll (emptyk

a: at = x.3;
p: pt s= xX.p;
r: t ;= at3bottomial
except when bounds: signal empty; end
v: b = atSromh(al

. max_son: int := atSsize{ak

it max_son = O then return (v); and;
max_dad: int 1= max_sonf2;
dad: int =, 1;
while dad <= max_dad de
" son: int = dads?;
s: | := a[son}
if son < max_son
{hen
ns: t = afson + 1}

% Save best for Ister raturn

% Ramove last element

% Gel new size

% If now empiy, we're done

% Last node with a son

% Node to place v it it beats sons
% While node has a son

% Get the flirst son

¥ if thare is a second son
X Find tha best son

il pins, 5) then son, & -m+1,ns;cnd;

and;
if plv, s) then breal; ands
a[dad] = 8;
dad = som
-nda
a[dad] (-
raturn (r);

" wnd remove;

ond p_queus;

% if v beats son, we're done
% Mave son up
% Move v down

% Insert tha alement intd place
% Return the previous best element

-10.
PartD - Text Formatter

The following progrim is a simple text formatter. The input consists of a sequence of
unformatted text lines mixed with commands lines. Each line is terminated by a newline character,
and command lines begin with a period to distinguish them from text lines. For example:

Justification oniy occurs In "£i11" mode.

In "nafill” wode, each input text line is output without modification.
The .br command.cauees & |ine-break.

Lor

Just like this.

The program produces justified, indented, and paglhal:e_d text For example:

~Justificatien only occurs in "fill" mode. In "notill” mode,
each input text line is gutput uithout modification. The .br
command causes a |ina-braak.

Just like thie,

The output text is indented 10 spaces from the left margin, and is divided into pages of 50 text
lines each. ‘A header, giving the -page number, is output at the beginning of each page.

An input text line consists of a sequence of words and word-break characters. The word-break
characters are space; tab, and newline; all other characters are constituents of words. Tab stops are
considered to be every eight spaces.

The formatter has two basic modes of operation. In “nofill” mode, each input text line is output
without modification. Tn "fill" mode, input is accepted until ne more words can fit on the current
output jine. (An output line has 60 characters) Newline characters are treated essentially as spaces.
Extra spaces are then added between words until the last word has iis last character in the
rig htmost poﬁtlon of the line. _ .

In fill mode, any input line that starts with a word-break character causes a line-break: the current
output line is neither filied nor ad justed, but is output as is. An “empty” Input line (one starting

with 2 newline character) causes a line-break and then causes a blank line to be output.

The formatter accepts three different commands:

.br causes a line-break

-27-
Part C - Priority Queue Cluster

This cluster is an implementation of priority queues. It inserts elements in Ollogo n} time, and
removes the 'best' element in ouogz 0 time, where n is the number of items in the queue, and
"best’ is determined by a total ordering predicate which the queue is created with.

The queue is iImplemented with' a binary tree which is balanced such that every element is ‘better’
than its descendents, and the minimum depth of the tree differs from the maximum depth by one.
The tree is implemented by keeping the elements in an array, with the ieft son of ali) in alis2],
and the right son in alis2+1). The root of the tree, al1], is the 'best’ element.

Each insertion or deletion must rebalance the tree. Since the tree is of depth strictly less than
logo N, the number of comparisons is less than logg n for insertion and bess than 2 Jogy n for
removal of an element. Consequentiy, a sort using this technique takes less than 3 n Iogz n

companwns.

This cluster illustrates the use of a type parameter, and the use of a procedure as an ob ject.

P_queue - cluster [k typelis

creatp =

top =

size =

emply =

insert =

creals, % Create s p_queve with a particular sorting predicate
top, % Return the best elemeni

size,] % Raturn the number of slemenis

empty, % Return true if thers are no elaments

insert, % Insert an element of typa t
% Ramove the best element and return it

remave;

pt = proetype (I, 1) returns (bool)
al = array[t];
rep = record [a: at, p; pt}

pro¢ (p: pt) relurns {cvl)
raturn (rep8{a: stScreata(l), p: plk
end create;

proc (x: cvi) returne (1) signels (amply) -

return (atSbottomix.a)y

sxcept when bounds: signal emply; ends

and 1op;

proe (x: evi) raturns (inl);
return (at8size(x.a))
-nc! size;

proc {x: ¢vi) raturns (bool);
return (at8size(x.a) = Q)
end emply;

proc (x: cvl, vi t);

a: at == w3

p: pt 1= x.p;

atSaddh(a, v}

sot: int 1= at8high{a)

dad: int := s0n/2;

while dad > O cand p(v, a[dsd]) do
a[son] := a[dad}
son, dad ;= dad, dad/[2;
and;

a(son] = v;

and insert;

% Low index of srray must be] !

% Make room for naw item

% Node to-place v if father wins
% Get index of fathar

% While father loses

% Move father down

X Gat new son, {ather

%X insert the element into place

remove = proc {x: evt) returns (t) signals (empty)

a: at == w91
p: pt = X.p3
r: t ;= at8bottomial

except when bounds: signal emply; end

vi b = atSremh(al

. max_son: int := atSsize{ak

it max_son = O then return (v} and;
max_dad: int 1= max_sonf2)
dad: int =, 1;
while dad <= max_dad do
" son int = dads2;
s: | := a[son}
if son < max_son
{han
ns: t := afson + 1}

and;
if p(v, s) then breal; ands
a[dad] = 5;
dad = som;
.. end;
a[dad] 1= v
raturn {r)

" and ramove;

end p_queus;

% Save best for Iater raturn

% Ramove last element

% Gel new size

% If now emply, we're done

% Last node with a son

% Node to place v it it beats sons
% While node has a son

% Get the lirst son

¥ if ihare is a second son
¥ Find tha best son

i pins, 5) lb-nmn.s:-m‘»l,ns;cn&

% If v beats son, we're done
% Mave son up
% Mave v down

% Insert tha slement into place
% Relurn the previous best element

-50.
PartD - Text Formatter

The following progr-am is a simple text formatter. The input consists of a sequence of
unformatted text lines mixed with commands lines. Each line is terminated by a newline character,
and command lines begin with a period to distinguish them from text lines. For example:

Justification only occurs in "fil1" mode.
In "nofili” mode, each input text line is output without modification,
The .4r command causes a |ina-break.
+br
© . Just like this.

The program produces justified, indented, and paglhal:e_d text For example:

- Justification only occurs. in "fill" mode. In "notiil” mode,
each input text line is gutput without modification. The .br
command causes a |ine-hraak.

Just like this.

The output text is indented 10 spaces from the left margin, and is divided into pages of 50 text
lines each. ‘A header, giving the -page number, is output at the beginning of each page.

An input text line consists of a sequence of words and word-break characters. The word-break
characters are spaée,‘ tab, and newline; all other characters are constituents of words. Tab stops are
considered to be every eight spaces.

The formatter has two basic modes of operation. In “nofill” mode, each input text line is output
without rn-odificati:on. n “fill" mode, input is accepted until no more words can fit on the current
output line. (An output line has 60 characters) Newline characters are treated essentially as spaces.
Extra spaces are then added between words until the last word has irs last character in the
rig htmost poﬁtlon of the line. '

In fill mode, any input line that starts with a word-break character causes a line-break: the current
output line is neither filied nor ad justed, but is output as is. An “empty” input line (one starting
with 2 newline character) causes a line-break and then causes 2 blank line to be output.

The formatter accepts three different commands:

.br causes a line-break

-8 -
nf causes a line-break, and changes the mode to “nofill®
i - €auses a line-break, and changes the mode to “fill®

The program performs input and output on streams, which are connections (channels) to text files.
The following operations on streams are used:

empty * tests if the end of the file has been reached

gete removes and returns the next character from the stream

peekc like gete, but the character is ndt removed

getl removes and returns (the remainder of) the input line and removes but
does not return the terminating newline character .

phtc ' oﬁtputs a character, with newline indicating end of line

puts - outputs the characters of a 8ring using pure

clase closes the stream and associated output file, if any

Module Dependency Diagram

reader

[~

_ deo line

T

reader = proc (instraam, outstream, errstream: stream)

do_line =

% Read the insiresm, processing it and placing the output on
% outstream and writing error messages on errsiream.

p: page = pageScronie (oulstream)

while ~stream$empty (instream) do
do_line (instresm, p, errstraam)
and

ﬁageﬁlarminatu ip}

snd reader
proe (instra.m: siream, p: page, arrstream: stream).

% Process an input line. This procedure resds one line from
% instream. It is then processed either as a toxt line or as
% a cammand line, depanding upon whether or not the first
% character of the line is & period

c: char 1= stream$peehkc (instream)
it ¢ =" then .
© do_command {instream, p, errstraam}
" aha
do_text_line (instream, p)
and
end do_line

do_text_line = proe (instream: stream, p: page)

% Process a text line. This procedure reads one line from

% instream and processes it a3 a text line. If the first

% character is a word-break cheracter, then » line-bresk is

% caused. [the line is amply, then & blank line is output.

% Otherwise, the words and word-break charscters in the line
% are processed in turn.

¢: char ;= stream$getc (instream)
if ¢ ="\’ then X empty input line
© pagesskip_line {p)
relurn '
snd
ifc=""qorc="\1"then
page$break_line (p} -
end
whila ¢ ~="\n" do
e ="" then
. page$add_space (p)
alseif ¢ = "\{’ then
pagefadd_tab (p}
olce
‘wi word := word§scen (¢, instream)
pagefadd_word (p, w)
ond ’
¢ := stream$gete (instream)
and
pagedadd_newlina (p)
srd do_text_line

-85 .

do_command - proc (inslrnm: siresm, p: pege, errstraam: siream)

% Process a command line. This procedurs resds one ling from
% instream snd processes it as & command,

stream8gatc (instream) . -~ . % skip the period
n: string := resd_name (instream)
if:n = “br" then
' - pageSbresk_jine (p)
elseil n = “fi" then :
- pageSbresk_fine (p)
pagedset_fill (p)
" elseif n = "nf" then
pagefbresk_line {p)
pageldsat_nafill (p)

- olse o _
streamSpuls (™, arrstream)
stroambputs (n, errstream) ..
streamlputs (™ not a command.\n", errstream)
end
stream3get! (instream) . % resd remsinder of input fine

end do_command
read_name = proe (insiream: sirsam) rolﬁrm {string)

% This procedure reads & command name from instream. The
% command name is terminated by 2 space or a newline. The

- %X cammand name is removed from instreamy the lerminating space
% or nawline is not. _ :

s: string = ™
while true do _
ci char = stream8psekc (instraam)
except when end_of_file: refurn (s) snd
lte=""corc="\n"then .
raturen {s)
ond
s := stringappend (s, streambgete {instrasm))
and
and read_name

_ﬁu

page = cluster is create, add_word, add_space, edd_tab, add_newline,
break _Jine, skip_line, sat_tili, set_nofill, terminate

% The page cluster does the basic formatting. 1t supports the
% basic actions: BREAK_LINE, SKIP_LINE, SET_FILL, SET_NOFILL,
% TERMINATE. It performs the appropriste sclions for tha

% basic componants of the input: WORDs, SPACEs, TABs, and

% NEWLINEs. [t maintsins a current output lina for the

¥ purposes of performing justification. It performs

¥ pagination and the production of headings. For this purposs
% it maintains the current line number and the current page

% number. - .
rap = record |
line: line, % Tha current line.
fil: bood, % Trua <we> in fill mode,
lineno: int, % The number of lines output
. % 30 far on this page (not
¥ including any hoader lines).
pageno: int, - X Tha numbar of the current
_ X output page. '
outstream: straam X The output siream.
]

“create = proc (outstream: stream) returns (evl)

% Create a page object. The first page is number |, there sre
% no lines yeot output on it. Fill moda is In effect.

return { reps{" line: lineScreate (),

fill: troe,

lineno: 0,

pagene: 1,

. outstresm: oulsiresm})
ond create

add_word = proc {p: cvt, w: word)

% Process a word. This procedure adds the word w to the

% outpul document. It in nofiil mode, then the word is simply
% added to the end of the current line (thers is no

% line-langth checking in nofill mode). [f in fill mode, then:

X wa first check to sea if there is room for the word on the
% current line. If the word will not fit on the current line,

% we first justify and aulpul the line and then slart a naw

% one, However, i the line is empty and the word won't fit
% on it, then we just add the word to the end of the line; i
% the word won't fit on an empty line, then it won't it on

% any line, 50 we have no choice but to put it on the current -~

% ling, even if it doesn't fil,

“if p.fill eand ~ine$empty {p.line) then
h: int = wordSwidth (w)
it lina$iength {pline) + h > 60 than
line$justify (p.line, 60)
output_line (p)

end
and
line8add_word {p.line, w)
ond add_word

add_space = proc {p: evi)
% Process a space —~ just add it to the current line.

lineSadd_space (p.line)
and add_space

add_teb = prot {p: cvt)
% Process a tab -- just add it to the current line.

line§add_tab (p.line)
and add_tab

add_newline = proc (p: cvl)

% Pracess » newline. If in nofill mode, then the current line
% is output as is. Otherwise, s newline is trested just like
% a space.

if ~pfill
than output_line {p)
olsa lineladd_spate {(pline)
 end
end add_newline

break_line = proc (p: cvi)

% Causz a line break, If the line is not empty, then it is
% outpul as is. Line breaks have no efact on emply lines —-
% muitiple liné breaks are the same as gne.

if ~lineSempty (p. Iim) ther output_line (p) ond
and break_line-

skip_ting = proc (p: evi}
% Cause a line break and output a blank line.
break_line (up {p}) :
autput_line (p) % line is empty
end skip_iine

set_fill = proc {p: cvi)
"% Enter fill mode.

pfill 1= true
- and set_fili

set_nofill = proe (p: cvi)
% Enter nofill mode,

p.fill := false
and set_nofill

terminate = proe (p: cvt)
% Terminais the output document.

break_line {up (p))
if plineng > O then
‘streambpute ("\p’, p.outstulm}
) ond
streaméclose {(p.outstream)
end {erminate

X

Interhll procedurs.

oufﬁul_ling “ gHle (b rap)

% Oulput line is used to keep track of the line number and the
4% pafie humber and to put oul {he header at the top of sech
% page.

it plinane = O then % print header
T streamSputs (M\n\n", poutsiream)
pul _spaces (10, p.ottstrasm)
strasmipuls ("Page “, p.outstream)
_stresam8puts (int2string (p.pagenc), p.outstream)
steagsmputs (Mn\n\n", p.outstream)
«nd

 pAindtR = plineno + 1

eond page

line$dutput (pline, p.outstresm)
it plinena = 50 then
streamipute ("\p’, p.dutstream)
plindne ;= 0 : :
. ppagbhe = ppagend ¢ |
ond Output Jina

'pu’l..:ﬁacu = prbe (n: int, outsiream: stream)

% This procedure outputs N spaces to oulstream.

for it lat in int8from_to_by (1, n, 1) do
stresmBputc (* °, oulstream)
. end
ond pul_spaces

- 40 -

line = clusiar is craate, ;dd_,word. add_space, ld&_llb. longth,
emply, justily, outpul

% A line is a mutable sequence of words, spaces, and tabs.

% The length of a lina is the amaunt of characler positions

% that would be used if the fine were outpul. One may output
% a line onto & stream, in which case the line is made emptly

% after printing. One may also justify a line to a given

% lenglh, which means that some spaces in the line will be

% enlarged to make the length of the line squsl ta the desired
% length, Only spaces to the right of all tabs sre subject to

% justification, Furthermore, spaces preceding the first word
% in the output lina or precading the first word follewing s

X tab are not subject to justitication. If there are no

% spaces subject to justification or if the line is too long,

% then no justification is performed snd no error message is -
% produced:

token = oneof [
" space: int, % the int is the width of the space

tab: int, % the int is the width of {he tab
ward: word

) B
at = array [token]
rep = record {
langth: ind, % the current length of the line
stuff: at ¥ the contenis of the line
]

creale = proc {) raturns (cvl)
% Craals an amply line.
return (reps{
length: 0,

stulf: at8rew ()
b

and creste

add_word = proe {: :vl, wi yord}
% Add » word at the-end of the line.
atBaddh (Lstutf, tokenSmake_word (w))

Liength := Llength + word$width (w)
end add_word

add_space = proc {I: evl)
% Add a spsce al the and of the line.
atSaddh (Lstutf, tokenSmake_space (1))
Llength := Llength + 1
and add_space

add_tab = proc (I: evit)
% Add a tab at the end of the line.
width: int 1= 8 - {Llength//8)
Liength := Llangih + width .
at8addh (Lstuff, tokenSmake_{ab (width))
end add_tab

length = proe (I: cvi) returns (int)

% Return the current length of the line.

return {l.length)
‘wnd length

empty = proc {I: evit) returns (bool)
% Relurn true if the line is empty.

— return (atSsize{i.stuff) = 0)
end empty

-42 -

justify = proe {I: evi, lon: int)

% Justify the line, if possibie, so that it's langth is equal -
% to LEN. Before justification, any trailing spaces are

% removed. If the line langth at that polnt is grester or
% equal to the desired length, then no action is taken,

% Otherwise, the set of justifiable spaces is found, »s

% describad sbove. If there are no justifiabie spaces, then
% no further action is taken, Otherwiss, the justifiable

% spaces are anlarged to meke the line jangth the desired
% Jength. Failure is signalled it justification is sitempted
% but the resulting line length is incorrect, This condition
% indicates a bug in justify; it should never be signailed,
% regardisss of the argumants to justify.

remove_trailing_spaces {{)
if Llength >= len than return end
diff: int := len - Llength
first: int := find_first_justifiable_space {I}
axcept when none: return end
enisrge_spaces (i, first, diff)
it Liength ~= len then signal failure ("justification failed™) and

end juslify '
output = pree {i: evt, outstream: stream)
% Oulput_ tha line snd resel it.
if »empty (up (1)} then |

put_spaces {10, cutstream)
for t: token in atSalements (l.stuff) do

tagcme t
tag word {w: word):
wordSoutput (w, oulstraam)
tag space, tab (width: iml):
put_spaces (widlh, culstream)
and
ond

" ond
stream$pute ("\n®, outstream)
lLlength := O .
atBtrim (Lstuif, 1, 0)
snd oulput

- 45 -

4 - Internal procedures.
remove_trailing_spaces = proe (l: rep)
% Remove ali trailing spaces from the line.

while at§size (i.stulf) > Q do
lagcase at$top (l.stuif)
tag word, tab:
braak
tag space (width: int): .
atSremb (Lstuff)
Lisngth := Llength - width
and
ond
srd remove_{railing_spaces

find,_,firsi_iusﬂfiable_spl:l - pme (t rip) returne (int) signsls (none)

X Find the first justifisble space. This space s the first

% space after the first word after the last {ab in the lina.

% Return the index of the space in the srray. Signal NONE if
% there are no justifisble spaces.

at at := Lstuff

if at§siza (a) = O then signal none snd
lo: int := siSlow (a)

hi: int := atShigh {a)

iz int :e hi

% find the last tab in the line {if sny)
while i>lo easnd ~tokanBis_tab {afi]} do
j=ij-1
end

% find the first word after it {or the first word in the line)
while i<=hi cand ~tokensis_word (a{i] do

imi+l

end

~ % find the first ahace after that
while i<=hi esnd ~tokanlis_space {ofi] do
imisl .
wnd

if i>hi then signal none end
return (i) _
end find_first_justifiable_space

anlarge_spaces = proe {i: rep, first, diff: int)

% Enlarge the spaces in the arrsy whose indexes are at least
% FIRST. Add » total of DIFF extra character widths of space.

nspaces: int ;= count_spaces (I, first)
if nspaces = O then return end
naach: inl := diff /nspaces
naxtrs: ind = diff //nspaces
for it int In int8from_to_by (lirst, atBhigh (Letuif), 1) do
tagemse Lstufifil
tag space (width: inth
width = width + neach
lLlength := Llangth + neach
it naxtra > O then
. width :» width + 1
Llength = Llangth + 1
rextre := naxirs - |
crd
© Lstulf[l] := tokonSmake_space (width)
othars: - :
ond
: end
ond enlarge_spaces

count_spaces = proc {I: rep, i: int) nhﬁ-m {in®)

X Return a count of the number of spaces in the line whose
% indexes in the array are at least 1.

count: int ;= ¢
while i <= stShigh {l.stuff} da
tagcase Istuff[i]
: tag space:
count := count + 1
others:
“mnd
jr=jal
and
return {count)
and count_spaces

~ end line

waord = clusiar s scan, widih, output .

% A word is an ilam of taxt. [t may be output to a stream.
% It has a width, which is the number of characler posilions
% that are teken up whan the word is printed.

rep = siring
scan = proc (c: char, instream: stresm) refurne (cvi)

% Construct a word whosa first character is C end whose
X remaining characters sre to be removed from the inatresm.

s: string = siringfc2s {c)
while true do
¢ := streamipaske (instream)
axcept when end_of_file: brask end
ifc=""¢orc ="\t'"cor c = "\n’ then

brask
: ond
s = stringlappend (s, streamdgeic (instream))
. end ‘
return (s)

end scan
width = proc {w: cvi) returns (int)
. % Return the width of the word.

relurn (siringdsize (w)f
end width

qutput = proc (w: evi, outstream: straam)
. % OQutput the word.

stream8puts {w, outstream)
and output .

end word

