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CHAPTER 1: INTRODUCTION

The aim of this thesis Is to design an arithmetic processor compatible with the

architecture of the Data Flow Machine (DFM). However before explaining this

“compatability”, it is necessary to describe briefly the idea of the DFM.

The DFM is a processor which executes programs written in a data flow language. The

latter permits highly parallel, asynchronous processing ordered strictly by the arrival of

data. In other words, the only necessary condition for the execution of an operation is the

availability of its operands. Description of these concepts and the architecture of the Data

Flow Machine can be found in (DM 1), [DML 1] and [DML 21

An elementary data flow machine! is shown in Fig.L.1. It comsists of Four basic parts

as follows:

iii.

MEMORY: This unit Is divided into celi-blocks which are also further divided into
instruction cells. An instruction cell, in general, contains the operands, information about
the operation (i.e. the operation code) and "state” information such as “all operands
ready” and the like. A mechanism in the cell-block checks the state informations to
decide whether a given operation packet (operation code + operands + destination
address of the result) should be sent to the processing section of the processor to be
evaluated.

TRANSMISSION NETWORKS: These control the inflow {di#lrihution network) and
outflow (arbitration network) of packets‘ to/from the memory block. Their basic
responsibility is to allow orderly flow of packets.

FUNCTIONAL UNITS: These units perform various operations on the arriving
packets. In other words, they are the “processing” units.

As indicated above, the data flow within the processor ccours in terms of packet-Flow.

I. See [DML 1}
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A proposed packet format consists of a group of bytes (8 bits each) traveling sequentially
along byte-width channels. Hence a convenient way to manipulate or examine these packets
is to provide byte-seria) operation units.

In this thesis, a possibility for byte-serial arithmetic processor is studied. Namely, two
different units, floating point adder-subtractor (FPAS) and floating point multiplier (FPM)
are described. The designs do not take into consideration issues such as interfacing with
DFM. but compatabhility is assured by their spe_cial properties.

FPAS and FPM use signed digit arithmetic which enable algorithms where i) the
operation can begin before the operan'ds are available in complete form, and where lii the
first result digits are produced (most significant first) after a certain number of result
digits are available. For example, in addition operation, the most significant result digit is
availabie after the first operand digits arrive. This is made possible by the handy property
of signed digit arithmetic that limits carry prﬁﬁogation to adjacent dlglts.l As a result, the
processors accept bytes as input, and oulput bytes, consistent with the structure of data
packets in the Data Flow Machine. Pipelining allows a high byte processing rate.

The thesis is organized as follows: In chapter 2, signed digit representation and the
basic algarithm (addition) is described. A machine representation following this system is
proposed, and this is used throughout the thesis.

In chapter 3, three basic algorithms (normalization, addition-subtraction and
multiplication) are defined. Modifications for the purposes of this thesis are explained.

Chapters 4 and 5 describe in detail the floating point adder-subtractor and floating
point multiplier respectively. In ‘the conclusion section, chapter 6, various improvement

possibilities are discussed.

1. See chapter 2
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CHAPTER 2: NUMBER REPRESENTATION

2.1 Signed Digit Number Representation

Various options for number representations are nvallaﬁk for fast arithmetic.
Conventional number representations such as 2 complement are such that for an arbitrary
base r, each digit of a number can have r values, chosen from the digit set {0,1,...r-1}. These
represeittations have the properiy that carries generated by the summation of digits can
propogate from right to left along the whole number, e.g. 399+1~ 1000. This property limits
digit-by-digit computations to representations where the Jeast significant digit is available
first; otherwise the result can only be obtained -;s a whole.

Examglg 1: B863+0190

L. two digits at a time, il. two digits at a time,
right to Jeft: i left to right:
63+99= 162 ‘ 98+01« 99
98401= 99 63:99= 162
L] | 10052

Result available in parts  Result avatlable as o whole

The gozl of this thesis is to design 2 byte-level pipelined processor with on-line
properties, i.e. a processor that would receive operands as bytes and output the resuit also as
bytes. in both cases most significant byte first, Such algorithms exist for signed-digit
number representation.

Stgned digit number system is a redundant system, i.e. each number can have more than
one representation. For a chosen base r, this can be achieved by allowing each digit to
assuﬁw more than r values. For the purposes of this thesis, a symmetric digit set of 2r-]

elements is chosen: {-a..-10.I..a} where acr-l. This representation is called maximally
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redundant {AV I]. and it is the largest possible digit set for the chosen base.

Example 2: For base 8 arithwetlc, the maximaily redundant signed digit set
82(2,..10.1,..,7}, while the conventional digit set A={0],_.7}. Hence A is &
subset of 5. Using the digit set 8, redundancy can be shown:
0.64324+0.7432420.7446

Characteristics of signed-digit numbers are as follows:
I. 2 signed digit number X is represented by nsm-1 digits x; (ix -n,...0,....m) and

X=tﬂ xir'i where r=integer base.

ii. X=0 if and only if all x;=0.
lii. Sign(xk sign of the most significant digit, and
iv. inverse of X, i.e. -X is obtained by changing the sign of each X; in X.

Since fixed format floating point operations will be used here, representation of the
number X can be redefined as consisting of m digits x;(i=l,...m) so that Xi? xir‘i. This way
there are no digits to the left of the radix point. Now definitions for parallel addition and
;r.u;traction are given as follows:

1. Addition of digits z; and y, is parallel if
i. sum digit s; is a function of only 2,)y; and the transfer digit t; from the {i-1)th position
on the right [Fig.2.1], i.e. s;=f(z,.y,.t)). |
ii. the transfer digit t; is a function of 2; ; and y;, onlj.
2. Subtraction Is done by negating the subtrahend according to property (iv) above and then
adding, so that z; - y; = z; + J.FI.

The transfer digit t; is the carry generated when the digits are ‘addul. Since negative
sums can be used, there can be negative carry as well. Therefore t; can assume !i.ﬂ.ll as
values.

Interim sum digit ,w,, is defined to be a sub-sum such that

2y + yj =t + wp (1) and som digit s; = w; + ¢; ()
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Since t; = {101} and since s; must akso be in the same digit set as z; and y; (namely
5;<r-1), then w; £ -2, because otherwise (w;+t;) will not be in the digit set § (see example 2).
Example 3: Using example 2, wil$r2=8-2x6
For ¢, = | and for unallowed value W=7,
Sj =t + wj =7 « | = 10g which is clearly not in S.

So far nothing has been said about the base limit; however because of the restriction

on jwl it can be seen that r=2 is not allowed. For base 2,

wii<r2<0
IF [wil=0, then there is no t; to satisfy zj + yj » | = 2t; (from eq(1) above). Therefore signed
digit representation and algorithms are valid for % , More is said about S-D addition in
section 3.2

Advantages of using S-D numbers are as fl?“tlli'&: 1) since s; is a function of ad jacent
digits. carry propogation chains of conventional number representations is eliminated.
Since there is no operand width carry, addition and subtraction time is independant of
operand precision. 2) Most significant digits can be available before Jeast significant ones
and they can be processed further before an operation ends, Hence computations can begin
before all of the digits are available, and therefore digit level pipelining is possible for
artthmetic operations using 5-D number representation. '

Disadvantages are seen in the implementation. The adders are more complicated and
therefore require more hardware than for example 2's complement addition. S-D adders are
discussed further in section 3.2. Becsuse of the digit sets chosen, each digit requires a sign
bit and therefore machine representations are larger than in conventiona) numbers. For
example base-.a conventional binary representation would he 0110 wheve the extra digh
stands for the sign. Also roundoff is dome by truncation and therefore some accursacy is Jost
iu the computations.

Conversion from S-D representation to conventional form can be done by separating
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the positive and negative digits and then subtracting the two numbers:
Example 4: 0.97834;0 — 0.00804 (+ digits)  0.0703 (- digits)
0.90804;0.0?_03 = 0.837?410 {conventional)

Conversion from conventionat to 5.D form is easier If maximal redundancy is used: in
this case, the digit set for conventional number representation is a subset of the signed digit
set 5 (example 2). Therefore for positive numbers no conversion is necessary, while for
negative numbers, each digit is negated.

Example 5: Given 34765, processor uses 34763

Civen -3476g, processor uses 34764

An algorithm for other signed digit sets s suggested in [AV 1}

2.2 Number Representation used in the design

For the arithimetic procéssor designed here, base-8, fixed format, floating point signed
digit representation is used. The digit set chosen is maximally redundant and consists of 15
imeger.s (see example 2). Machine representation is chosen as 165 complement base-8 binary
form [AV 2) Wwhere each digit uccupies 4 bits (Fig.2.2.2). Therefore two digits form an 8-bit
byte and the purpose of the deslgn Is to achieve a byte-level pipelined, "two-digit-at.a-time”
arithlmetic processor.

As in all floating point numbers, an exponent and mantissa are required. A sign bit
for the whole number is not necessary: the sign of the number is the sign of the most
significant digit of the mantissa. The exponeat is sepresented by a binary byte (B bits): 1
bit is the exponent sign, and 7 bits form the exponent, giving' an exponent range of g+127
(approx. 5:10+114) Larger exponents can be obtained by the addition of more bytes as
required. Conventional binary representation is used for the exponent because it makes
exponent mamnipulations such as overfunderflow detection easier. F;:r example

incrementing the exponent can be done using a simple counter. Mantissa format is picked



S22 ()=

1. Given base-8 signed digit set

s = {7.8,...1,0,1,...,6.7}.

a possible machine representation (16's complement) s
0 0000

1 0001 I 1111

2 0010 2 1110 -

3 0011 E 1101

b 0100 1100

5 0101 2 1011

6 0110 6 1010

7 0111 7 1001

2. Example:

Number to be represented i1 .73486 E+23

{(approx, +5.38?*1020)
Exponent | _ t 00010111
' tsign CLexponent
Mantissa ©+ o111]o011]1100] 1010
Complete operand packet ' 7 .
0 11 110 0 1 1| opl, .
000 10 1L 1 1] expt DIRECTION

Fig,2.2 Machine representation used in the dezign
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to be 4 digits or 2 bytes. The small number of digits is for clarity; increasing the precision
will not change the structure of the processor. Fig.2.2.3 illustrates use of the above format.
As the‘examp]e shows, operands will follow each other in “packet” form and therefore
an operation with two operands will require the delay of the first operand. Also ﬁilbln each
Packet, the exponent will be the first to arvive. This format has been chosen for simplicity;
there are various other formats that can be used for better performance. An efficient
arrangement wouid be to alternate the operand bytes
Example & Given operand-pktl:  expl |'opl; | opl and  operand-pkt2:
exp? | op2y | op2y the Improved flow arrangement would be

expl fexp2 | oply | op2y | opl, | op2y

In the Data Flow Machine, this format can be achieved by modifying the cell-block

structure,

2.3 Special Operands

— Various operations result in either error or other special conditions, €.g. exponent
overflow, divide by zero. When these are detected, they can either be handled through an
error routine, or be unreported and indicated as a special result value (operand). Since the
aim is to design a fast processor, error routines are not appropriate due to the fact that in a
pipelined asynchronous system, it is hard to find means to report the error [|D 1L Therefore
vartous special operands are defined: |

+o0 (inl‘inity for overflow cases)
+€ (0% & 0" for underflow cases)
E (error, for indefinite cases)
These operands can be represented by special exponents and since these exponents are
processed first unnecessary operations can be discovered early,

Example 7: For base-B number format described in section 2.2, one can limit the



exponent range to 8+120 gor example. In this case 8*12] wouid be
overtiow, while 812! be underflow. With the remaining 12 pessibilities,
the following can be done:

exp=s123=4w

expas126es¢

exp= 127= E

When a spgcial operand is detected, normal operation will nat be carried out, rather a
special operand will be selected and sent out as the result.
Example 8: Let N=normal number. Then
+€-N= -N 0-(-;::)- +€
Ex(-o)= E 0/{+w}=
This method is used in the Control Data 6600; detailed explanation can be
found in [TH 1), |

Special operands can also be wsed or created in case of overflow and underflow
occurring after an operation. In such cases the sign of the special operand is chosen to be
the sign of the over ot underflowed result. More is said about these kinds of errors im section

3L
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CHAPTER 3: ALCORITHMS

In this chapter normalization, addition-subtraction and multiplication algorithms used
in this thesis are described. Modifications done For their compatability with the design aims

is explained.

3.1 Normalization

In floating point arithmetic, normalization is basically the adjustment of a result to &
specified format. A normalized number is such that the most significant digit of its
mantissa is non-zero, i.e. for mantissa m and base r,

‘ r‘ls im| <]
An exception to this rule is the zero mantissa {the nufnber o).

Usually, in machiné arithmetic involving conventional number representations, the
result is ready as a whole and the normalization is done as follows:

i.if there is mantissa overflow then right shift the mantissa 1 digit; increment the

_expunem. check for overflow. If there is no overflow, pack exponent and mantissa
according to farmat.

il.if the maost significant digit of the mantissa is non-zero, then pack exponent and
mantissa according to format.

iti.if the most significant digit of the mantissa is zero then left shift the mantissa;
decrement exponent, check for underflow. If there is no underfiow, check the new most
significant digit; repeat until either most significant digit is non-tero or exponent
underflows. Then pack the exponent and mantissa.

The zero case is detected before normalization.
Example I: .Given  1.8734 E+72 --mantissa overflow

18734 E+73  -right shift, Increment exponent



-1873 E+73 -.pack according to 4 digit mantissa format
il.Given  .0034520 E6 --zero most significant digit

-034521 E.7 ..left shift.decrement exponent

34521 E " o+

3452 E.8 —pack according te 4 digit mantissa format

In the design, the result is not available as a whole. Rather, dlgifs are available
one-by-one (Iin the adder-subtractor) and two digits at-a-time (ih the multipler). Since the
most significant digits arrive first, this does not change the above algorithm, except that no
shifting is done. |

Example 2: Given result 1.8734 E+72 in an on-line addition-subtraction operation.
A E«J3 -—-mantissa overfiow, increment exponent |
A8 E+73%
187 E+73

1873 E+73 -done; exponent&mantissa packed

As seen in the above example, normalizing in the design involves also the construction
of the mantissa according to the format. In some cases, exponent underflow or underflow
may occur during such operation. In the overflow case, += i3 sent out according to the sign
of the mantissa overflow digit. If there is underflow, then all result digits have to be
examined for the sign until a non-zero digit is found: then :¢ Is sent out according te the
sign of this digit.

Example 3: Let E+100 be overlow and E-100 be underflow,
i.Given 17344 E+99-> 17344 E+(00 --negative overflow
Therefore RESULT- .m |
i1.Given 000345 E.98+
0 E-99 —first digit zero

0 E-100 —second digit rero, underflow
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.0 E-100 —third digit zero
3 E-100 --non-zero, positive digit
Therefore RESULT— +¢

Unfartunately alt zero resufts cannot be detected easily in a digit-by-digit environment
and therefore can cause unnecessary nofmali:lng' operations. The proposed method of
handling these is to 1) provide mechanisms .to check operands pre-operation to discover
zero-result cases, e.g. 0 + 0, 10 5 0, and 2) to continue normalizing post-operation until the last
result digit is produced. In this case a zero exponent and zere mantissa can be packed and.
sent, | |

Example 4: For case | above, 789 ?o = 0 can be detected before operation.For
| addition and subtraction, there can be pre-operation detection of all zero

operands mllf, ie0+0,

3.2 Addition and Bubtraction!

- 7 Signed digit addition and subtraction has been described in section 2.1. What follows is
an algorithmic description; the various terms used below can he Found in 2.L
Civen operands Z and Y, §.D (si_gned-digit) addition is done at two levels. First
ZitYimrtgew
where 2,8y, are i'th digits of Z&Y Tespectively (i digits right of the radix point, ty. is the
transfer digit and Wi is the interim sum digit).
The second level produces the 1'th sum digit:
S =Wyt
Since twil £ r-2 (sect. 2.2), a value for I%maxh the largest magnitude, has to be sefected. In

this deslgn, “"m;x is chosen to be r-2. Now a stepwise description of addition can be mades

I. A. Avizienis, [AV 1&2}
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i.add z, to y; to obtain x;, i.. Xjrz ey
il.generate the transi:‘et digit t; using s; and Wmax Wherew <12
A if x> w, o there is positive carry; ie. tiq= 1
b if Wy € %G $ W there Is no carry; de. tig= 0
<. if x;< wy, .., there is negative carry; le. t; 4= -1
tii.obtain i'tk interim sum digit w;
Wi = X; - "ti-l . .
iv. finally, compute i'th sum digit:
SiTw Yy

Figure 3.1 summarizes the above. It should be noted that using this algorithm, given
i'th operand digits z; and Yi i'th sum digit s; is produced when t; is available, which is to
say when (i+«1)'sz digits are available, Once s; is produced, it can be used up in another
process before s; is available. Initially wy is 1ero so that tg produced by the first most
significant digits z; and ¥; indicates overflow; e if sg#0, then there is overflow,
Subtraction is done by negating the subtrahend as explained in 2.2,

In the: adder-subtractor designed here, bytes will be processed. Since a hyte is two
digits, a two digit parallel adder can be used as shown in Fig.3.2. Only variation here is the
extension of the tran‘sl’er digit of Ay to B| to enable sequential byte-level addition.
Computation sequence is indicated next to each port in Fig.3.2.

Example 5: 5-D addition using base-8 arithmetic:

Let [wipaxl = 6. Also let the digit set be maximally redundant,
S-[‘F..:.i.ﬂ.l,...'?} as in examples 2&3 in section 2.1.
Given Z=.6513 and Y=0.4714 , the sum st
50 o |
06+ 4212 7 wysd
tosl 1
%5+ 72 w2
"l i



' 2, JJ ' \L?*z |yz
~—Y Let k=dizit positien to
A, A, c. the right of the radix
| : roint, Then 1
w oy |t W, t, W, t, Aut ity =X

.:Lf Xy Waag = T ,=1
1T =W %S Weras =2 13,50
I Xl-Woae==> £, =-1

Ve Y L4 5\

B, : s =w tt,

. e

{":' 4 ;’.:‘\l \‘l
2y Vs %éé :yJ
‘2, ¥ 22
l zZ1 'ln “‘-zlzz ~‘l Y2
A, Az
Tiy C D
._‘b;fj \’Jl ' t; TO Vig WO tg Tl
Wy '-_t.; Wo .'tl
L A . ~ -
T T Fgy'™
3 i i y

Note: '8, shows input
.5, or output

B, B, “at a given

port,

B E

é—-—-
(42
[

Fig,3.2 Double digit parallel adder modified
for byte level computation
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\‘tl-D 2
D0 7 wysd
\12=° 2

4)3 + 427 —Swgsd

\ts l=i 1

5) aw gel
t4'0 l
RESULT: 06513 « 0.4714 s 12311 where the I to the /gf? of the radix point

indicates overflow.

More digits can be added in parallel according to need. Due to the elimination of carry
propagation chains, parallel addition of mare digits will not change the time of
computation. In other words, a two digit parallcl adder and a four digit paralle] adder wili

have the same time of computation ¢.

3_.3 Multiplication 'Algori.thm

[

An efficient algorithm for the signed digle multiplication is used here.] Following Is a
description of the algorithm:
Operands are defined as in section 2.1, namely
-i -4
K-?xir' andY-%yir
As explained previously, this representation has no digits to the left of the radix point.
Let X, and ¥ ; be the jdigit representation of X and Y respectively. In other words, let
i i
-i - - -
X, -?xir =X +x;1) and Y, -}lﬁyir =Y, ey jA
I an on-line environment, X, and Y, are considered as the available parts of X and Y

respectively on the jr4 step. Now the partial product

L. Trivedi&Ercegovac [TE 1]
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A SR SRS Na t S yrhe X,,Y,, . )(Hy,r'J sxy,r2ls XY, )
o | =X Yy, e Y ) )
Defining P, to be the scaled partial product, i.e. PJ'XIYJI’. then
PP s Xy, + Y%, @ _
from equation (1) above. Using this and the Fact that Poxo, the desired result can be obtained
by
P =X.Y.r" (3)

This algorithm can be used for non-redundant numbers where the result digits are
available leasr significant first in order to cope with carry propogation requirements, Since
the interest is on-line computation, a new aigorithm can be derlred for signed digit
multiplication with the on-line property, where input and ouipuis are obtained most
.signiflcant.digil first.l

Using the symmetric and maximally redundant digit set 5 as defined in example 2,
section 2.4, the followin-g new algorithm can be written using 2k -

wo=rlw, d ) X ¥+ Y .1X; (4 where digits d, are in -S. and
d = sign(wj].,-lwﬂ + ;J

The result of the multiplication can be expressed as
XY= r'“(w“-d“) » ? ﬂir'i

In order to meet the restriction that d j bein 5, the operand bounds are limited so that
for maximal redundancy,

X 1vj < §

The derivation of the algorithm and the bounds can be Found in [TE 1} Fig.33
illustrates the algorithm.

What has been described so far is a digit-at-a-time mulitiplication tigorithm. For the
design in this thesis, a two-digit-at-a-time algorithm is required and this can he made
possible by slightly modifying eq.(4). Since digits arrive as pairs, the partia) operands are

redefined as Follows:
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/W,

Yy

Ya Ys (; ’// Yo Y5

OPz1sign ﬂ,.b%l+%]
DPalr(WJ‘dJ)

"Fig.3.3 Signed Digit Multiplication
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Fig.3.3 Signed Digit Multiplication
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) -2i 2j
Xj-¥xir =X g +rix; and

! ~2 -2}
Yi'?fi' =YH+r ¥

Using the same derivation method as before, the new algorithm is defined as

Follows:
w, = r2(w,._1-dj_1) + ijl + Yl—l"j and
XY = e 0w dy) o 8 aedi
The new algorithin produces d ;' that are digit pairs where each digit is in 5. Operand
bounds stifl apply. ie. [X|, [¥] < 1.
Example 6: 1.Signed digit multiplication using single digits:
Let X = 0.025), ‘and Y = 0.0129;4

Jiox; ¥, X, Y, Xy Y%, SUM w, d, 10{w -d }

o 0 0 0 0 0 0 .0 0. 0 0,

i ¢ | -0 .0 0 -0 0 0. 0 0.

2 2 -2 02 A 04 2 24 024 0o 24

1 5 9 025 2 225 6 825 3225 3 -
wg-dg=0.225

Result can be obtained as digit pairs, i.e. by d;. dg. dg and (wy-dg).
Therefore, X.Y=0.005225

2.8igned digit multiplication using double digits:

:7 Let X=0.0234;4 and Y=0.2463,,
b ox 0y, X; Y, X,y Y, ,x, SUM w, d loo(wj-d’)
6 00 o0 .0 0 0.0 00 00 00. 00 00
t 02 24 .02 00 0.48 0.0 048 0048 00 48,
? 34 63 0234 24 14742 816 9.6342 57.6342 58 -

w2~d2-0.!658
Result, X.Y=0.00503658 (=0.00576342)
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A problem that arises in the use of this algorithm is that normalized numbers can be
greater than ; and therefore if dire;:tly used, the algorithm will not work. The cure for this
is lo‘dcsign the multiplier such that internally X and Y are treated as r2.X and 2y
respectively. This way a) X and Y are always less than i internally, b) since the shift or the
zero padding is even, the input digit pairs need not be broken apart and thesefore ¢) the
result is produced as it would be withnut.the shift, but with two extra zeros.

Example 7:Multiplication For normalized arithmetic: |
Let X=0.9734(4 and Y=0.9999,

Internaily, these will be seen as

X=0.009734 and Y+0.009999

iox oy, X Yoo Xy Y x SUM  w, d, 100w d)
0 00 00 0 0 0 Y 06, 00
1 00 oo 00 00 00 00 o 00. 00 0.
2 97 99 0097 00 9603 .00 09603  00.9603 o1 3.97
3 34 99 009784 0099 963666 .3366  1.300266 -2.669734 03 -
| wy-dy=0.330266

Result: 0001.03330266 (.97330266)1

As noted in the above example, step jst can be omitted. In fact. in the machine
implementation, the radix point is not used so that 2 number entering the multiplier can be
treated as if zeros have been placed at its beginning. The multiplication unit is described in

section 5.3.

L. Note that there is mantissa overflow as indicated by 1 in d,.
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CHAPTER 4: FLOA TING POINT ADDER SUBTRACTOR

In this chapter, a Fixed format floating point adder-subtractor (FPAS) using
signed-digit arithmetic is descsibed. General outline of the FPAS |s followed by a detailed

description of each maodule. The operand format used is the same as that of Fig.3.2.

4.1 General outline

FPAS has been divided into five functional modules as shown im Fig.4.1. The
following briefly describes each module. |
i. MPX : This module controls the input ﬁata flow. Since the operands arrive as a series
of bytes, it Is necessary 1) to delay the first operand until the second arrives, and
2) to separate the exponenis and the mantissa. Therefore given an input sequence
( expl|opl | exp2|op2 } , MPX outputs ( expl, exp? ) followed by ( opf, op? ),
each from separate ports.
i.EXPFIX: This module is required for a) comparing exponents, and b) detecting special
operands (section 2.3), Exponeﬁt comparison is dome to adjust the operands as
required in floating point addition and subtraction. Possible outcomes of this
operation are as follows:
Given two operands, opndl and opnd2, let expf - exp2 = x be the exponent
difference. Also let d = the number of digits in a mantissa (Le. in opl and op2).
Then: |
L if x 2 3, then opndi>>epnd2; operation is unnnecessary; result « expl lopl
2. if x £ -9, then opnd>>opnd?; operation is unnnecessary; result + exp2 | op2
3. if x=0, then exponents are equal; normal operati;:n; result « expl | (opl+op?2)
4. if ¢ < x < d, then opndi>opnd2: normal operation, delay op? by x;
result - expl l(Dpth?}-

5. if -9 < x < 0, then opnd?>opndil; normal operation, defay opl by x;
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. : U
EXPFIX MODOP
‘ s
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! !
NORMOP
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Fig.h.1 General Structure of FPAS



resuit « exp? | {oplsop?2)

Delay means reducing the value of an operand by padding zeros to the Jeft of
the most significant digit. This is eqﬁivalcnt of “right shift” tn processors
where the number is available as a whale, In cases 3.4 and 5, the result Is
unnormalized (sect. 3.1). Special operands are detected by testing the exponents:
if any is found, rest of the system is informed.

iti. MODOP: This module is responsible for 1} adjusting the mantissas opl and op2
according to their exponent difference and 2) for negating durlng subtraction.
Exponent difference is obtained from EXPFIX through a control signal. Op!’
and op2' are the modified mantissas- which are sent to ADDOP module for

h addition.

iv. ADDOP: This is the signed digit adder. It is as described in section 8.2. It receives
operands as bytes (2 digits long) and autputs the sum digits through two ports.

v. NORMOP: This module 1) normalizes the result and packs it according to the format
in Fig.2.2. 2} in case of splecial operand involving operations or exponent
overflow and underflow after the operation, It outputs the appropriate special
operand, and 3) in case of "hypass” operations due to the unaliowed exponent
difference, it passes out the selected operand.

FPAS communicates with the outside lhmgﬁ MPX and NORMOP modules. Control

and timing is explained in section 4.7,
The adder-subtractor described here can only handle single precision numbers. Multiple

precision can be easily implemented with minor modifications as explained in chapter 6.

4.2 MPX Module

MPX or “multiplex” module is basically a serial to paraflel converter. 1is internal

structure is shown in Fig.4.2.
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For single precision processor, DEL is a FIFO queue of length d bytes, where d is the
number of bytes in an operand packet; in this example, d=3 . Fig.4.2 (b) shows the structure
of DEL. It consists of d registers (of byte width) with common load and clear control signal.

REG is a byte width register used as a buffer to help in pipelining, 51, S2 and S8 are
switches; they pass their input to one of the outpat channels.

Since the operands arrive successi‘vely as packets, it is hecessary to delay operand-pkti
{opndl) so that both operands can be sent into the rest of the processor in parallel. It is also
necessary that the the exponents and thé mantissas be separated 50 that they can be handled
in different modules. Opn these lines, the operation of MPX is as follows:

1. The first operand-pkt (opndl) -is delayed by routing it to DEL FIFO where it is

stored. When all bytes in opndl are loaded, DEL will have expl as output.

2. When the second operand-packet (opnd2) arrives in MPX, the bytes are directed to

REG register 50 that both operands are now in parallel form.

3. First expl and exp2 are sent out tlm:ug-h EXPOL&2 ports to EXPFIX; then the

marntissa bytes are made available through opl&2 ports. When last of the mantissa

~ _.bytes are nhsqrbed by the processor, MPX cam receive new input.

Various control signals have been provided to ensble the above operation and to make
timing analysis easier. |

I . MPXSW1 is used to control S1 which sends incoming bytes to DEL or to REG.

ii . LOAD i5 the common “joad" signal to the registers consisting DEL FIFO. Apart

from ldading. it is also used to change the output of DEL.

iil. REGL is used to "load" register REG.

iv. MPX5W2 controls switches §2 and §3; it allows the outputs of DEL and RECG to

be available either through EXPO1&Z or opl&2 ports.

1.3 EXPFIX Module

This module is responsible for adjusting the exponents and for preventing
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Unnecessary operations which may occur if i) exponents differ by an amount equal to or
greater than the mantissa precision, or if i) if one or both exponents indicate special
operands. Fig. 4.3 shows the structure of EXPFIX.

Input exponents are stored in REG1 and REG2, both byte width registers.

CEXP is a combinational Jogic circult that checks both exponents for special operand
indication. There are five possibilities as. explained In section 2.5. Possible configuration for
CEXP is a serles of comparators, the results of which are combined to produce a signal
indicating the presence of spacinl operands.

SUBTRACTOR is a binary adder modified to subtract. Simce the exponent difference
is required, exp2 will be negated prior to addition. To prevent overfiow, an adder of input
site greater than that of the exponent size Is chosen, Le. if the exponents are 7 bits, adder
should be able to handie 8 bits. |

 COMPARATOR checks the difference between exponents, x (sexpi - exp2). It
compare.s x with 3, number of digits in the mantissa. As & result of this éomplrilon. two
control variables are produced: 1) SEZL, which selects the 'mnltlng usnormalized exponent
uslng multiplexer M and 2) EXOP which indiutu whick mantissa is to be dehyed {14
any)

ABS-VAL unit outputs the aﬁsblu_te value of its input. In other words It receives x and

- prodaces x| which s used as the SFD varisble indicating by how muach to de'lly.'
M is & multiplexer, | | _
Mode of npeﬁtion as Follows: once the new expoments expl&k? arrive, CEXP checks
them for the presence of special operands:
i. If there are special Oplcrlﬂs. then there is no need to carry out the eperation. Thmfm
8 result is chosen in accordance with section 2.3 modules MPX and NORMOP are
informed so that they can handle this case.

il. If there are no special operands, them normal operations resume.

In floating point addition and sabtraction, operand ad justment is required before
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operation. That is, the operands are required 1o have the same exponent value at the time of
computation. This adjustment means the shifting of the mantissa with the smaller
exponent to the right of the radix point.
Example I: Given X=0.34515 E+13 and Y«0.5766g E+11 , then
XY« 0.9451 E+13 + 0.005766 E+13 = 0.359066 E-13

This may cause unnecessary operations if the exponents differ by an amount equal to
or greater than d (no. of digits in the malitissnl; in other words, the result would be same as
if the. operation was not done: | _ |

Example 2: Given X»0.3767 E+69 and Y-;B.25§7 E+65, then
X+Yr 0.3767 E469 + 0.00002557 E+69 « 0.37672557 E+59
Packing the result according to format, i.e. after normalizing,

X+Y« 03767 F+69 « X -

Since truncation is used for rounding up, the result digits beyohd the format are not
necessary and therefore for x = expl - exp2, operation is carried out iff -3 < x < 9.
Otherwise one of the dperands is chosen as the result. Five possibilities for EXPFIX
operation are listed in section 4.1 (ii). Tlaese can be expressed as a signal triplet to the
controd: ( EXOP, SFD, SEL). For example, for pombillty 4, the trlplet would be

(delay op2, by [x| digits, choose expl as result exponent)
When this signal is ready, necessary operations can begin elsewhere in. the processor.

Various signals and registers have been shown in- Fig.43 . The registers act as buffers
for various interim results so as 1o provide an orderly operation which is a necessity during
timing analysis. So, for example, tf CLOAD signal is sent, this loads the outcome of specisl]
operand check, into REGS. When this is acknowledged, one can assume that for example

special operands have been detected.
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operation. That is, the operands are required to have the same eEXpofient vaiue at the time of
computation. This adjustment means the shifting of the mantissa with the smaller
exponent to the right of the radix point.
Example I: Given X=0.3451g E+13 and Y=0.57665 E«It , then
X+¥x 0.3451 E+19 + 0.005766 E+13 = 0.353066 E.13

This may cause unnecessary operations if the exponents differ by an amount equal to
or greater than 6 (no. of digits in the maniissa]; in other words, the result would be same as
if the operation was not done: | |

Example 2: Civen X-0.3767 E«69 and V+0.2557 £+65, then
X +Yn 0.3767 E+69 + 0.00002557 E+69 = 0.37672557 E+69

Packing the result according to format, i.e. after normalizing,

X+Ye 0.3767 E+69 = X

Since truncation is used for rounding up, the result digits beynhtl the format are not
fiecessary and therefore for x = expi - exp2, operation Is carried ont iff -3 ¢ x ¢ 3.
Otherwise one of the gperands is chosen as the resuli. Five possibilities for EXPFIX
operation are listed in section 4.1 (il). These can be cxpressed as a signal triplet ta the
control: { EXOP, SFD, SEL), For example, for possibility 4, the triplet would be

(delay op2, by x| digits, choose expl as result exponent) '
When this signal |s ready, necessary operations can begin elsewhere in the processor,

Various signals and registers have been shown in Fig.43 . The registers act as buffers
for various interim results so as to provide an ordefly operation which is a necessity during
timing analysis. So, for example, if CLOAD signal is sent, this loads the outcome of special
aperand check into REGS., When this is acknowledged, one can assume that for exampie

special operands have been detected.
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4.4 MODOP Module

MODOP (modify operand) delays operands - if necessary - and negates for subtraction.
Basic idea behind the operation of MODOP is to i) manipulate the mantissa bytes if
necessary and then ii) load them into buffer registers REG1 and REG2 where they will be
used up by ADDOP. Possible outcomes of the operation of MODOP are as follows:

Let Q=delay. Also let output (X} Indicate the output of operator X. Given that (i)

opl enters via OPINI and (ii) op2 enters via OPIN?, then:

output (REG) output (REG?)

I op2 : opl ino delay

2. -op2 opl | ino delay-subtraction '

3. opl+A op2 sopl delayed

4. -op?2 opl+A opl delayed-subtraction
5. . op2+lA opl . ;op2 delayed

6. <{op2+A) opl j0p2 delayed / subtraction

~ What “delay" means here is as follows: since the complete operand is not Fully
available .fnr shifting while ad justing For exponent difference, digits have to be "delayed”
by padding a specified number of zeros in front of the mantissa. This process is explained
later. Fig.4.4 shows detailed structure of MODOP,

Q! and Q2 are each n+l digit size, wrap-around FIFO queues where n is the number of
mantissa bytes in the operand-packet. They are provided to store the delayed operaﬁd. In
this design, Q1 and Q2 have the representative structure shown in Fig.4.5 . There are two
signals: LOAD places new data in the queues and SENAB enables the digit width output. It
should be noted that an acknowledged output is "lost™. Wrap-around property eliminates the
need for pointer resetting when the queue is full. The problem of overwriting is avoided by
providing maximum size,

NEG is the negation unit. Due to the properties of signed-digit numbers (sect.2.1),
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negation requires the sign of each digit to be changed. In the machine representation used
here (base-8, 16's complement), this can be done by complementing each digit and then
adding 1. i.e. two's complement.
Example 3: Given digit pair 43,
© 3= 1100 | 00t~ 0011 | 1100~ 0OLL + DOOK ] 1100 + 0001 0100 | 110f « 43

NEG can either be a selection circuit where given two digits it would output their
negated form, or it can be a combinational logic circuit , i.e. a complement circuit plus
adder. Since the number of possibilities is small, the first method seems to be ihe
appropriate solution if enough selection speed can be achieved.

M1 through M6 are multiplexers which enable routing and selection of bytes.

Delaying can cause problems if ‘the exponent difference leads to padding by an odd
number of zeros, whereby bytes (containing two digits ea;:lu) have to be broken up and then
reconstructed with each digit "shifted”. An eve;l number deily is of no problem because
all-zero bytes can be used for non-zero padding in this case. Now, the problem of odd
number delay can be solved efficiently by using two queues of (each) one digit width with
common LOAD but separate EN AB signal inputs. This way each queue will contain a digit
of each byte entered and therefore using multiplexers M3 and M4, a new byte of desired
Form can be produced. In the design example, the following routines are used to cope with
the delay problems:

1. If the delay is even, then the output of QI is passed through M3 and the output of Q2
through M4 until queues are empty.
2. If the delay is odd, then:
i. output(M3) = 0 and output(M4) = output(Ql)
1. output(M3) = output(Q2) and output(M4) = output{M4)
ili. outpui(M3) = output(Q2) and cutput(M4) = 0

These instructions are for the number representation used here; more digits will mean the
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repetition of step(ii). Fig.4.6 shows examples of the above routines,

With the given mantissa format, possible odd number delays are | and S. When the
delay is 3 digits, the first 2 zeros (i.e. a zero byte) are handled through multiplexer M5 - the
rest of the digits are sent using routine 2 In case of even delay (2 digits), the zeros are made
available through M5 again, followed by routine 1.

Multiplexers M1, M2 and M7 control the main Byte flow. These will be set at the
beginning of a MODOP operation and reset when done. According to the outcome of
exponent comparison in EXPFIX and the kind of operation (addition and subtraction) there
are six possibilities for the use of these multiplexers:

. L. pass opl to Q1/0Q2, op? to M6 :negale-. (subtraction) if opnd2>opndl
or pass {additim;) {delay op1)
2. pass op2 to QI/Q2, opl to Mé megate (subtraction) if opndl>opnd?
ar :pass (addition) (delay op2) ‘
3. pass opl-Mi, opﬂ.'eMz negate (subtraction) lfixpluxp!

or :pass {addition)

M7 has a choice between the negated or unrnegated output of MS.
As explained previously, multiplexers M3 and M4 are used to “reconstruct” delayed
bytes. Zero inputs are used in the case of odd delays.. as shown in Fig.4.6 (1i).
Multiplexers M5 and M6 have the following functions:

a. They route the operand to be negated if there is a subtraction operation. For example,
in case | above, opl is deiayed. so it Is sent to QL/QZ. By assumption, op2 is always the
subtrahend, therefore the delayed opl bytes coming out of M3&4 are passed through M6
to REG2 while op2 bytes are sent through M7,

b. They provide zero bytes during: ‘delay operation. In this design, this would occur in
delays of 2 and 3 only.

. They provide zero bytes when MPX “runs out” of mantissa bytes. This occurs for
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example, when opl is delayed by two digits. In this case, opl becomes a 6 digit number,
but since the format used is 4 digits for the mantissa, the undelayed operand op2 will
require two zero digits (a zero byte) tagged at the end so that it can also consist of 6
digits.
To achieve all of these operations, various control signals have been provided. A list
appears below:
1. 5W1! controls multiplexers ML, M2 and M7. This is set once per MODOP operation.
2. LOAD loads bytes into QI and Q2 (combined),
3. SENAB! and SEN AB2 brings out contents of the queues. They are separate (one each
queue) to enable the construction of various bytes.
4. SEL eontrols M3 and M4 to construct a delayed byte. _
5. SW2 controls M5 and MB; it is responsible for producing the final form of the
mantissa bytes sent ta ADDOP.
§- RLOAD loads the modified bytes into REGI and REG2 when they are ready. Actually

this signal indicates the availability of a new mantissa byte pair to ADDOP.

4.6 ADDOP Module

ADDOP is a two digit 5-D adder as described in section 3.2. It has been modified to be
able to add bytes of operands. Fig.4.7 shows its detailed structure.
As in Fig.3.1 and 332, it is necessary to divide the adder into two units A, and B,. The
' A, unit which produces w, aﬁd ty| for given operand digits I, and y, can be constructed in
two ways:
L. It can either be implemented by a combinational logic circuit whereby given two digit
input z and y,, the appropriate w, and t, _, would be directly produced, or

2. it can be a table, such as 2 ROM,! whereby the digit-pair input would be used as an

1. ROM: Read only memory
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address to “read” the required {w,.t,_,) pair.

A third possibility is to break up A, into smaller units whereby each step of the
signed-digit algorithm is implemented. As it turns out, this method fails with the number
representation used here due to ambiguity.

Example 4: If the intention' is to obtain x, (z.+y,). then using the machine
representation of Fig.2.2, the following ambiguities can occur:
440 1100 + 0000 « 1100 = §
2+ 2= 110 + 1110 = 41100 4 4

6 +6=0010+«0110= 1100 = :i ¥ correct answer

Between the first two possibilities, the second one is the most preferable because the
complexity of producing a combinational logic circuit here is a diudnnf:ge that
outweighs the deficiency of ROMs in terms of increased power consumption and slower
speed. Therefore ROM tables are used for A_ units.

AROM1! and AROM2 are ROIMs of size 225¢8 bits each. The size is computed as
follows: since the address pair will consist of two digits z and y, and since each digit can
assume 15 values in the machine representation used in this design, there sre 15415 possible
addresses. Since the intention is also to generate w and t as digits each of tength 4 bits, each
ROM is required to have at Jeast 22548 bit size, and this can be obtained through the use of
a 256+8 ROM. Now. this number can be decreased by addition of extra hardware to avoid
similar addresses such as (3:2) and (2:3). A suggested solution is shown in section 5.3
Contents of the ROMs are arranged according to the signed digit addition algorithm and
the table thus formed is invarfable.

ADDI and ADD2 are ea.ch‘ 4 bit binary adders. Th?y are used to compute the sum
digits. Since the sum digits will be in the digit set § (sect. 2.1), addition of w and t always
yields a digit result. In other words, no special decoding Is necessary due to the handiness of

the number representation used here,
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Example 5: 6 + [ = 0110 + 1111 = 10101 (disregard carry) - 0101 = 5
6+ 1 = 1010 + 0001 = 01011 - 1011 = 5

WREGO, 1&2 are digit width buffer registers provided to store the interim sum digits
w. Similarly, TREGO&1 and SREG0&] store the.transfer digits t and the sum digits s
respectively. .

The operation of ADDOP is straight forward. Operation begins as the operand bytes
arrive from MODOP. The only “trick” comes in producing the first extra sum digit, sg. As
explained in section 3.2, the first swn digit sp indicates mantissa overflow and it Is formed
by the addition of ty and wo where wo=0 and 14 is the transfer digit formed by the addition
of z; and y,, the first operapd digits. What this means is that an interim sum tiigit
produced by AROM?2 has to be delayed one “cycle-time" where a "cycle” is the arrival time of
a new digit pair. Therefore WREGO keeps the previous w value, An example will clarify the
point:

Example 6: Let X="don't care™. Now, glven opeérands 2129 3nd .y Yy , then
WREGO TREGo WREGH TRECG! WREG?2 SREGI1 SREGO

0 0 0 0 0 0 0
wo(=0) ty w( g tl Wo 0 0
wp to oW b W 5 %
wo to(=0) X X ' X 5 o
wo tg X "X X X o

The sequence of operation is shown in Fig.5.2.
Various control signals have been provided for sequencing and timing. They are as
follows:
1. RLOADI which places the outputs of the AROMI and AROM2 into WREGI&R snd

TREGO&] registers. In other words it is a "load” signal.
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2, RLOAD2 loads the output of WREG? into WREGO for storage of w.

3. RLOAD3 signal places the computed sum digits in SREG1&:2.

4.8 NORMOP Module

NORMOP takes care of special operands, "bypass” operations and normalization of the
result. kts structure is shown in Fig.4.8.

As mentioned in related sections, special operands are detected in the EXPi“lX module,
or they can be created in NORMOP as a result of normalizing operations, namely in cases
of exponent overflow and underflow. ln all cases, a special operand output is selected
according to the operands and operation.

For speed considerations, special operands are kept in a series of registers called SOP.
Each such SOP unit consists of n byte-width registers where n is the number of bytes in an
operand packet (opnd); in this case, n:s, They are connected as shown in Fig.4.9. In the
FPAS, there will be 5 SOP units, namely one ench for E, sm, -, +¢, and -¢. Special operand
bytes will be available through the use of multiplexers M1 to M5; the required special
opecand will be selected using the multiplexer M6, |

EXPREC is a register/counter of byte width that stores the unnormalized exponent
received from EXPFIX. It can count-up (CTU) or count-down {CTD) the exponent while:
normalizing,.

OIUFLOW is 2 comparator which detects if the expaonent over or underflows during
the process of counting up or down.

ZERO checks whether the incoming digits from ADDOP are zero or not. It can i:e
implemented as a combinational logic circuit,

STREG is a "two-digit” register with single digit input. It is provided to construct
bytes out of singie digits arriving from ADDOP (Fig.4.10). Note that there is a single “load”
signal. Operation of NORMOP can be separat?d into three:

L If a special operand case has been detected in EXPFIX, then special operand bytes are
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made available through MI thru M5, and the special operand is chosen using
multiplexer M. The passage to output is achieved by the use of M9,

2. If the operation is "by-pass” as explained in section 4.3, then using M9, the exponent in
EXPREG is sent out, followed by opl or op?, received directly from MPX.

3. If the operation is normal, ie. no special operands or "by-pass” operations, then
NORMOP receives result digits from ADDOP. Number of digits produced by the latter
range from 5 (no delay) to 8 (3 delay).l For the normalization and packing, the
following routine is carried out:

k. if the First digit is non-zero, then ther is mantissa overflow. In this case ihe exponent
is incremented and checked for exponent overflow,
a. if there is overflow, then an appropriate special operand, 1w is sent out according
to the sign of the overflow digit using step 1 abave.
b. if there is no overflow, then through M3 the exponent and 4 digits are sent out. i.e.
lexp [ sg 59 4l 59 54|
Rest of the result digits arriving from ADDOP are not used.

ii. if the First digit, sg, is zero, then each of following result digit will be checked until a
non-zero digit is detected by the ZERO unit. The exponent is decremented for each
zero digit found after sp and checked for underflow in each case. Again, if underfiow
is detected, then +¢ js semt out (section 3.1 otherwise the adjusted exponent and 4
digits (consisting of the first non.zero digit and the following ones) Is sent out. -

Above algorithm fails to consider a few special problems. First of al), if exponent
overflow and underflow is detcctéd in NORMOP, then one of the special operand packets is
sent out. None of the computed result digits show up in the packets. Secondly there is the
problem of number of digits available: since NORMOP has to send out a certain number of

dignts (im this case 4). there may be two problems: i}y NORMOP may not require all the

L. Given figures apply ta this design; algebraically, it ranges Sfrom 941 10 29, where d= no. of
digits in mansissa.
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digits produced by ADDOP, or ii) NORMOP may request more than what ADDOP has
produced.
Example 7: Given ADDOP output .1234567, NORMOP uses only .1234 ; also
given ADDOP output .000023, NORMOP requires .25__ ; the empty

places are filled with zeros.

In order to cope with this problem, a signalling protocol will be made between these

modules so that ADDOP will signal the availability of the last digit with a “last data”

signal, and NORMOP will dummy acknowledge receipt of excess digits if it does not
requife more digits. This will be further explairied in séciiun 4.7. In the former case where
NORMOP requests more digits, zero digits will be packed and sent out. These zeros can
either come from M8 {single zeros) or bUTREG {zero bytes). If all result digits come out to
be zero, then an all zero operand packet is sent out using QUTREG,
Now a description of various signals cap be given:
I. LOAD places the unmlrn-nalized exponent into EXPREG register/counter. CTU/CTD is
For counting up or down of the contents of EXPREG during normalization.
2. SWOP signal controls multiplexer M7 to provide digit input to NORMOP. It basically
selects s, or s, outputs of ADDOP.
3. ZERO controls multiplexer M8 so that input to STREG can be a result digit, 5, or a
zero digit,
4. L.5H loads the output of multiplexer M8 into STREG.
5. CT is a three mode signal that controls M1 thru M5. Possibie modes can be seen in
Fig.4.9.
6. SEL picks up the special operand-pkt requi@ using mukltiplexer Mé.
7. MOUT selects the output of the processor using M9. It has a choice between the
expanent(in EXPREG), result mantissa(in STREC), operand mantissas opl&op2(from

MPX) and special operand(from M6).
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8. OUTLOAD places the output of M9 into QUTREG. CLEAR "clears” OUTREG and it is
used to create zero oﬁtput bytes if necessary.
8. ZEROP places the result of ZERO check In INSTREGY.

[0. COMP is used to load signal u/oflow inte INSTREG].

4.7 Control of the FPAS

The detailed description of the individual modules so far touched lightly on the
sub jECt of control. Algorithms defined within each module did not specify explicitly the
coimmnunication between the modules. This is intended to clarify these points.

FPAS begins operations by the receipt of “operand_pkt ready” signal from the
“outside”, i.e. the rest of the system. MPX begins lo load the incoming bytes and when the
EXponents are n:mlj.rl » EXPFIX is signalled to load the exponents and start the necessary
eperations. When EXPFIX acknowledges receipt of the operands, MPX prepares opl; & op2
and waits for EXPFIX to finish its operation which may result in the-following:

_ L. If there is a special operand, then EXPFIX signals MPX and NORMOP through
CEXP to serap the normal operation, or
2. if the operation is "by-pass”, it signals NORMOP, or
3. it signals NORMOP and MODOP to operate hormally.

En case (1), MPX can get rid of the operation packet it has to receive a new one, while
NORMOP sends out a special operand pkt. In case (2), NORMOP loads the chosen exponent
from EXPFIX and links with MPX to send uut the chosen mantissa (opl or op2). In the last
case. MODOP begins operating on mantis.sa bytes arriving from MPX while NORMOP
loads the chosen exponent,

MODOP foads and passes the c;perand bytes from MPX at a pace dependant on

ADDOP. When all bytes from MPX are received, MPX can receive a pew operand-pkt.

I. after the arrival of 4 bytes in this case
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EXPFIX will be free when NORMOP acknowledges the receipt of exponent.

ADDOP signals NORMOP when the digits are ready. Since NORMOP has to examine
each of the sum digits, speed of ADDOP will depend on how Fast normalization process can
take place. This dependency extends all the way to MPX and therefore one can conclude
that the speed of FPAS is proportional to the speed of NORMOP.,

As discussed in 4.6, a signal protocol is arranged between ADDOP and NORMOP.
When ADDOP produces the first result digit, it sends a ready to-NORMOP which
acknowledges when it is through with it. When ADDOP produces the last digit, it then
signals "last data” so that NORMOP can send zero digits If it requests for more. It may be
the case l.hat ADDOP produces more digits than NORMOP -- when this happens, the
preposed solution is to provide "dummy* acknowledges to the ADDOP so that the
uncomputed result digits can be "drained out™ without abruptly stopping rest of the
processor. Otherwise one has to know the exact state of each module: for example if MPX
has just began processing A hew operand packet while MGODOP and ADDOP are working
on the old one, than thie system will have to know which module to clear. By “draining” the
excess digits, this problem is avoided.

Finally, when NORMOP starts sending operand-pkts, it signals the "outside”. Fig.4.11
summarizes the main control signals.

Control sequence for FPAS can be shown using timed petri-nets.! They are easy to
derive and due to their similarity to state machines. tbey can specify the control
requirements quite clearly. Using the various control sigmls defined in the explanations,
the petri-net for the MPX module is derived here (Appendix; A1).2 Section 4.2 and Fig.
4.2(a) will help in the derivation.

When an operand packet is available, MPX can begin operations. Therefore the First

trapsition sets the input switch. Then the incoming bytes are loaded into DEL: once that is

1. ref. [RAM I] : '
2. Petri-net graphs for the FPAS can be found in the Appendix (AL-A7).
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done, the second operand set is available, nnd‘ therefore the switches are set {(MPXSWIISW 2),
REGL Ivads exp2 inte REG and now g “teady” signal can be sent to EXPFIX. Two
responses are possible: 1) CEX P, if there is 3 special operand, in which case MPX "dummy”
acknowledges the “outside” for the operand bytes yet to be received; or 2) EXP-ACK whereby
opl and op2 can be sent jo MODOP. Once either of these is done, MPX can start again.
Note the ready and ack nowledge signals which control the flow.

A series of such petri-nets have been uied in performance analysis of FPAS: they are
all not given here, but they are easy to obtain through the use of the above example and the
descriptions of the modules.

Due to nature of the signed digit numbers, various worst case situations of maximum
computation time are possible. Following is a typical example:

base-8 addition:  0.1777 E63 + 0.1001 EGo

Exponent difference = 3, therefore second operand Is delayed by 3;

Using S-D addition, 0.1777 + 0.0001001 = .0000001 E63 -» 0.1000 E57

The result obtained here requires NORMOP to examine 8 digits. The first is the
overfiow digit which is checked in all cases, but the following six zeros each require 1) zero
theck (ZEROP), 9 exponent decrement (CTD} and $in underflow check (COMP). This
consumes lots of time and can be considered a worst-case. However the oecurence of such an
operation d(;es ﬁot have a high probability, but as it represents the worst case possible, it is
worthwhile to analyze the total time of computation, |

Worst case time estimate is found .to be close to 800 ns; this is the time passed from the
arrival of the first operand byte to the sending out of the last result byte. This estimate is
obtained by assigning a time .va!ue to each transition of the petri-net. These values are also
estimated by modelling each transition with a TTL Jogic component(s).! Some examples are

as follows:

L. vatues used here are Jrom [TI 1]
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Register Joad {RLOAD, LSH, RLOADL.) 20 ns.
Add (ADDI, ADD2.) ’ 15 ms,

Some of the transitlons are composed of various logic levels: SUB of EXPFIX has an
operation time of (negation circuit) + (adder).

Let the operand-pkt arrive at time zero. MPX then does 4 register loads and at 80 ns,
EXPFIX can begin. It produces its result in about 50 ns. MODOP begins at 130 ns, and
loads at 150 ns when MPX has an operand byte pair available. ADDOP can start at 200 ns
time point. First number for NORMOF is availabile at 275 ns. Start and end times for each
medule is shown in Fig.4.12(a). A new operation can begin 130 ns before ADDOP ends so
that when the sum digit sy is produced, a new byte is available for the next aperation. In
other words, MPX can begin at-G?ﬂ»_lB!_h&ﬂn ns (approx.) after the First opération began.
Fig.4.12(b) shows how the computation times can overlap. This glves an overall worst-case
computation rate of 2 MHz.

The main delaying element here is NORMGP; the three operations described above
require about 70 ns each time, and this prevents a faster rate of operation for ADDOP. A
pt;;ible cure is to use faster Jogic. However, on tke average the 70 ns will not effect the
computation adversely because their wil) be less zeros to compare. It should be also noted
that the time rates obtained here are for the format used in this design; in the very likely

case when more precision will be used, this time will increase.
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Module Start End Total
MPX 0 ns 260 ns 260 ns
EXPFIX 80 ns 130 ns 50 ns
NODCP 130 ns 45 ns 345 ns
ADDOP 200 ns 670 ns k70 ns
NCORMOP 275 ns 800 ns 525 ns
Fig.4.12(2)Timing
O-[

fforst case throughput:

500 frocrmememey 1 result in 500 ns,

2 NHz rate

8500 Aol
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CHAPTER 5: FLOATING POINT MULTIPLIER

In this chapter, a byte-serial, fixed format, floating point multiplier (FPM) is

described. A general discussion is followed by detatled description of the multiplier.

5.1 General Descrip_ tion of FPM

As in the case of the floating point adder-subtractor, FPM is also divided into
functional madules. General outline is shown in Fig.5.1; only the Jnta flow lines have been
shown. Following are brief descriptions of each module:

i. MPX : This module is the same as its namesake described for the Floating point adder
subtractor. A description can be found in sections 4.Ki) and 4.2,

li. EXOP: This wmodule manipulates exponents before the actual mantissa operation.
Basically it is responsible for 1) detecting special operands and for 2) adding the
exponents to obtain the unnormalized result expo.nent. This addition may result
in exponent overflow or nnderflt;w which is detected also in EXOP.

ii;MULTOP: This is a two digit at-a-time signed-digit multiplier. The algorithm for its

operation is explained in section 3.3. It receives, processes and outputs hytes.

iv.PACKOP: In this mudule; normalization of the vesult and, if necessary, special operand
output preparation are dﬁnc. The operation is similar to that of NORMOP

module in FPAS wih minor structural differences.

5.2 EXOP Module

In floating point multiplication, the unnormalized result-exponent (resexp) is obtained
by adding the exponents of the operands, eg.
(2.5 E-4)« (3 Es7)=75E({-4) + (7)) = 7.5 E+3
This operation can result in either

L a resexp that is within the allowed range, in which case normal operations can be
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carried out: or

2. a resexp that overflows or underflows by I, in which case normal operations can be
carried out, but a final check on overflow or underflow is done in PACKOP; or

3. a resexp which overflows or underflows by more than I, in which case an appropriate
special operand is sent out.

Use of normalized numbers necessitate case 2. Underflow by one may not lead to a
final underflow after the operation if there is mantissa overflow only; 2lthough this cannet
bappen in conventional normalized arithmetic,! signed digit multiplication may result in
mantissa overflow.2 Initial overflow by 1 which may not be a final overflow can occur
easilyr

Example I: Using base-10 arithmetic, let the expnnelnts >89 be overflow. Then
0.1E65+01E35 - 01 E 100 (overflow)

normalize - 1 E 99 - {no overflow)

To handle alt these cases, a final check on the result is required. The actual procedure
is explained later in the section after a description of the units of EXOP (Fig. 5.2).

EXPREG1&2 are byte Jong registers for storing.the input exponents, exﬁl and exp2,

CEXP is the same as that of EXPFIX in the FPAS (section 4.3). It is a combinational
logic circuit that detects special operands using the inpﬁt exponents as explained in section
2.3. Outcome of the operation of this unit is available as a signal, CEXP,

ADD is an 8-bit binary adder that adds input exponent bytes from EXPREG1&2. Since
exponentis are represented by a sign bit plus 7 bits, this unit will be a conventional
sign-magnitude adder. The output, {expl+exp2), will be obtained as a sign bit plus 8 bits so

as to cope with possible magnitude averfiow.

|. For mantissa m and base r, normalized numbers require 1 $mj <1, T herefore given any m 1
and my, myting is always < L. See section 3.1,
2. See section 3.3, example 7
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COMP is a comparator which is used to detet;l overflow and underflow situations by
inspecting the output of ADD. It can havefour possible output modes: a) overflow by L b)
overflow, c) underflow by | and d) underflow. These results are expressed as DECEX P.

Finally, CHESIGN checks the sign of the first digits of each operand to decide on the
sign of the output of FPM if the output is a specisl operand. For example if the
result-exponent is found to overflow, then CHESIGN decides whether the result packet to be
Sent out +eo or -, or if only one of the operands is a special operand detected in EXOP, then
CHESIGN decides on the ontput sign, e.g. given +e and .1000 E 4, the output is decided to he

Operation begins when MPX signals the availability of new exponents which are
loaded into registers EXPREGI&2. Then CEXP unit checks the exponents for special
operands. Passible cutcomes are:

L. If there are special operands, then MPX and*l.'ACKDP are informed so that while MPX
prepares to receive a new operand-packet, PACKOP sends out an appropriate special

.. operand. |

2. if there are no special operands, EXOP continues operation. The two exponents are then
added (using ADD) and the result is checked in COMP. This checking can result in the
following: | ‘

Let x= expl + exp2, ov = averflow Hmit, and u = underflow limit.

1) if u ¢ x € ov, then normal operations are carried out. When MPX prepares the first
mantissa -bytes, MULTOP is signalled to start mantissa multiplication, while
PACKOP Joads x, the unnormalized resuit-exponent. Also CHESIGN examines the
first bytes to to come up with the sign of the sign of the product (the resuli). ‘

2} if x > ov, then there is overflow.

i. if x.- ov e 1, then there is "limited” overflow, in which case PACKOP is informed uf
this special condition, but MULTOP and MPX proceed normall.y as in (1) If after

computation and narmalization the exponent still overflows, then + ot - ® is sent
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out from PACKOP, the sign being obtained from GHESIGVN.

H. A x - av > I, then MPX Is signalled to prepare the first operand bytes. When they
are ready, CHESIGN examines the most significant digit of each byte to determine
the sign of the special operand to be sent out. After this operation, MPX is
signalled to receive a new operand packet while PACKOP sends out » or - e,

3} if x Cu, then there is underflow.

i. if u - x = |, then there is "limited” underflow. The same procedure as (2) is fallowed,
but the underflow siteation can only be avoided if there is mantissa overflaw. If
this does not happen, then + or - ¢ s sent out: again the sign is obtained from
CHESICN.

il. if u - x > I, then a procedure similar to 2(ii) is Followed. The only difference is that
in this case, ¢ is sent out as the special operand.

As shown in Fig.5.2, various controd signals have been provided to represent the

possible control structure:
. EXPLOAD Joads the exponents from MPX into registers EXPREG &2,
- 2. CLOAD is used to load the outcome of special operand check into INSTREG.
3. ADD places the unnormalized result exponent {resexp) into register RESREG.
4. COMPF Ioads the result of overFlow-underflow check on computed exponent into

INSTREG?2.

5. PSIGN places the result of CHESIGN into output register INSTREGS.

5.3 MULTOP Module
This module is a two digit at-a-time signed digit multiplier based on the algorithm
defined in section 3.3. The structure of the module is shown in Fig.53.

OPREC1&2 are byte long registers that store operand bytes arriving from MPX, They

act as buffers to speed up operations.

OPNDSTI&2 are used ta construct the complete operands according to the algorithm,
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namely
Z,-7,,+8% and Y =¥, .8l

Instead of édding. a series of shift and Joad operations are used to speed up the formation
of the partial operands. A structure capable of doing this Is shown in Fig.5.4. In each
OPNDST unit there are two switches SW1 and SW2, and two registers (of byte-length)
OPND 'REG!&?. SWI is used to control the flow of “load” signal to the registers, while SW2
is responsible far input flow to the registers. This way, the most significant byte from
MPX would be loaded into OPND REGI followed by the least significant into OPND REG2.

To summarize, the two modes possible are as folows:

Let C(R} be the contents of register R, Then

1. send C(OPREG) to OPND REGI  ({using SW2)
enable "load” of OPND REGI {using SWI)
2. send C(OPREG) to OPND REG? (using SW2)
enable "Ioad” of OPND REG?2 (;lsing Swi)

For the general case where each operand is n bytes, SW1 and SW2 are required to be I-to-n
switches, while the number of registers is n.
OPND REGS3 is a two byte-width register provided to store YH which is needed in the
multiplication algorithm. This allows the formation of Yj without the loss of -Yj_j.
MULTSELI&? compute the products Zyy; and Y x, respectively. Signed digit
number representation used here prevents direct binary multiplication to obtain these
products because of the special coding necessary. To obtain these products, two methods CI!"'I
be used:
1. A cheap but slow solution is to multiply the individual digits using binary parallel
adders and then to add the adjacent diglts togqther. This will be slow becsuse elaborste
decoding will be required to obtain these products.

2. A less cheap but faster solution is to replace the multiplication and decoding above by

a ROM table. Such an impleinentation is shown In Fig. 5.5 as used in the design here.
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Basic idea is to break each of the numbers to be multiplied into digits. Then a digit of
each, combined, will form an adress to a ROM which outputs their product. The size of the
ROM is determined as Follows: for a given base r, there are (2r-1) distinet digits possible for
maximal redundancy {sect. 2.1} since an address consists of two digits, and since each address
has to reference a two-digit word (i.e. a byte), it can be concluded that the size of the ROM
is to be (2r.1)2 bytes. For base.8 represeniation, the number of bytes required is 152, or 295,
This requires a standard 256+8 bit ROM. The size can be reduced if identical addresses such
as (3.1) and (1,3) can be avoided, and if reduced, power consumption as well as access time of
the ROM will go down. An 2lgorithm enabling this reduction is as follows:

Let (x,y) be an address pair. Then

if xcy then temp=x
x=y --- Swopping operation .-
y=teinp

else  continue/direct address entry

Using this algorithm, the number of bytes required is significantly decreased. Whereas
225 bytes were required before, the size is now redu@ to é 1 = 120. In general, for a given
digit set of n eleinents, the number of spaces or slats required is computed to be f i . The
implementation of this algorithm can be dune using & single comparator which controls a
multiplexer as shown in Fig. 56. Some additional time will be Jost in comparison, but
reduction in power consumption and access time will of fset this loss,

Using table muliplication, the products are obtained as follows:

Example %: Given Zj--?BS?s and Yj=163 . Then

241 2 %6 14
31 3 36 22
3 346 22

sum 332 2434
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721 7 6 52

sum 07332 54434
\ 07332

final sum m - answer --

Therefore Z jYjand ¥,z are obtained using MULTSELI&‘Z respectively, each product
being 6 digits long (24 bits).

S-D ADDI is a six digit parallel signed-digit adder; it computes the sum z])’]“’j-:‘;
according to the addition algorithm described in section 3.2,

As mentioned in section 3.3, the multiplication algorithm places bounds on the
magnitude of the operands that can be used here. In order to meet this requirement, it was
also wentioned that the operands could be reduced d&rlng computation and then
“renormalized” at the end of an operation. Since this "reduction” {s done by the movement
of the rad:x point, normal computation can be done by placing zeros where necessary. For
this reason, two zeros are placed as most significant digits of the input arriving from S-D
ADDI to 5-D ADD? (Fig. 5.3), and the cumputahon becomes as if each operand was shifted

hy Lwo zeros, i.e. as if Z and Y were less than ¢4 5-D ADD2 is therefore a 10 digit, parallel

1
i'

ROUND is a combinational logic circuit which perfarms s kind of rounding operation

signed-digit adder, and it compute.s w

to obtain d, from wj.2 It basically adds ; to the magmitude of W, truncates the digits to
the left of the representative radix point and places the sign of W, to the resultant number

to obtain dj. In this design, this can be done as follows:

a) if the output of 5-D ADD?, W, is negative, then -5 is added to it. The digits to the

2
right of the radix peint are truncated, and the result is dj.
b) if the output of 5.-D ADD?, W is positive, then +% is added to it. The digits to the

L. wj=64(wj__1-dj_1);zjyj+‘i'j_iz
2 diasignw'.,}wj|+§J



. KO-

right of the radix point are truncated, and again the resuli is d.

It should be noted that in all operations, the location of the radix point is
fepresentative, but fixed and known.

The output of ROUND, d;, is negated in NEG. Since d, is constrained to be at the
most two digits, i.e. a byte, the structure of this wnit is the same as that described in the
MODOP module of FPAS (sect. 4.4). The output of NEG is used to obtain the difference
(W,-djl in §-D ADD3, |

W-D REG is used to store the shifted difference.-M(wJ _ l-dj_l). Initially, the content
of this register has to be zero according to the multiplication algorithm. RESREG1&2 are
registers for storing the result digits d,. The fatter is provided to keep the “last batch™ of
three result bytes that are produced at the same time. The output of this register is byte
width, and through shifting all the contents are made available to the mﬁltiplextr M. The
output of MULTOP is controlled by this multipléxer.
~ Exampie 3: Given the operation of section 3.9, example 7, then M will first pass dy

and d3 from RESREGI, Followed by the output of RESREG?2, glving the
Foltowing sequence:

01103330266

The description of the individual units have also expiained the .motle of operation of
MULTOP. The controf sequence can be seen in Fig.5.10. |
The control signals of MULTOP are as follows:
l. CPLOAD places new operand bytes into OPREG1&2. _
2. SHFTLOAD controls the switches SW| and 5W2 of each OPNDST unit. OPERLOAD is
the load signal to OPND REGs. | -
3. DEL-LOAD is the load signal to OPND REG3 which stores ¥ .
4. MULT loads the “addresses” inte MULT SEL1&2 as shown in Fig.5.5.

5. ADDI and ADD2 are signals to the buffer registers (not shown) that store sums between
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operations,

6. DIFFLOAD loads the shifted difference! inta WDREG.

7. LOADISHFT can either load RESREG? or shift its contents to the left bytewise, This
is necessary to allow all contents of RESREG? to appear on its byte-width output.

8. RESLOAD loads output of ROUND into RESREGI.

9. RES-SEL controls multiplexer M.

5.4 PACKOP Module

This module s similar to NORMOP of the floating point adder subtractor. It is
respansible for preparing result-pacl:ets.elther from the computed result or from special
operands, The structure of PACKOP is shown jn Fig.5.7.

ZERO is a detection circuit which checks the byte input from MULTOP for zero
digits. Given a byte of twﬁ digits where the left digit is the most significant one, there are 4
possible outcomes expréssed as ZERO sigmal:

(1) only the left digit is zero,

(2} only the right digit is zero,

(3) both digits are zero, and

(4) none are zero.
The outcome of this detection basically control the normalization operation as will be
explained later.

PACK is the mantissa-packing unit. Its internal structure Is shown in Fig.5.8. In here,
bytes arriving from REGIN zre broken up if necessary (eg. if there is a zero at the most
significant digit) and then reconstructed. REG{ and REG2 are cach 2 digits, i.e. 1 byte width
registers. The mantissa in "final" form is added into these registers. Multiplexers M, and

My, control the input to the left digit slot of REG1&2 respectively. On the other hand, M|
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and M2 control the input te the right digit slot of these registers,
Example 4: Given a byte of two digits, let left and right digits of the jeA byte be I,
and r; respectively. Then for the input sequence
Illrll'lzl‘zl'lsl‘slmu

the folowing initial REG1&?2 configurations are possible:

REGI REG2
L | 'l gl 12 ry i :nﬁ normalization necessary
2. Irg gl irglg| :most significant digit zero
3. {lgrg | llgrg| :First two digits zero

Various other forms are possible based on the above pattern (such as if

the first two input bytes are all zeros, etc.).

SP-OPERAND is the special operand unit and it .ls the same as that in NORMOP.!
Along the same lines, EXPREG and CHEXP are also the same a5 in NORMOPF except that
EXPREG here can handle exponents of size 1 byte + i bit due to the special "overflow™ and
“underflow” cases.

The operation of PACKOP is as follows:

L. If EXOP signals a special operand case, the multiplexer M3 chooses the input from
SP-OPERAND as its output, and therefore a special operand packet is. sent out.

2. Otherwise, in the normal and “limited” overflowAunderflow case, MULTOP generates
the result bytes. The computed resuit consists of 10 digits (5 bytes), and the first byte is
used for mantissa overflow detection. _

As explained in section 5.1, “limited” overflow and underflow occurs if the exponent is
one more than the allowed limits. In order for such cases to end “normally”, the computed
mantissa must be less than r- for "limited" overflow, and there should be mantissa overflow

far "limited” underflow. Therefore, the following is done:

1. Section 46
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a. If there is “limited” underfiow, then ZERO checks the first byte that arrives into
PACKOP. If the result, ZERO, is M ! then there is mantissa overflow; therefore the
exponent is decremented, and normalization routine s carried out, Otherwise, the
operatinn results in underflow and a special operand, ¢, is sent out. The sign is obtained
from the CHESIGN wnit of EXOP.

b. If there is "limited" averflow, then ZERO checks the first two bytes to decide whether it
is limited or not. The requirement is that the first 3 digits arriving at PACKOP be zero
shiowing that the computed mantissa is fess than r'l. So the "minimar® requirement is to
obtain paossibilities (3) and (1) as ZERO values for the first two hytes respectively. If
any of the First three digits is non-zero, then a special operand, =, is sent out with the |
sign of the first non-zero digit or from the CHESIGN unit of EXOP. Otherwise, if the
result s less than r'l, the rest of the diglts are put into a normalized form and sent out.

The normalization procedure is the same as that of NORMOP, except that now the
result digits from MULTOP arrive as bytes, Namely.

L. #f there is. mantissa overfiow as indicated by non-zere second digit, then the exponent is
incremented, checked for overflow. Now, a) if there is overflow, then + or - o is sent out
according to the sign of the overflow digit, else b} if there is no overflow, then the
ad_justed exponent plus the first 4 digits (mcluding the overflow digit) are sent out.

2. If there Is no mantissa overflow, then the third digit is checlced This time, a) if the
digit is non-zero, then the exponent plus four digits Including the digit being checked is
sent out, otherwise b} if the digit is zero, then the exponent is decremented and checked
for underflow. If there is no unde;flow, then an appropriate ¢ is chosen with the sign
obtained from EXOP. If there is no underflow, then the fourth digit is checked, and the
pmcedufe recirses. |

Examgle : Glven computed mantissa

L. See beginning of this section
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IDO||(00|]05]144]135) and exponent E+72, then
First byte arrives 00 :both zero, hence no mantissa overflow
ask for second byte
Second byte arrives 00 Brd and 4¢h digits ur;J. decrement exp twice
E+72 = E+70 ==> no underflow
ask for third byte
Third byte arrives 05 :5t4 digit zero, decrement exp once
E+70 - E+69 «> no underflow
6th digit non-zero + send next four digits
Place 5 in REGL Ask for fourth byte.
Send exp out.
© Fourth byte arrives 414 Place 4 in RECI ==) send out contents (i.e. 54)
Place 4 in REG2. Ask for fifth birte.
Fifth byte arrives 35 Place 3 in REG2 =5> send out contents (i.e. 35)
OPERATION FINISHED 7

Operand-pkt sent out: .5443 E+69

It should be noted that when the second byte arrives, both digits are checked at the
same time, and the next two steps can he taken "at-one-go”.
The control signals as shown in Fig.5.7 are as follows:

. OPLOAD controls buffer register REGIN,

2. LOAD places the unnormalized exponent arriving from EXOP Into reglstéﬂmunter
EXPREG. CTU/CTD are signais that can increment or decrement the contents of
EXPREG.

3. SEL controls multiplexers M1, M2. M, and My,

4. LOADI and LOAD2 are the load signals .'to REG] and .RECI {of PACK unit)

respectively.
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5. OUTSEL is used to select the output of FFM using multiplexer M3. As mentioned
before, it can select its output from the following inputs: 1) normalized exponent fram
EXPREG, 2) special operand byu.:s from SP.OPERAND, and 3} normalized mantissa
bytes from PACK,

6. ZEROP places the resuit of the ZERO test into INSTREG?.

7. CEXPF loads chexp signal into INSTREG?!.

5.6 Control and Timing

Operation of FFPM begins with the arrival of “ready” signat from the external circuit
indicating the availability of a new operand packet. MPX begins processing the incoming
bytes, and when the exponents are ready.l it signals EXOP to start its operations. EXOP
checks for special operands, and if any is found, it signals MPX to prepare the First
mantissa bytes so that the sign of the special operand to be sent out can be decided.
Therefore when SIGN unit of EXOP finishes its oi:eratlon. MFX is signalled to prepare for
a new operand packet, while PACKOP starts sending out an approprilte special operand. In
other words normal operations are not done.

If EXOP cannot find speciat operands, then it proceeds to manipulate the exponentis
as described in section 5.2. When the exponents are added, it may be the case that there will
be definite overflow or underflow. If this happens; the same procedure as the special
operand case is follo;ved. except that the special operand to be sent out is elther w or «.

If the exponent overflow or underflow is “limited”, then EXOP informs PACKOP of
this condition, but the rest of the system operates normally. In normal mode, MPX is
signatled to prepare the mantissa bytes ta MULTOP, while PACKOP is sent a "ready” to
load the unnormalized exponent. The multiplication proceeds according  to

readyfacknowiedge signals between MPX & MULTOP, and MULTOP & PACKOP So

I. See section 4.2
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MULTOF begins when MPX has the first mantissa bytes available. When the first result
byte. i.e. d, is produced, PACKOP is signalied to stact its normaliztion operation. MULTOP
is finished with a given operand packet when register RESREG 2 is loaded with the last
three resuilt bytes,

Finally, when PACKOP prepares the output of the FPM, it signals the external “world”
that the result packets are ready. There is also a signal protocollbetween MULTOP and
PACKOP 1o cope with the problem of excess or insuuffi;:ient number of digits which may
occur during normalization. This topic is discussed in detail in section 4.6. Fig.5.9
summarizes the control signals l:lrf FPM. -.

Analysis of the computation time is dl;lc with petrl nets with timed transitions. These
petri nets can be used to model the control structure as well as to estimate the time of
computations. Petri Nets for the FPM can be found in the Appendix (Al, A8, A9). It shouid
be noted that this petri-net could caslly be extended to handle mliltiplication of mantissas
of length n bytes: the section between the "stars” in the figure is basically the main part of

A typical computation time hns‘ been computed as an example. The operation is
assinned 1o produce a result mantissa that requires | digit left shift while normalizing.
Various times assigned to operation; are typical TTL logic values.

Computation begins at time zero when MPX receives an aperand_packet. As in the
FPAS, the exponents are ready to be processed by EXOP after BOns. EXOP takes

approximately 75 ns to process the exponents. For example this value is obtained as follows:

EXPLOAD register load 20 ns
CLOAD comparison 20 ns
ADD binary additon 15 ns
comMp comparison ' 20 ns

TOTAL 75 ns

Now. MPX begins preparing the next operand bytes at about 155 ns, and MULTOP is ready
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to start at 175 ns. Various operation times associated with this module can be seen in
Appendix, A9. This analysis then continues down to PACKOP. The start and end times for
each module can be seen in Fig.5.10(a).

The conclusion fs that the multiplication of two digit numbers takes approximately
770 ns with the given TTL values. This is the time flut clapses between the arrlval of the
first byte, and the sending out of the last resuit byte. With ﬁipelinig. overlapping of
operations is pussible as shown in Fig.5.10{b). This means that for continuons operations,
FPM can produce a result packet every 395 ns, or at a rate of 2.5 MHz! stated in 2 different
way, the input byte "consumption" rate of approx. 15 MHz can be achieved.

These figures can be lowered with the use of faster logic. As the precision will increase,
the time of computation whi definitely go up. As in the case of the FPAS. the trick Hes in

providing efficient hardware to speed up normalization process.
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MODULE START END IOTAL

MPX 0 ns 375 ns 375 ns
EXOF B0 ns 155 ns 75 ns
[MULTOP 175 ns 700 ns 525 ng .
PACKOP L300 ns 770 ns | 340 ns

Fig.5.10(a) Operation times

WPX is free at 375 ns, If a new operand-pkt is processed
RESREGL is loaded with-result after 430 ns. Starting at
time 375, that means the first result byte is available-
at 805 ns, when the firpstg operand-pkt 1s already
processed; thus conflict is avoided,

0—r
375- sy i
time for n computations:
t=770+(n~1)395 ns
?.?GJW“‘"_" ----------- r ‘
Throughputs 1 result/395 ns
395
2.5 MHz rate
1165~ dne
395
1560-L

'iz.5.10{b) Overlapping
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CHAPTER é6: CONCLUS!ON

In this thesis, two processors capable of byte-serint addition-subtraction snd
multiplication have been described. As the design shows, using signed digit arithmetic and
pipefining methods, a high byte processing rate can be achieveds although the computation
times mentioned in sections 4.7 and 5.5 do not Jook very impressing, better performance can
be obtained by the use of faster logic and methods that can eliminate some of the
"bottle-neck” units. For example If such processors are actually to be implemented, an LS
chip would promise reasonable improvement over the given figures.

In the description of the processurs, various points have been left out. One of these is
the handling of multiple-precision. The operand paﬁkets and operations described in this
thesis are for single precision only, i.e. the operand format is Fixed. However adapting to a
Fixed Format or 'varia.ble multiple precision envi-rcmment is easy. Modifications Involve the
algorithms (certain steps have to be repeated according to the precision used) and expansion
of-the delay buffers such asVDEl. of the MPX moduk.l . Provisions have to be made to
inform modules such as EXPFIX of the FPAS of the length of the mantissa used to
determine the result exponent. For example, J input Il.) COMP unit of EXPFIX can be
connected to an external source thus informing the modufe of the new constraints on the
exponent difference magnitude.

Certain operations can be avoided by checking the operands before computstion, as
inentioned in section 3.1. Structures can be provided to detect these cases if feasible.

Basically.. there are two possibilities for further work, Division has not been mentioned
in this thesis. An algorithm utilising signed digit arithmetic is described in [TE [] The
division algorithm Idefinetl produces the First result digits after 4 operand digits are

available to the processor.

L. See section 4.2
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Another issue that requires further work is on how such individual processors can be
connected together to form an arithmetic unit. For example both FPAS and FPM are fixed
eperators, eg. an operand arriving at FPM can only be multiplied. Therefore a mechanism
has to be provided to route arriving operand packets to Itlu appropriate unit according to
the operation indicated by the packet. Also it is necessary to put the resubt packet into the
proposed form in the Data Flow Machine, i;e. append destination addresses to the resuit,

etc.” OF course these issues involve the actual design of the DFM, and therefore depend

heavily on how the latter is implemented.

l. See [DML 1]
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