MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Laboratory tar Computer Science

Camputalion Structures Group Memo 156

_ A Structure Controller for Data Flow Computers

by

William B. Ackerman

This research was supported by the Advanced Research Projects
ency of the Department of Defense and was monitored 31 the
ice of Naval Research under contract no. NOOO14-75-C-0651

Jan. 1978

This paper presents an implementation of a structure controller for a dsta flow
computer. The compuler is presumed to be similar to that in [Denl), and tH- controllar
performs the memory operations described in (Acki] and makes use of the memory system
described therein. The reader is referred to those documents for more detalls.

Structures are realized as acyclic binary trees, in which a node is an
elementary value or is a pair of pointers to other nodes. The position of any node of a
structure is therefore defined by its selector, which is the string of zeros and ones telling
which of the pointers to foliow a{ each node when tracing the tree fram the root to the given
node. The special elementary object hil is used to represent “nonexistent” substructures. It
is the anly elementary value specifically recognized by the structure controller - ali others

are treated as uninterpreted data,
There are two machine level operations performed by the structurs controlier:

SELECT[structure, selector] --> object

returns the object at the point in the structure Indicated by the selactor ({the selector is
a bit string, which is presumably an elementary date type handied by the computer). [t
is an error if the structure controlier attempls to "run past” an elementary value other
than nil, that is, if there is such an elementary value in the given structure, whose
se}ecior is a proper prefix of the given seleclor. 1f the structure controller attempts to

run past the value nil, it simply returns nil as the resuit,

APPEND[structure, selector, object] --> structurs

returns a structura which is identical to tha given one, except that it contains the given
object af the position indicated by the given seloctor. Whatavar object was previously
at thal position is absent in the resuit, Any elemantary object in the original structure
at a position whose selector is a prefix of the given selector must also be absant in the

resull. i

Nades and branches are added during an APPEND as necesssry to.create »
. I

)

place for the item to be appended. They sre removed a5 necessary to avoid any
substructures whose only terminal nodes are nil.

|
|
! A

: A APPEND[A, *1001%, 5] yields
2 3

APPEND[B, *1001°, nil] then yields

REFERENCE COUNTS, SHARING, AND COPYING

it is the nature of a data flow computer that its semantics must be compleisly
local. The meaning of the result of an operation such as an APPEND must be completely
defined by the meaning of its arguments, Independently of any other operatians that may be
performed on the same arguments elsewhere in the computer. There are two (closely related)
reasons for this requirement: [t wc;uld not be possible to define the semantics of data flow
languages is a useful and understandable way if this were not the case, and the behavior of a
data flow computer would not be determinate if its operations did nol meet this requirement. -
Therefore, the data flow computer must handle sfructures in an “applicative” manner, as
Oppused to the “impure®™ in which they are handled In many common languages with datas
structure facitities. The meaning of a data structure must be Independent of any conceptual |
"global state” of the memory, even though the structures are stored in a global memory. This
requires very careful design of the structure controller.

One solution to the problem would be to forbid any sharing or overlapping of

structures. Since every structure would have its own private area of memory, there would be
no global effects. However, this would probably be prohibitively inefficient. 1t would require
each structure to be completely copied whenever its value Is duplicated. The solution to ba
used is inslead {0 copy nodes when they are to be wrilten on and there are other pointer:% to
the same node. The delermination of whether there are other pointers fo a node is made by

examining the node's reference count.

Each node of a siructure has & reference count, which is the tolsl number of
pointers to that node from all sources - other nodes and ™okens” in the camputer, All
operations that create or desiroy pointers must alter the reference count. For example, w!;en
a trus or false operator destroys a {oken, the count must be decreased. When a minto+ is
written onto a node, the pointer that was previously in the memory location being writtur['n is
deslroyed and hence must have its count decreased. When a SELECT Is psriormed, the count
of the result must be increased, and the count of the original structure must be decreasad, to
account for the tokens that are crealed and desiroyed. {In fact, the incroase on the result
must happen before the decrease on the argument, o avoid a possible erro.nsous cali

destruclion.)

The cell aliocation and manasgement slgorithm (see {Knul] section 2.35) is as
foltows: Free cells are kept on a free slorage list. When a new cell is needed, one is
removed from this list, and its referente count is set to one. Whenever & reference count is
decreased and the result is zero, that cell is reclaimed, that is, returned to the free storage
- hist. When fhis happens, the painters contained in the cell are destroyed, so the reference
counts of the nodes pointed to must be decreased. If either or both of !hos-é counts go to

zgrb, those cells are reclaimed, and the process repeats itself, -

The reference count method af cell management is known ta wark if no directed
cycles ever exist in any structure. (If directed cycles can exist, such a cycle could be
abandoned by destroying all pointers to it from the rest of the computation, but it would
‘never be reclaimed because each nods would have § reference count of one,) Therefore, to

prove correciness of the structure controller, it is necessary to show that no cycles will eaver

be formed and that the APPEND operation will be performed without side effects. Pure LISP,
that is, a system with onty CAR, CDR, and CONS: operations, satisfies both of these criteria.
Cycles can never be formed because a node can only point to nodes older than itself. CONS

is free pf side effects because it only writes on a freshly created cell.

It will therefare suffice to show that the behavior of the structure controlier
performing an APPEND is equivalent lo the way it would behave if were defined in terms of
CAR, CBR, and CONS. A detailed proof of this has not been worked out. However, an
argumeht can be given for the correciness of the decision whether to copy a node. When the
structure controller wants to write on a node {say, on the CAR side) while doing an APPEND, it
checks that node’s reference count. [f it is one, meaning that the only painter to that node is
the structure controller’s own pointer, it simply writes on the CAR, leaving the CDR
unchanged. Otherwise, it gets a fresh node from the free storage list and wriles on the CAR
of thzaut,E filling in the CDR with the COR of the criginal ncde, and then decreases the ariginal
node’s reference count. The siructure controller’s rationale for this is as follows: If the onty
available memory operalions were were CAR, CDR, and CONS, it would always use CONS lo get

“a fresh node, specifying that the CAR of the new node is to be whatever it wants to write,
and the CDR is to be the CDR taken from tha original node. This is exactly what it in fact
does when the reference count is not equal to one. Now what happens if the structure
cantroller finds that the reference count of the original node is one? It kmows that, when it
decreases the count afier reading the CDR, the old node will be reclaimed. When it parfoel'mn
a CONS to build the new node, it might get the same node back, and could bypass *he
reclamation and generation by simply re-using the same node. The CDR part will already hyvo

the correct dela, so only the CAR neads to be written.

The effect of the structure controller’s copying behavior, and its avoldance of
circular lists, is illustrated by the following example. The numbers sppesring inslde nodes are
reference counts. If A and B denote pointers into the following structure (ignoring the dotted

line):

a very naive execution of APPEND[A, 000", B] might replace the pointer to "1™ with a pointer
back to B, as shown by the dolled line. This is incorrect. The correct resuit of APPEND[A,
'000", B] Is: '

3.14

Because reference counts must be updeted whenever structure valued tokens
are duﬁlicatsd or dastroyed, snd only the structure controller can manipulats reference

I .
counts, the structure controller must perform sl instructions that duplicete or destroy

_structure tokens, In particular, the true and {alse conditional gates (see [Denl)) cause tokbns

tc be condilionally destroyed. These instructions can be handled by very simple functiqnal
units if the type of the deta token is elementary, but if it is » struclure, the Instruction miust'
be pror‘:essed. by the structure controller. The processing of these instructions is complallaly
straightforward and is not shown in this paper,

THE CONTROLLER'S ENVIRONMENT

, The structure controller is lo be one of several identical units connecled to the
computér, tha memary through the interconnection network, and each other through the uIp
network, as shown below.

2 to distribution

[from arbitration - - = —- network of
inetwork of compuler
|computer

OPNI RESO

uIDo

structure structure structure
contraller controller _\ cantrollar
; %ﬂDl -‘_

interconnection
natwork

memary

The functions of the ports are as follows:

OPNI - receives operation packets from the computer, These patkels sre either
SELEGT(sirucl, sel, desll. -~ dest) or APPEND(struct, new-vel, sel, desl‘. - destu). The
computetr sends each operafion packet to any structurs controller that _is able to receive
it,li that is, any confiroller that has acknowledged the previous one. (This is the same as
wtlmt the computer does with arithmetic operation packsts, sanding them to whichever

arithmetic processor is able 1o receive them.)

RESO - transmits results of structure operations back te the computer, ono packet for
each deslination that was given in the operation packel. These packels are (value, desl?.

MEMO - transmits commands through the interconnection network to the memory. These
packets are FET‘*){addr, tag) or UPD{addr, data, ref). The memory is implemanted; as
several modules, each handling certsin addresses. The Interconnection network sdrts
these packets according to address, sending each to the right memory unit. FE+‘*’
means FET, FET*, or FET". |

!
MEMI - raceives replies from FETX! commands. These packets sre RTR':(ADDR, OA!TA.
REF, TAG). The interconnection network routes these packsts from the memory back o

whichever structure controller sent the command.

UIDI - receives UID packets, giving fresh cells {o be used for the creation of new nodes.
These packets are UlD{addr, object). "Object™ is some value that, if it is & structure, |

must have ils reference count reduced. This will be explsined later.

UIDO - transmits UID packets. The UID network simply lakes UID packels according to
the various struclure controllers’ abilities and redistributes them sccording to the

controllers” needs.

THE UID NETWORK AND FREE STORAGE

There should 2lways be a packet available at UIDI. When il needs a fresh cell,
the controlier simply takes that packet and acknowledges it. inon receiving the acknowledge,
the UID network provides another packat. The siructure controller must constantly provide
fresh cells to the network through port UIDD. Whenever the UID nefwork acknowledges the
last packet and the controller’s free storage list is not empty, the controller takes a cell from

the list and transmits it at UIDO.

Whenever the struclure controller reduces the reference count of a cell to
zero, it reclaims that cell by placing it on the free storage list. It must also decrease the
reference counts of the cells pointed to by the pointers in the reclaimed cell. This may cause
one ar both of those cells to be reclaimad, so the pracedure is recursive. Since each .
reclamation can cause two others, the recursion is difficult to handla. (The structure
controlier has no stack mamory.) The procedure used is only to reduce the reference count
('Jf'the bode pointed to by the right half of the word at the time it is reclaimed. While the
word is; on the free storage list, its left half is preserved, and its right half is a pointer to the
next cell on the list. This makes reclamation of the cell give rise 1o only ane other reclamation
instead of two, so the recursion can be handled iteratively without a steck.

i When the structure controller receives a cell at UID], the teft half still contains
a poirler 10 a node that must have ils raference count reduced. The structure controller
reduces that count before using the cell. It could get this pointer by reading it from the new
cell, but, since the cell was read when it was remaved from the free storage list, an exira
memary refersnce can be saved by passing that pointer along with the ¢al’s address. For
this reason, the UID packet contains both a cell and an object (pointer) whose refarenca count

must be reduced.
If no packel is aveilable at UIDI when one is needed, the compuler has

presumably run oul of memory. This is an unpleasent situation to deal with, since ‘ils

occurrence is _nondeterminate (one run of o program might succesd while another run fails).

|
l
!

10

I
.The simplest thing to do is to terminale the compulation. There is a thance that, by simply
‘wailing, a free cell might be created by another part of the program, allowing the computation
to proceed. However, this strategy gives no positive indication thet » camputstion has failed
other than the fact that il stops executing instructions, which ‘may be undesirable. In the

implementation o be given, il is assumed that packsts are slways present at UIDL
INITEALIZATION OF THE FREE STORAGE LISTS

Betore starling program execution in & data flow computer, all of memory must
be put into the free slorage lists. The algorithm to be given assumes that tha free storage
list in wach siructure controller is a chain of words whose hesd is pointed to by & register
‘called FREE. The right half of the data in each word contains the sddress of the next word in
the list. The right half of the last word contains an elementary object, such as nil. The left
half ot each word contains a structure whose reference count is to be reduced when that
word is taken from the list. 1t is assumed thet these lists are initialized by dividing up the
fotal memory space into as many parls as there are controllers, and linking all words in asach
part into a chain. The left half of each word is inltially filled with soma harmiess elementary
abject such as nil, and the head of each chain is put into the FREE rogister of its structure
controller. As the final inifialization step, each controller must then behave ss though it had
received an acknowledge on port UIDO, that is, it must take & word from the list and send it
out through UIDQ.

GENERAL DESIGN OF THE CONTROLLER

Each cantroller can handle some fixed number of concurrent operations. Each
of these operations reguires 2 number of private verisbles that must be stored in the
conlroller’s local memory. All of the variables in the flowcharts given later except LOCK and
FREE are private. The private varisbles are actually arrays whose size is the number of
concurrent structure operations that the controller can handle. Each operation is given a

“tag”, or index, which is used to index the arrays and to idenlify memory transactions.

11

The total number of controllers, and the numbar of concurrent operations that
each controller is desighed 1o handle, Is a complex decision based on the speed of the memory
sysiem, the speed of the controllers’ logic and internal memory, the speed of the switching

netwarks and communication ports, and the required performance of the syslem

When a strucilure operation is received at OPNI, an unused tag is selected for it.
{If there are no unused tags, the controller does not accept packets at OPNL) The operation
then proceeds concurrently with all the others, with all of its memory transactions jabelied
with its tag, and all of its state information stored in the various arrays at an index equa‘: to
its tag. Each RTR'! packet returned by the memory has a {ag field {not shown) that is edual
to the tag sent in the corresponding FET'® packet, so that the controllar knows lech
opearation the RTR™® refers to. When the structure operation is. complete, the result packels
are sent aut and its tag becomes free. The operations are processed according to the
flowcharts. For simplicity, lag fields in packets are not shown, and references to the state
arrays are shown as simple variables. All memory transactions are shown in boxes and,
except for UPD, consist of transmission aof a command followed by a wait for a reply. UPD
transactions consist of a transmission only. Some averlapping of memory transactions within
one structure operation would be possible, but it is not shown since the state transilions are
isimpler when viewed as a uniprocess flowchart. (In particular, the “discard” function can
I|proceed concurrently with the rest of the operation.} FREE and LOCK are global variables. All
others are arrays indexed by an operation’s tag. FREE points to .Ihe head of the free storage
list. LOCK is initially zero, and is set to one whenever a memory transaction is in progress
?which manipulates the free storage hist.

The structure controller never issues an UPD command unless the reference
count is known to be one. Since this is s0, there can be no transactions pending on that cell,
so the requirements for correct memory use (see [Ackl] seclion 3) sre met. This is
contingent, af course, on the rest of the computer correctly raslizing its specification. Any
incarrect handling of a reference count by the compuler {for example, if it duplicated a
structure valued token without increasing its referance count) could lead 1o sn UPD packet

being sent while there are transactions pending.

12

THE "SELECT™ AND. "APPEND" ALGORITHMS

The SELECT operalion is straightiorward. The string S is set to the selector. A

- is set to the incoming structure, o that it can be discarded (have its reference count reduced)

at the énd of the operation. R is a working pointer that traces the structure. The controller

repeatedly reads the word at R, picking out the left or right half of the dsta, depending on the

next bit of S, and putting the result back in R. When S runs out, R is the result. Its reference
count is increased the appropriste number of times, and then A is discerded.

The APPEND operation is much more complex. It is designed to require only a
single fi"uass down the structure, creating new cells only when the reference count tforbids
writing oh existing cells. A is a working pointer that traces down the structure. R is the
result, which is set on the first iteration either to A or to the cell that A was copied into. His
true during the first iteration and false later. G and GG are flags that become false as soon
a;.; the operation passes a node whose reference count is greater than one. When this

happens, all subsequent nodes must be copied.

A special case arises if the value to be appended (the varisble C) is nil. The
structure controller must take care to remove any structure that would contsin nothing but’ nil
- as ils terminal nodes. It uses the veriables W and P for this. W can take the values tléue.
false, 0, or 1. When it ts O or |, the entire subtres from P down to the current place in the
structure is a chain of nil’s. If this situalion persists when the controllar has reached the end,
that chain is discarded by writing on P. The valua of W (0 or 1) tells which half to write on.:' 1t
W is true, the chain of nil's exlends all the way to the top, 8o the entire result is to!ba
discarded and replaced with the elemeniary object nil, [f W is folse, there are no chainé of
nil’s to be discarded.

The structure controller algorithm is exhibited in the following flowcharts. First
the overall sequance is given, and then the manipulations that are privats to each structure

o;:!ueralion.

13

REFERENCES

[Ackl] Ackerman, W. B. “A Structure Memory for Data Flow Computers”, Laboratory for
Computer Science (TR-186), MIT, Cambridge, Massachusetts, August 1977.

[Denl]) Dennis, J. B, D. P, Misunas, and C. K. C. Leung "A Highly Parallel Processor Using a
Data Flow Machine Language”, Computation Structures Group (Memo 134), Laboratory

for Computer Science, MIT, Cambridge, Massachusetts, January 1977,

[Knul] Knuth, D. E. “The Art of Computer Programming, Vol. 1: Fundamenia}
Atgorithms”, Addison-Wesley, Reading, Mass., 1968

K

14 |

there is a free tag and a packet is available at OPNI

Take the packel at OPNI, assign it a tag, execute the eppropriate flowchart

on the next pages until Jil enters 8 memory transaction box or terminates.

some flowchart is at entrance to a memary transsction box not labelled

LOCK, or a box labelled LOCK and LOCK = 0, and Interconnection network

is acceptling commands

)=

Send the indicated command packst. If the box is labslled LOCK, set LOCK = 1.
If command is UPD, proceed with its flowchart until It anters another -
transaction box or terminates. llf not, mark it waiting for reply.

received reply packet from interconnaction patwork

Execute the flowchart for the operation indicated by the tag until

it enters another memory transaftion box or terminates.

got acknowledge at UIDO, and interconnection network is accepting commands
and LOCK « O and FREE # pil

Send FET(FREE, "SPECIAL") ; setl LOCK := 1.
, N

received RTR(addr, data,--, "SPECIAL") from interconnection network
Send UlDXaddr, left{data)} at UIDO. Don’t wait for acknowledge.
FREE := right{data))

LOCK := Q
}

APPEND[struct, new-val, sel]
elem(struct) = 0 or siruct = nil

sel is aénonamply hit string

15

Z = nil send FET{A}
G := true get RTR{Adata,ref)

H := true

A = struct 1°%s)
C = new-val lo

S = sel AA 1= left{data}

FI——

DD := lefi(data)

DD-|= right{data) AA := right{data)
]

T

GG = G A (refs})

DO := nil
f
AA = pil
GG := false t
& BB = A
receive UID{addr,obj) al UIDI L
BB := addr f
‘<;>4_..
QQ := obj t |
discard QQ l
t I=A
e]

f
1
A
0

[send UPDXB,<BB,D>,1)

| send UPI{B,<D,B8>,1)

{

send FET*(DD)

get RTRY{(DD,~-,--)

next page

Let “discard X stand for

send FET 00
g get RTR (X, data,ref)

Q := right{dala)
T lock =1
send UPD{X, <lefl(data)FREE »,1)
FREE = X |
LOCK := 0O
X:=0

W := (DD=nil) W := false

0, 1, true

5SS = first{5)
S = rast{S}

0 A= AA
<

D := DD
4]

B := BB

G:= GG

i e

16

SELECT[struct, sel) from APPEND,
i l ' ,
pravious pags
A := struct o \é//)g 1

" R = struct

§ 1= sel send UPIXB,<BBD>,1) 'send WB&D,BBS,T)J
|

I

disc:rd Z

R send FET*(R)
ml get RTR*(R,~-,--
send F ET(R) R := ‘error’ "". — | tase A _0). |
1 RTR(R,data,ref) v ——
il ; (Reata,re discard A \-// 3
=) true l send FET(P)
lEl_— 1*s) get RTR(P data,ref)
| discard R
R := lefl(data} R := right{data) Q := data
) I i] Ri= r__!l o
S = r?st(S) v w
- | ,
—— -+ elem(R) - |send UPDKP, <nil,right(Q)>,1) | [send UPO(P, <left(Q),nit>,1)
i ¢ discard left{Q) discard right(Q)
——— —_—— 3

H there are N+1 destination cells, do
“send FET'R)
get RTR+(R.--,--)

{ N times -

o ————y

Send result packet out through RESO for each destination.
Release this operation’s tag.

¥

