MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Laboratory for Computer Science

Computation Structures Group Memo 164

The Design of an Arbitration Netwerk
for a Data-Flow Processor -,

by

Mary E. McNally

(Thesis aubmitted in partial fulfillment of the require-
ments for the Degree of Bachelor of Science at M.L.T.)

July 1978

THE DESIGN OF AN ARBITRATION NETWORK FOR

2 DATA~FLOW PROCESSOR
by

MARY ELIZABETH McNALLY

ABSTRACT

Contemporary research in the theory of computer
architecture has led to developments in parallel
computation, and in particular, to the concept of a
data-flow processor. Within such a processor, routing
networks are used to transport information between
processor sections., An arbitration network is a
routing network that controls the information flow
from the memory section to the functional unit section.
In order to enhance the execution speed, this network
must exploit the parallelism inherent in data-flow
architecture. A logic design is given for an
arbitration network which.is entirely asynchronous and

employs commercially available components.

Thesis Supervisor: David P. Misunas

Title: Staff Member, Division of Sponsored Research

Section

Title Page

Abstract

TABLE OF CONTENTS

Acknowledgment

Table of Contents

Chapter

Chapter

Chapter

1.¢
1.1
1.2
1.3
1.4

1.5

Introduction

Data-Flow Architecture Research
Packet Communication Structures
Arbiters

Data-Flow Research at M.I.T.
Overview of the Thesis

The Data-Flow Processor
gverview

Memory Section

Arbitration Network

Function

Switch Unit

The Serial~to-Parallel Converter
Buffer Unit

Functional Unit Section
Distribution Network
Parallelism and Concurrency
Modularity

Arbiters

The Role of Arbiters in Parallel
Processing

Petri Nets

10
10
10
13
13
15
16
16
18
is
19
21
22

22

22

Chapter 3.3

Chapter 4.0

Chapter 5.0

Chapter 6.0
Appendix

Bibliography

Metastable States
A Design for an Asynchronous Arbiter

The Use of Synchronous Components in an
Asynchronous Design

Transition Signalling

Propagation Delays

Allowance for Johnson Counters
Overview of the Arbitration Network
The Arbiter

First Stage Arbiter

Second and Third Stage Arbiters
Serial-to-Parallel Unit 1

Buffer Unit 1

Switch Module

Serial-tc-Parallel Unit 2

Buffer Unit 2

Overview of Network Signal Control
Intra-Modular Signal Control and Timing

Conclusion

23
27

31

32
32
34
36
36
37
43
43
48
50
52
56
58

58

64

65

70

Chapter 1

1.0 Introduction

1.1 Data-Flow Architecture Research

Recent attempts to achieve high speed data
execution have led to the development of a unique type
of computer architecture based on the concept of data-
flow. 2 data-flow architecture is contrclled by the
availability of data, and does not have the inherent
limitations of switching and processing delays that
conventional computer architectures have to contend with.

This unique architecture relies on the parallelism
inherent in the processor design to achieve high speed
operation. Several research groups have developed guite
different approaches to the development of a parallel
processor (1,2,4). This thesis will deal with the
research done at M.I.T's Laboratbry for Computer Science.
The members of this group have developed both a data-
flow processor and a data-flow language (3).

The need for high speed computation has arisen from
many applications of signal processing, such as modula-
tion, filtering, and fast Fourier Transforms. Signal
processing performed on conventional computers has been
limited by the delays inherent in synchronous architecture.
In contrast, the data-flow concept relies on the availa-
bility of data, rather than clocked control, to obtain
maximum execution speed and consequently a higher

throughput.

1.2 Packet Communication Structures

The data-flow processor referenced in this design
utilizes packet communication. All informaticn within
the processor is transmitted in discrete information
packets. Such a transmission system regquires sither a
well-developed routing network, or the conventional bus
or crossbar networks. A description of each of these
netwcrks and the tradeoffs involved in selecting the
appropriate type of network is discussed by Jacobsen
and Misunas (5). The arbitration network for the data-
flow processor is an asynchronous routing network.

This type of communication structure is better suited to
the concurrent transmission of operation packets, and in
addition has the benefits of a modular communication

structure.

1.3 Arbiters

The main component in the Arbitration Network is
the arbiter., The function of the arbiter is to control
the access to a shared resource by several users. In this
data-flow processor, there are only 4 functional units,
yet there are 512 memory cells desiring to use them. The
arbiter must allow cnly one signal to be processed at a
given time, restricting subseqguent signals until the
first signal has been processed to the next stage of the

network. The essential criteria for an arbiter is its

ability to handle simultaneocus signals on its inputs.
When such an event occurs, the problem of glitches and
metastable states must be avoided. Much work has been
done on the theory of arbiters by Patil {6,7) and cthers
{8). The proper handling of transmission signals by

the arbiter is essential for an efficient Arbitration

Network.

1.4 Data-Flow Research at M.I.T.

The concepts of data-flow utilized in this design
of the Arbitration Network have been developed to a
fairly sophisticated level by researchers in the
Laboratory for Computer Science at M.I.T. (1,2,3,9).
The work done by Amikura (9) is particularly useful
for representing the interface of the memory to the
Arbitration Network. The initial signally discipline
is established by this interface, along with the sizes

and structures of the variocus communication packets.

1.5 Overview of the Thesis

The purpose of this thesis is to present a logic
design for an arbitration network which will be fast,
reliable, and capable of extending the parallelism of
the rest of the processor. Chapter 2 discusses the
data-flow processor in some detail. Chapter 3 reviews
the theoretical concepts of an arbiter. Chapters 4
and 5 present the actual design of the Arbitration Network
along with several ideas regarding synchronous and
asynchronous components and circuits. Chapter 6 will
present some conclusions, and provide a brief imple-

mentation analysis, including network size and cost.

Chapter 2

2 The Data-Flow Processocr

2.0 Overview

The data-flow processor is a stored program computer
with the configquration shown in Figure 2.1. Its four
main sections include the Memory Section, the Arbitra-
tion Network, the Functional Unit Sectien, and the

Distribution Network.

2.1 Memory Section

The memory section of the data-flow processor
consists of instruction cells, which contain both the
instructions and their required operands. The structure
of an instruction cell, given in Figure 2.2, shows the
four registers that hold the necessary data. Register 1
contains the instruction, which consists of an op ccde
and destination address{es). The op code is used to
select the appropriate functional unit tc perform the
operation, and the destination address(es) specify the
locations of those instructicon cells in the memory
section that are to receive the result packet as one of
their operands. Registers 2, 3 and 4 hold the
instruction's operands.

The processing of an instruction depends on the
arrival of the requisit operands. As soon as all

necessary operands are received into the instruction

-10-

FUNCTIONAL

UNITS

T W ¥ gun

KB N T -0

MEMORY

NETWOS&K

A
MFM -3 —o2

DATA - FLOW PROCESSOR

FIG.

-1]1-

of | pestivarion
INSTRULTION 1 cope : ADDRESSES
OFERANYD 1 w4t PREGISTER 2
CPERAVD 2 REGISTER 3
CPGRAND 3 >4 REGISTER 4

INSTRUCTION CELL coNEIGURATION

FIG. 2.2

-12-

cell, the cell is said to be enzbled, and is referred

to as an operation packet ready for transmission. An
enabled operation packet sends a signal to the
Arbitration Network requesting prompﬁ transmission to
the appropriate Functional Unit for processing. There
are several distinct types of operation packets (9),

but for purposes of this design an operation packet
(will have the structure shown in Figure 2.3, and} will

contain sixteen eight-bit bytes,

2.2 Arbitration Network

2.2.1 Funection

An Arbitration Network is an asynchronous routing —
network that accepts packets at its input ports and
transmits them concurrently to its output Forts. In
this implementation packets arrive at the input ports
from the Memory Section and are routed to the output
ports for passage to the Functional Unit Section. The
arbitration network performs several differentrtasks
in the entire routing process and therefore consists
of several different units. The substructure of an
Arbitration Network is given in Figure 2,3. It is
composed of arbiters, switch units, serial~to-parallel

converters, and buffer units.

-13=

e

£

MAYoMm o A

o

Nollyd LI SyY

M5

k\m.

-14-

The arbiter is the most crucial component of the
Arbitration Network. The arbiter must accept all enable
signals generated by the operation packets in the Memory
Section. Once it has selected the appropriate packet
for transmission to its output port, it must inhibit
subsequent packet transmissions until the first one is
completed, This control over the routing network is
extremely important for both speed and reliability of
packet routing. The arbiter is a rather complex module
and is described in much greater detail later in this

thesis (Chapter 3).

2.2.2 Bwitch Unit

The switch unit has a single input port and several
ocutput ports. Its function is to assign a packet at
its input port to the output port selected by information
contained within the packet. The information required
for this switch selection is the op code of the
instruction, which is located in the twoc low order bits
of the operation packet for the purposes of this design,
The switch unit is entirely responsible for getting

the operation packet to the appropriate Functional Unit.

15 El

2.2.3 The Serial-to-Parallel Converter

The serial-to-parallel ccnversion mecdules accept
byte serial data at their input ports and convert it to
a more parallel form at the output ports. As shown
in Figure 2.4 there are two distinct gerial-to-parallel
units that differ only in the number of their input and
output ports. The effect of the two medules is to
convert byte serial data to entirely parallel data.

The reason for the conversion is to increase transmission
speed. By separating the process of conversion into two
steps, the increase in overall transmission speed is
achieved without tying up too much time in the actual

conversion process.

2.2.4 Buffer Unit

The buffer units are temporary storage areas for.
the operation packets. the idea of buffering the
packets at variocus stages in the network allows for
more parallelism in execution. As soon as a packet
is stored in a buffer unit, a new packet is free to
enter the arbitration network without loss of data.

In this way, packets can be buffered so that the
entire network can be in use at any given time.
This is important since idle time in an Arbitration
Network slows down the transmission process and

defeats the effects of parallelism.

-16~

SliNa NOIISEIIANOD

KYE I3Wabd L1y = RLYQ N INYERd F1AG

- T A I = B —

£t

1189 S

T 39VLS

Ke———= o a14w

. &7 FL A

dis

Viva 3L4q 13Ny dvd «— VIVd FIAE Wi 3S

F AoVAS

b FrLAA S ———

1 arra <o ——

T

dis

FLig i

-17-

2.3 PFunctional Unit Section

The Functional Unit Section consists c¢f the
processing units which handle all computations within
the data-flow processcr. Data presented at its input
ports in the form of operation packets is processed
according to the instruction specified in each packet,
and a result packet is generated. The result packet
contains the result of the computation performed and
the destination address(es}, which specify the
instruction cells that are waiting for this data.

For the purposes of simplifying this design, the
Functional Unit is assumed toc have four processing
units, one for each of the four basic arithmetic operations.
This structure helps to achieve faster execution by
allowing concurrent processing, and by reducing idle
time. Since instructions and operands arrive simulta-
neously from the Arbitration Network, the processing
units (ALU's essentially) do not have to sit idle during
memory acquisitions. As a result, execution speed and

efficiency are obtained.

2.4 Distribution Network

The function of the Distribution Network is analagous
to that of the Arbitration Network. It must accept result
packets at its input ports, and channel the data in these

packets to the instruction cell(s) specified as destination

-18~

address(es). This is the way in which results from

one operation are used as operands in a second operation,
The first instruction is processed in the Functional
Unit Section, and a result packet is generated. The
destination address(es) in the result packet specify

the address of an instruction cell in memory. The data
in the result packet is then placed into the appropriate
operand register in this instruction cell. When all
operands have been received, this instruction cell is

enabled, and the cycle begins again.

2.5 Parallelism and Concurrency

There have been several allusions to the concepts -
of parallelism and concurrency. These concepts are
intrinsic to the nature of data-flow and deserve a more
in-depth explanation.

The idea of parallel computation sﬁggests that more
than one data computation can be performed at a given
time. This is not the case in conventional architecture
with its single arithmetic pProcessing unit. The con-
venticnal computation scheme regquires several memory
access cycles to retrieve instructions, operands, and
destination addresses. The delays inherent in such a
scheme reduce the execution speed of the processor. 1In
addition, the arithmetic logic unit, and other sections

of the processor, remain idle during this time. It was

-19-

this type of idle time that led to the concept of data-
flow. In the data-flow architecture there are several
functional units, and therefore, several computations

can be processed simultaneously. The instructions are
selected for processing by the availability of data,

and need not be invoked sequentially. (There actually

is a particular seqguence of operation, but it is also
dictated by the availability of operands and is
controlled by the data-flow language (3). By adding
several stages of arbitration between the Memory and
Functional Units, it becomes obvious that instruction
execution becomes highly parallel., The crucial point

in the control of such data-flow lies with the arbiter,
which is a component in the Arbitration Network. Preblems
arise when more than one enable signal arrives at the
input port of the arbiter. Given that they arrive at
least far encugh apart to be discerned as two distinct
signals, then the arbiter must process the first one that
arrives and queue the second one. The resolution of
ambiguity will be addressed again in the actual

description of the arbiter design. {(Chapters 3, 5).

2.6 Modularitz

The configuration of the Arbitration Network given
in Figure 2.3 reflects a multi-level structure. The
major reason for this scheme is to maximize the trans-
mission of Packets through the network. The buffering,
serial-to-parallel conversion, and switching units are
configured so as to allow several packets to pass
through the network concurrently, but at different
stages. This ensures that the network has less idle
time and a faster throughput.

i1t must be noted that the specific configuration
given is not the only one that can be used., The separate
units are designed to be modular, and therefore inter-
changeable to a certain degree, Specifically, it isg
possible to buffer the packet either before or after
the switch unit, or to combine both serial-to~parallel
units into a single conversion Process, etc. The actual
configuration can be determined by the system implementer,
There are advantages to certain configurations which will
become more apparent after the design has been presented

(Chapter 5),

-21~

Chapter 3
3.0 Arbiters

3.1 The Role of Arbiters in Parallel Processing

The allocation of shared resourges in a circuit
is controlled by signal arbitration. When several
users desire access to the shared resource, an arbiter
must be employed to ensure that only one user is granted
access at a given time. In the data-flow processor, the
Functional Units are shared resources, being used by all
of the instruction cells in the memory. The role of an
arbiter is to allocate these functional units to the
instruction cells as they become available. It must
also insure that the arrival of simultaneocus requests
will not result in glitches at the output or metastable
states. A considerable amount of work on asynchronous

arbiters has been done by Patil (6, 7) and others (38).

3.2 Petri Nets

A convenient method cof describing an arbiter is by
the use of Petri Nets. A Petri Net is a graphical means
of system representation, It can be used to model infor-
maticen flow in a circuit, and 18 especially useful for
modelling speed independent circuits such as the arbiter.
The Petri Net was developed by Carl Petri (1ll) and was

applied to speed independent circuits by Misunas (12).

-2 -

A Petri Net is a directed graph with two types of
nodes: transitions and places. Places ars drawn as circles -
and transitions as straight lines. Aan input place has a
branch from z place to a transition, while an output place
has a branch from a transition to a place. Information flow
within the net is handled by tokens. When every input place
to a transitien has a token in it, the transition is enabled
and may fire at any time. When it fires, a token is removed
from each of the input places and a token is put into each
output place. There is no conservation of the number of tokens.

There is a way to block information flow in a Petri Net
by using shared input places. An input place can have branches
to more than one transition. When one of the transitions fires,
the token is reﬁoved from the input places, including the
shared input. Once the token is removed, the other transitions
are no longer enabled, and must wait for a token to be placed
in the shared input place. |

A Petri Net representation of an arbiter is shown in
Figure 3.1. With a token originally in the shared input
place, the first enable signal to come in will cause the
transition to fire. Once one of the transitions fires, the
token is removed from the inputs, thereby disabling the other
transition. The ready signal will cause the desired operation
to be performed. When processing is complete, an acknowledge
signal is returned, which acknowledges the enable signal
(see transition signalling in Chapter 4), and enables all

transitions again.

23w

ACK, ENABLE, ENABLE 5 ACK

A

ReADY, READY 5

PoNE,
PEME 5

FETRI NET REPRESENTATION OF
AN ARBITER

Elg. 3.1

-24=

3.3 Metastable States

One of the major problems with an asynchronous
arbiter is the proper handling of zimultaneocus changes
in its inputs. 1If this situation occurs, and the
arbiter is incapable of resclving the conflict, the
arbiter may possibly enter a metastable state. This
state is an unstable equilibrium state which bistable
components can experience in addition to their two
stable states of on (1) or off (0).

All bistable devices pass through a metastable
,state in the transition from a high to low or a low
to high logic level. Consider the basic arbiter cirguit
shown in Figure 3.2a. If the inputs A and B are initially
0, the outputs will of course be 1. If both inputs
change simultanecusly to 1, the cutputs may enter the
metastable state shown in Figure 3.2b. In this unstable
State, the output voltage does not reach the requirements
of the threshold voltage needed to cause the transition
from a high to a low logic level. The metastable state
is shown graphically in the transfer characteristic shown
in Figure 3, 2c. While the device remains in this un-
stable state, its output is uncertain. It will eventually
return to one of its stable states, but the delay incurred
until this happens, and the possibility of glitches on the
cutputs, are undesirable. Care must be taken to ensure

that the arbiter cannot enter a metastable state.

=25~

A _____._3 <
L

sMPLE ARBITER CiRcuU!IT

FiG. 3.aa

7 [- Ja— — s e et o m— —
METASTABLE STHTE
EIG. 3.2 la
4= ¥
A
c
UTPYT e
OVTFP p
,'//
6 e
A
D _

Loy 7o HiGH TRANSiITION FOR A BISTABLE pDEVICE

fiC, 3.2¢

-26-

A -
-

&o-

aTtABLE (o

UNSTABLE
SsTABLE HIGH

3.4 A Design for zan Asynchronous Arbiter

A method of avoiding the metastable state is by
connecting some threshold logic to the simple arbiter
circuit. The resulting circuit is shown in Figure 3.3.
The circuit now behaves as follows: initially both
inputs are zero. The outputs are stable at the high
logic level (l). If a single input changes, then the
cerresponding output will pass directly to a low logic
level. There is no problem entailed in this particular
transition. However, the situation is quite different
if both inputs change simultanecusly. In this case,
the output levels of both gates will fall to an inter-
mediate value between 1 and 0. The threshold logic
will be preset either high for 0 to 1 transitions, or
low for 1 to 0 transitions. This will prevent the cutput
from changing until the circuit comes out of the
metastable state and assumes a stable logic level, either
high or low. The effect of the additiocnal threshold
logic on the arbiter is shown in Figure 3.3, It shows
the original high output level, the metastable state,
and the final output.

A realization for the threshold logic is the
differential amplifier as shown in Figure 3.4. The
output is produced by the differential amplifier when
the cutputs of the circuit differ by an amount larger

than the level set by the offset voltage,

-27-

lr METASTABLE STATE

odTPu-r f .

EFFECT oF THRESHOLD LOGie ON

QIMPLE ARBITEZ CiRCuiT

Fc. 3.3

-28~

ARBITER cCiRCOT

FIC, 34

-29-

The arbiter circuit described in this chapter was
developed by Patil (6). Other works by Patil on

arbiters include (7).

=3 -

Chapter 4

4.0 The Use of Synchronous Components in an Asynchro-

nous Design

The Arbitration Network is an asynchronous eircuit,
Most of the current commercially available logic devices
were designed for use in synchronous circuits. The use
of such devices in asynchronous design require particular
attention on the part of the designer to propagation
delays and signal control.

The main criteria for the selection of components
for this design was that they do not inhibit the execution
speed of the processor, and that they are commercially
avallable and economically priced. The reason for the
first limitation is intrinsic to the concept of data-flow
computation, wherein data availability, and not clock
cycles, controls the flow of data within the circuit.
The second limitation is merely sound engineering practice.

The inherent limitation in synchronous circuits is the
need to wait for a clock pulse even after data is ready at
the input and/or output ports of the component. The
concept of data-flow decrees that this idle time should
be eliminated. By doing so, data-flow speed can be
increased, but Proper signal control bkecomes much more

difficult.

-31-

e

4.1 Transition Signalling

The signalling discipline selected for this design
is transition signalling. A modular unit is invoked by
means of a READY signal, and signals completion of its
regquired task with an ACKNOWLEDGE signal. Not all
modules will generate an ACKNOWLEDGE due to the structure
of the network. For instance, the first level of the
network will acknowledge each byte as it comes in, and
the end of the entire packet. Therefore, the seriai-to-
parallel unit and the buffer will issue ACKNOWLEDGE signals
back to the memory, but neither the arbiter nor the switch
will do so.

Transition signalling is shown in Figure 4.1. The 0
to 1 transition on the READY line activates each module.
Internal control then takes over and ensures that the
Proper data handling occurs. When this isg completed, an
ACKNOWLEDGE signal is returned, which resets the READY
line. The ACKNOWLEDGE line then falls back to its low
level. Both lines will remain low until the next READY

signal arrives, and the eycle resumes again.

4.2 Propagation Delays

Clocked-input devices are not the sole source of
time delays. Even the more asynchronous components, such
as multiplexors and even SSI gates, are subiect to

propagation delays of varying length, depending on the

-32-

READy

ACKNOWLEDGE

/‘I_

TRANSITION SIGNALLING

Fie. 4.1

-33-

TTL family of circuits considered. Of the five TTL series
of components currently available, a wide variety of
parameters allow for trade-offs in system design. For
maximum speed, the 545/745 series has been selected for
this design, in spite of its fairly high lavel of power
dissipation.

Even with asynchronous circuits, timing was a crucial
element in this design. With conventional synchronous
circuits, clock pulses can control data flow, but in
asynchronous circuits, the designer must pay scrutinizing
attention to propagation delays. The selection of 545/74s8
TPL logic provided the basis for faster propagation times.
In addition, however, each functional device must meet the
criteria for fast switching times, or an alternate solution
must be found. In this manner, some of the component
selections for this design may not seem very sophisticated,
but in a speed-independent circuit, simplicity is fast.

For this reason such devices as FIFO'S, RAM'S, etc. were

rejected as being much too slow for this network.

4.3 Allowance for Johnson Counters

The serial-to-parallel conversion units in this design
employ clocked Johnscon Counters, which are described more
fully in Chapter 5. The inclusion of these synchronous

counters does not detract too heavily from the execution

-34-

speed of the unit because of the way in which they are
implemented. A Johnson Counter could have been designed
with fully asynchronous SSI gates, but the gatings
required to contrel the signalling, both with the serial-
to-parallel unit and the adjoining buffer, would have
resulted in longer propagation delays than the MSI
Johnsen Counter does. This is one instance where the use
of asynchronous circuits would not have increased

execution speed.

-35-

e

L e

ChaEter 5

5.0 Qverview of the Arbitration Network

The Arbitration Network is a modular, multi-level
routing network. The four basic modules are the arbiter,
the serial-to-parallel converter, the buffer, and the
select switch. As shown in the block diagram in Figure
2.3, each of these modules handles different forms of
data at its input/output ports. The control scheme for
similar units is the same, but the data lines differ,
depending on the degree of parallelism which has been
attained at that point in the circuit.

In order to control the flow of data between modules,
tri-state devices have been used. The size of the
resulting data bus differs also with the level of
parallelism. At the first level arbiter the data is byte-
serial, as there are 8 data lines. At the second level
arbiter the data has been expanded to 4 bytes, thus there
are 32 data lines. Finally, the third level of arbitration
controls 128 data lines. Appropriate modifications have

been made for each of the other modules in the three levels.

5.1 The Arbiter

To reiterate, the purpose of the arbiter is to select
one of eight signals at its input ports on a first ccme,
first serve basis. In a sense, it acts as a selector, and

as such, merely allows the appropriate data signals onto

-36-

the bus at a given time. The basic eight-input arbiter
is a three-level structure composed of the two-input
arbiters discussed in Chapter 3. Additional gating is
necessary, however, to determine which of the eight

input lines actually got passed through the arbiter.

This gating is in the form of AND gates and is shown as
part of the arbiter in Figure 5.1. Note also in this
figure that the use of a tri-level structure as opposed
to a single level of arbiters permits a limited amount of
queuing. This is a desirable feature since it helps to
insure that siénals are processed in the order in which
they arrive. For instance, if two slignals enter simultanecusly
only one will ultimately be passed through the structure,
but the second will be passed through to the second level.
As soon as the first signal is processed, and all inputs
re-enabled, the second signal will pass through the third

level and be processed.

5.1.1 First Stage Arbiter

The first arbiter handles the interface signals from
the memory section, which are shown in Figure 5,2, 1Its
chief function is to select the set of signals to put
onto the bus. Therefore, the signals are passed through
a set of octal buffers with tri-state outputs., The
ScChematic given in Figure 5.3 shows the select 1line
centrol., When an enable signal gets passed through the

arbiter, it selects the 8 lines of data and the 4 control

~37~

i's oid

UALAVRAY pndNE LHD3

-TNM

nﬁun

i9s

¥ jag

s

g

Ay d o oo no

“38=

NEXT ERROR/DUMP somemm——am

) r—
BYTE DATA .
T ———r—
ENABLE — -
. ARBNET REABY
NEXT CPERATIiON
BYTs READYy
i
LAST orekATION -

BYTE READY

Byre zsavy
LAST ERROR [pumP o o

RYTE REAvDy

b ByTE ACKNOWLEDLCE

Yk PACKE] ACKMO WwLEDGE

INTERFACE SIGNMALS BETWEEN CELL NLolLk
MobUlE AND ARMITRATION METWORIK

FiG., 5.3

-39-

dy >

exe WA g

X 36 n%f%—
10, al t::. A
LF 2 pring ‘:44 .
? D' A LA i LER i Yli
i R
|
Sel, — S
e . E) j$
6'9? éll 1F 'i:: I"" 2 :
4 veL -
"bﬂ ..! " LE, A, Y, ammmaess e |
Sef; _I> -)
4 1 e L
5D’ A’ T’. m Ra Y‘ . :
244 gt 244 | ! g
sbd ﬁr T!\ LEL i__l E
Sd" .‘[:;‘ 1 E
% e aé -
E : A Y &
R e M 2 4
| 244 - o 244 3
4D, A Y- ER FIR? v
2. m™
2 A
Jo— -
Sely - ;
Wy o
D, Ay Vg— m ‘A4 v 32
Ak R — | LE
jbg A A/ e —{f, Y %
3
Sel I> ;3
2
2 0 0
= % G 3
15-, tﬂl 9": Lbe [s
L2 R 244 |
ip, A, Y- LER A Y
Sel, ——J;\‘-/; .
Ib'p :Af Ye :g:- I Ay h! -
{1294 D oty T g | : L
‘b: A \’l LER .‘" Y,
It 3T 1 P
D, Ay ‘I".lj . N8R e %
294 b:: — 24e :
P, RIS pm— LR Moy,
o NXT- B RDY
Yo De L——q g

lines to pass onto the bus. All other buffers maintain
their high impedance ocutputs. This arbiter serves no
additional function. Once allowed onto the bus, the
control signals will direct the data flow toc the next
module.

There is one additional note about the control
signals, The Arbitration Network passes 16 bytes of
data as an operand packet to the functional units.

This operand packet can be valid data, or it can be an error
packet (9}. The arbiter makes no distinction between

these types of packets, however, as their contents are

of no use to it. Therefore, a single control line is
generated by OR'ing the four control lines, as shown

in Figure 5.4.

As stated in Chapter 4, the arbiter itself does
not igsue an ACKNOWLEDGE itself. There are twe
ACKNOWLEDGE signals which go back to the memory, one
of which is generated after each byte is received in the
serial-to-parallel unit, the cther after the entire
packet has been stored in the buffer. These signals
are described later in this thesis with regard to the

respective meodules from which they are generated.

=4 1=

FINndow A01da T30

Adcd g LRAN

4% O

=N
— 1

wodd SIYNDIE NeALNDD

Aay 3y Jlig yoR¥3 1SV
AQyBY 3L YOYNI L%3IN
Aapay Alsd go syl

A4y 9y 3149 40 LX3IN

R o

CERN)
CLAN)

r

@81y

C¥EN)

-4 2=

5.1.2 Second and Third Stage Arbiters

The control for the other two arbiters is generally
the same as for the first, but the data is handled guite
differently. With these latter stages, the eight input
lines are READY signals generaged by the buffers to
indicate that a packet is ready for transmission into
the next stage, The arbiter processes these signals as
they are received, and generates a single output, which
is a select line as in the first stage. Since the buffers
have tri-state cutputs, this select line merely enables
the outputs of cne set of buffers.

The structure of these latter stage arbiters is the
same as that of the first, i.e. a tri-level structure of
2=-input arbiters and the AND gates to generate the select
lines. 1In addition, howewver, the PET ACK signals must be
AND'ed with the enable lines to insure that the arbiter is
not invoked until the previous data has been transmitted
tc the next stage. The PKT ACK from the second stage is
generated from the buffer unit, while that from the third

is generated from the functional unit.

5.2 Serial-to-Parallel Unit 1

The first S/P unit is shown in Figure 5.5. The
module is activated by the Nxt<B+Rdy signal from the
arbiter. As previously stated, this signal is obktained
by OR'ing the four control signals selected by the arbiter.
The main purpose of this module is to accept 8-bit bytes -
serrally, and to transmit them to the buffer in a 4-~byte

parallel form.

Y. S P

» D@ 4D,

p
Uy ; —
:; o0
%. i
Ve ‘i G i 4pi
i . S D
NXT-B.REY i {v ¢ 3D,
c\c* L . Yoo
£y !
T‘:lq 2,
j L.
S | T
? o
' j 2 b,
‘iep
— it ag | 2D
i,;'f,,,}._. 17 ‘
g =
Mgy — j
o
| t":"ﬁ' ip @ v
MR | ['
froo °
.'_f ‘FJ'__— 1P

¥, 85— oPF,
L]

prT ACKS

5 SW . EN
« PRT ACK

SERIAL-To- PARALLEL <CONVERTER UMT
FIRST STAGE

FIG. 58

44—

The Johnson Counters, in the initial state, have a high
output at Co and low outputs on Cl to C4- When it is
counting up, this counter will set each succeeding line
high while dropping the previous one t¢ a low level. Thus
there will he only one high output at a time.

The arbiter selects the data and control signals to
place on the bus., When the first Nxt-B-:‘Rdy signal comes
in, the first byte is stored in the latch labelled 1D.
Also, the two low order bits of this byte, which have been
defined as the opcode, are latched as OPl and OPO{

These signals will select the appropriate functional unit
to which the packet will be transmitted. If the module

which follows this S/P meodule is the switch, 0P, and 0P

1 2
will serve as inputs and SW.EN will enable the switch.
Alternatively, if the next module is a buffer (the only
other choice} then SW-EN will serve as the select line on
the buffer. See Figure 5.6 for a clearer description of
this interchangeability of modules.

As the first Johnson Counter is incremented, successive
bytes are latched inte latches 2D, 3D, and 4D, each time
returning a BYTE ACK signal to the memory. (see Figure 5.7)
When four bytes have been received, the counter has a high
output at C, which is the 4-B-Rdy signal. This signal
notifies the buffer that four bytes are ready for storage.

It also resets this Johnson Counter and increments the second

Johnson Counter, This second counter will make sure that

-45-

£IInQow HIULYMS

Y]

ANY TAD3309

9.5 O

3
<V

L4
v

.

—q

|

(00

40 FONYHIYILNE

M3 AAS

A4

3
\
<\

Iy

. 8 e
pery - @
NA-MaS
s
k] s .vhn‘
113 ;
kg As 4o
d
4 s
2 0
5 ‘a0 OH\W
] e ,_...m
ND - s
d

R

-46-

L'e D4

IWnaToW X0TY IO

Avawaw 0L LiNN dJS WOFd IDAITVMONNDIY AUAL

|

| P

v
AN

I0QIIMONNIY FLAGE llilL

2
I.{qIQ A
—C .

—47-

B

four sets of four bytes each are stored in the buffer. The
cutputs aof this second counter will select the appropriate
bank of latches in the buffer in which to store the data.
When all four sets of bytes have bheen transmitted and stored,
the buffer will issue a PKT ACK signal which will reset

the §/P unit.

5.3 Buffer Unit 1

The first buffer unit, whether it comes bhefore or
after the switch module, serves as the end of the first
stage of the arbiter. The schematic for this medule is
given in Figure 5.8. It consists of four sets of four 8-bit
latches with tri-~state outputs, The buffer unit is selected
by either the cutput of the switch module (Sn) or the
select line from the S/P unit (SW'EN). Initially the
outputs are all at a high impedance state. When selected, (SEL),
the latches hecome transparent, presenting whatever is on
the inputs at the outputs. Then, when the STROBE is
taken low by the gated signal, the input data is latched
into the appropriate bank of four latches. The Johnson
Counter in the S/P 1 unit controls the latching. The
latching of the fourth set generates a PKT ACK signal, which
indicates that the entire operand packet has been stored

in the buffer. It also generates a BUFF-RDY signal to

the second arbiter. When the buffer is deselected, the

-48-

PRT: ACk

Lo qim——> B RDY

et
Ty CJ-—.

40| se2 | Bu

SW-EN

v jsez | Ba

L Sel,
——C.""' Ty €3

swen o

Al
3¢, Cp |

z | Ba

I

=
3
mii

5y

A
L
o
I

4 B.Réy —
Sty Co —)

:;_, Sel 4
- 1’:3' C,_

.. —49-

w
<

54
clR
—)
AL
(feam Banét Uni

A Sﬂ,‘u

BUEFER UNIT 4

— TG,

pig. 5%

| Seln

(— T¢y Ca

T

outputs return to their high impedance states. The PKT
ACK signal also generates a ready signal to the second
arbiter. The data will remain in the latches until

selected by the arbiter for further transmission.

5.4 Switch Module

The switch module is solely responsible for ensuring
that a given packet is routed to the proper functional
unit. The switch module is shown in Figure 5.9. It is
a fairly simple module, and is controlled by the first
S/P unit and one of the buffers.

The two low order bits in the first byte of the
operand packet are designated as the op code in this
design. As such they represent which of the four functional
units must be used to handle the packet. The actual
switching process c¢onsists of using these two bits to select
one of four buffers or second stage arbiters, depending
on the system confiquration (see Figure 5.6). When the
first byte of the packet enters the f£irst §/P unit, it
is latched, and the op code bits are also latched., No
data transfer occurs until all four bytes have been latched,
therefore there is more than enough time for the switech
to stabilize its outputs. The outputs will remain enabled
until the switch is no longer needed. 1In the case where
the switch is placed before the bﬁffer units, the BUFF-ACK

signal will reset the switch. 1If, however, the data is

=50-

tg
is
by

“eyd
s
]

S
M

1
H24

w

a0

n

L

2

l

oL
A

_o\r

€

s,
LE

adnd
WY -
o
N

1-
-5

buffered before the switch, the switch will select the
aépropriate arbiter and remain selected until the BUFF ACK
from the second stage buffer is received. Note that in the
second confiéuration in Figure 5.6 there must be additional
gating in order to use the switch to select the arbiter.
The only inputs to an arbiter are ready signals which in
this case are generated by the buffer. In order to select
the arbiter, the switch select lines must be inverted

(to an active high level) and AND'ed with the BUFF.Rdy

signal.

5.5 8erial-to-Farallel Unit 2

The second S/P unit, unlike the first, does not need
temporary storage. The input data is four bytes in
parallel, and there are four sets of input. The data is
latched into the second buffer as it comes in, thereby
making the buffer outputs entirely parallel data on a
128 bit bus.

The control for this S/P unit is similar to thaf for
the first unit,. Hoﬁever, since there are only four sets
of input, as opposed to sixteen, there is need for only
one Johnson Counter. The second S/P unit and buffer unit
cannot be separated, so the data lines are not shown in
Figure 5.10. The S/P unit is invoked by a READY signal
from the arbiter. This signal provides the first clock
pulse and latches the first set of four bytes into the

buffer. Subsequent clock pulses are generated by the

-E7-

hpoan -y

% 01§ D14

W v OIS Aavad
AALI RAY FOYLS dRIHL ANy

QN COIs

1?S

] —\ﬂm

¥ pg

€yeg

¥ a6

s

s

Hes

-53e

A -Etndaj

4{>w__h__, Sel

> sP. ToNg
-‘3 cL T'C‘. C-l
g c' J‘c‘. C|
H:u Te; . €Co

ACK
{from Funct Unit)

SERIAL - TO - PARALLEL CONVERTER WM(T
ATAGE 2

g i

1¢. S iob

—54—

counter itself. Due to the inner operation of the Johnson
Counter, and the fact that the output must go through
four levels of gating before it can issue the next c¢lock
pulse, there is ample time for this type of cleccking.
As in the first S/P units, the outputs CO through C3
latch data, and C4 serves as the READY line. In this case,
however, oOnce C4 goes high, the last section of data will
have been stored, so the C4 signal is also an ACKNOWLEDGE
back to the first buffer. This allows the first buffer
to accept new data now that its original data has been
stored in the second stage of the network.

This second stage of the network must keep this

data until it receives an ACKNOWLEDGE from the functional

unit.

e,

5.6 Buffer Unit 2

The second buffer unit employs tri-state latches
just as the first one does. The input to the buffer
is four bytes in parallel, which means a 32 line data
bus. The output of the buffer is the 128 line bus
which supports the operand packet in its totally
parallel form. As stated in secticn 5.5, the second
5/P unit cannot be separated from this buffer. This
is alsc true of the first stage of the network, and
exists merely because the data must be stored after
it is converted. There igs nc way that fhe S/P unit
should be reguired to store the data that it converts,
that's what the buffers are for. The S/P unit determines
the structure of the data that goes in the buffer.

The structure of this buffer unit is given in
Figure 5.11. The latching scheme is similar to that
in the first buffer. The latches have high impedance
outputs when not selected. The select line is generated
by the arbiter. Once selected, the latches become
transparent, displaying at the outputs whatever is at
the inputs. The data is latched by the appropriate
transition of the counter. For instance, the Co output
of the counter is initially high. When counted up, the
first four bytes are stored in the latch whose outputs

are lines 0 tc 31 on the bus. The second set of data

-56-

L]
" Bt w3
PKT- Ack at i B, | 2
P By, 541
SE
'}‘CJ. C‘,‘ 5 : ‘J'!.“’.CI — -
[™]
il M
B | smz B, ! s91Z2
b1 LsT8
sf L] i 5 |
S| i
“ p—
" B iz
Bt | 542 (S
sra l
o8 53 B
Er il -
—
I s
Bf_ shia Bt W STo Wt 1%
53
g .]
Sel A, Sely
LY
" LI Bit 3
—f Bir 94 Be f
B, | 3412 | —~ s42 |
e |
. ;s
IG-C T E TG-S i &
e |
[*S
Ba |52
v
52 T]
—
[.}
B,u = k)
| BRUEEER. UNIT 2
i Py
a2 14 a3
" |
i : FlG. S0t
|
l ™~
| I "
By | s a
— b Bt 44 " sS4z
‘e g -

git ¢

-

gets latched into the buffer at lines 32 teo 63 etc.

The completion of the S5/P and buffer units is signailed

by output C4 of the counter. This will deselect the

buffer, returning the outputs to high impedance dates.
When the third arbiter selects a buffer from which

to get the data for transmission to the functional unit,

the output enable line on the buffer is taken low, and

the 128 bits are put on to the bus. The data is processed

in the appropriate functional unit, and the functional

unit sends an ACKNOWLEDGE signal to reset the S/P unit.

5.7 Overview of Network Signal Control

The schematics presented within this chapter show
the transition signalling discipline that has been
selected to control the information flow. The Arbitra-
tion Network was designed on a modular hasis so as to
simplify the signalling control and to provide as much
flexibility as possible in the network configuration.
With such a scheme, two types of signal control beccme
important. The inter-modular signals must ensure that
data flows sequentially through the routing network at
the fastest possible speed; and intra-modular signals
nust cont r1 internal data flow. Transition signalling
is idealll suited to the medular concept. Treating the
module as.a complete unit, and placing data on a common

data bus, each module is invoked by means of a READY

signal. This signal initializes the module and starts

-5f=

its internal operation, When the module has completed
its specified function, it returns an ACKNOWLEDGE signal.
The module then remfins inactive until the next READY
signal arrives.

Due to the nature of this network, care must be
taken to ensure that the proper READY and ACKNOWLEDGE
signals are connected to each module. As pointed out
earlier in this chapter, not all modules return
ACKNOWLEDGES to their immediate predecessors. The net-
work has three stages, and signals actually control stages
as opposed to individual modules. As an example, recall
that the PKT-ACK signal generated by the first stage
buffer returns to the Meﬁory Cell Block, and merely passes
by the remaining modules in the first stage. The control
gignals required for each module have been specified, and
therefore all connections can be easily handled by the

network integrator.

5.8 1Intra-Modular Signal Contreol and Timing

The most obvious approach to handling information
in a data-flow processor would be to detect the arrival
of data at a particular point in the network, and tc use
this signal to control latching and data transfer.
Thecretically, this would provide for the fastest
execution speed. However, the gating reguired to detect

the arrival of new data is alsoc subject to propagation

~59-

Tp—

M DT

delays. With a limited selection of SSI and MSI devices,
this detection circuit becomes costly, in terms of both
time and space. As an alternative scheme, it becamse
apparent that by allowing for minimum and maximum
propagation delays in the devices, that an acceptable
execution speed could be attained at a lower cost than
the detection scheme, The main idea behind the delay-
controlled signalling scheme is to allow ample time for
the data to be latched or transferred. The first stage
of the arbiter is controlled by the NXT-B-RDY signals
generated by the Memory Cell Block. Once the data has
been stored in the buffer, it can be manipulated by the
circuit since it is no longer arriving at arbitrary
times. This simplifies control considerably.

The following descripticns of the modules are
supported graphically by timing diagrams in the Appendix.

The first arbiter's operation is fairly straight-
forward. Any delays incurred in the gating occur before
the drivers are selected. Once the apprcpriate select
line enables the cutput lines of one of the drivers, the
interface signals assume control. When the NXT.B -RDY
signals come in, data is already stabilized on the input
lines. The arbiter merely allows the data to get on to

the bus to the §5/P unit.

-G -

When the data reaches the first $/P unit, the Johnson
Counter assumes internal control. The NXT-B-RDY clocks
the counter, The Memory Cell Block sets up the data on
the bus before issuing the NXT-B.RDY signal. The propaga-
tion delay for the latches in the §/P unit ranges from
14-25 ns. The propagation delay for the Johnson Counter.
is minimally 35 ns for high-to-low transitions, and 45 ns
for low-to-high transitions. Thus, when the counter is
clocked, there is sufficient time for the data to be
latched before the next byte comes in.

The switch module regquires no time of its own. It
is enabled when the first byte is latched, and remains
selected until the entire packet has been stored in the
buffer. 5ince the data is not transferred out of the 5/P
unit until the fourth byte has been received, the switch
module is already selected and its outputs stablized.
Therefore there is no time delay generated by the switch
itself.

The first buffer is selected by either the switch
or the S/P, depending on the network configuration. The
select lines require 21-35 ns to enable the latch inputs.
Since this also is selected with the first byte, the
buffer is selected in plenty of time to accept the data.
It will remain selected until the 16 bytes have been
stored. The four byte sections are latched on the high-to-

low transition of the second Johnson Counter. The gated

=-f1=-

STROBE (7 ns AND gate maximum delay) and the latch

{25 ns maximum delay) are still within the 35 ns minimum
delay of the Johnson Counter. This means that data will
be latched before the next NXT-B'RDY signal c¢an come in.
The buffer is deselected by either clearing the switch
or the 5/P select line, both of which are cleared by the
PKT-ACK signal.

The second arbiter is self-contained, as opposed to
the 8/P and buffer units which share signals, and presents
ne timing problems, -

The second S/P unit operates similar to the first.
The A-READY signal is generated by the arbiter to start
the Johnson Counter and to select the buffer. The data
transfer involved is merely to accept 4-byte input data
and load it sequentially into the buffer, producing a
totally parallel ocutput. The high=to-low transition of
each of the Johnson Counter outputs latches the data inteo
the buffer. The data which is on the input lines was
selected by the arbiter also. The A'READY signal was
generated before c¢locking the counter. The summation of
this gated delay, and the propagation delay of the counter
total at least 42 ns, whereas the output of the first
buffer is enabled within 35 ns (maximum). Therefore, the
data will be stabilized on the bus in time to latch
preperly. Once started, the Johnson Counter uses its own

outputs to clock itself. Although this would possibly

-62-

generate problems in other implementations, the additional
gating (i.e. the edge-catcher) generates a delay of at

least 22 ns. This delay can be increased to ensure proper
operation by merely using chips other than 748 series TTL.

The ACK from the functional unit will clear the counter.

-63=

L an

Chapter 6

6.0 Conclusion

This completes the description of the Arbitration
Network. The assumptions made to restrict the scope of
this thesis can ke eliminated, and the design described
herein expanded, to achieve a2 more functionally complete
routing network. These assumpticns include the size_ of
the packet (16 bytes), which is actually variable in the
real data-flow processor; the size and location of the op
code; and the size of the Arbitration Network itself.
The actual Memory Cell Block would contain considerably
more than the assumed 512 instruction cells. This would
necessitate an expansion of the Arbitration Network using
the same basic modules.

The actual cost of implementing this design would be
very costly in terms of space. Employing the assumption
that there are 512 Memory Cells, the number cf each type

¢f module in the Arbitration Network is as follows:

stage
Arbiters 64 32 4 100
§/P 1 64 64
S/P 2 32 32
Switches 64 64
Buffers 256 32 288

-gd~

This figure states that there are approximately 548 modules
in this structure. When considered in terms of IC's,
there are more than 6700. This represents an incredible
amount of board space. Even if built in a single rack,
transmission line delays and noise become significant
problems. These problems suggest the need for an alter-
native implementation. One alternative worthy of
consideration is custom-designed LSI chips. 1In order to
handle the large number of bus lines, an LSI design would
have to put an entire path, or section of a path, on a
single chip, as opposed to placing individual modules on
the chip. A second alternative would he to eliminate, or
reduce the extent of, the serial-to-parallel conversion.
However, this will decrease execution speed and place
additional constraints on the Functional Units.

The design presented in this thesis is an attempt at
the realization of a fairly complex routing network. It
serves to illustrate the nature of the problems involved
and proposes some ideas for their solution. With the
commercially available components utilized in this design,
this network cannot be built economically. Advanced
technology and alternative schemes must be considered in

making this inteo a feasible project.

-65-

APPENDIX

Timing Diagrams

-66~

SHr o deaaToe

Leebm P utus SU G L WOV - BLAY W Ad¥ 9 i w e} r...__.ju 12e)

Su &) PV 2uny 9 y::..._a ABpLmoa Uty ?d_u.ﬂ - a.._-
S QF W joub e 3y . sy o MO . #y
SU ot -5 T.G_,..,.Q :o.#ardm?&, A IUNC A .My

Q=u YT WIvd Piwg THTHA

' i
\F F_ [safa b osayye]
___ _ {(®2-"u)-(*ay 9 F)

™y ~ 93 . 255
!
A
_

1
t~
O

1

_ 93¢ (723209)}

¥y o 2 lg¥ gk

L | K h_;L._ T oy AL

£ 08

e
o

.—_||
| |
| i 7y .'08
_ R I
_ | m “ Ty w# k- i’ ok
| !

H_ _[l_ _|_ ||lm.|| £ay '@ LXN ,

Fayly SO p5al] 40 buua Ty puw wuopdnady

W oyir SU O

(5% §C-S€) ﬂ..a—u_ﬂ vagobwdesy 2apumean

.dc.mu_m 4o ¥ 14 1o vouvang

fpuay - @

43 A5

vu. nUh
Ll T ¢

Lav Q'

I T —

MW IRFT [eounsy Y 0 jo Vo 1qoazunty

AW - G- 1iN

RSP AT VYR L 4

Iuwp 0%&.&.{3 M....P.—..‘.U \U.wu.e...ﬂ.—

“afq 47 _1.3:50, Eoﬁarﬂhf&

v O w g

7oy
haw aspd mvay PSRt I L czr:w._

Fayayy 5

L §

nh:.ﬂ.lmmH ﬁl...__gnp .xai«.ﬁﬁhov.n_\ ey - “+

prunrd yImp) - CL

* —

() () (SPidg MITLms T)
Rivd QALY bd ¥
Adunn gk wig Laguar GUive

L

!
_

v - e _
1|“__ e

- 1 i
4PN g bl e
C]-.m
- !.l:. {_.Is ==
- L
_
e;.b_ %
SRUISHEYL AL pned ygwg ragNi

— -
|.-4_||_|.. ———
. —
1
ﬁ:.t._ —

TeIN00D T oLinNn 377y dvd el DR

€y Far
1w .ﬁu.ﬂ
2ot

oy

Aqeuy o g =
mu . _m_uu_-l.
LS

By faD = Oy D4
Fq oty T
».U ¥ L
‘7r¥at
oot al
“irg

-69-

P T

10.

BIBLIOGRAPHY

Dennis, J.B., and Misunas, D.P., "The Design of a
Highly Parallel Computer for Signal Processing
Applications," Computation Structures Group Memo 101,
Laboratory for Computer Science, M.I.T., Cambridge,
Ma., August 1974.

Dennis, J.B., and Misunas, D.P., "A Preliminary
Architecture for a Basic Data-Flow Processor,” IEEE
Proceedings of the Second Annual Symposium on
Computer Architecture, pp. 126-132, 1975.

Dennis, J.B., Misunas, D.P., and Leung, C.K., ™A
Highly Parallel Processor Using a Data Flow Machine
Language," Computation Structures Group Memo 134,
Laboratory for Computer Science, M.I.T., Cambridge,
MA., January 13877,

Misunas, D.P., "Report on the Workshop on Data Flow
Computer and Program Organization," Laboratory for
Computer Science, M.I.T., Cambridge, MA. July 1977.

Jacobsen, R.G., and Misunas, D,P., "Analysis of
Structures for Packet Communication,” Proceedings
of the 1277 International Conference on Parallel

Prcce351ng, August 1877,

Patil, §.8., "Synchronizers and Arbiters," Computa-
tion Structures Group Memo 91, Laboratory for Computer
Science, M.I,T., Cambridge, MA., October 1973.

Patil, 5.8., "Forward Acting nxm Arbiter,” Computatiocn
Structures Group Memo 67, Labaratcry for Computer
Science, M.I.T., Cambridge, MA, June 1972.

Plummer, W.W., "Asynchronous Arbiters," IEEE
Iransactions on Computers, Vol., C-21, No. 1,
January 1972.

Amikura, K., "A Logic Design for the Cell Block of
a Data Flow Processor," Master's Thesis, Laboratory
for Computer Science, M.I.T., Cambridge, MA.
December 1977.

Course notes, 6.032 Computation Structures.
M.I.T., Cambridge, MA., Spring 1977,

-70~

11.

12.

Petri, C.A., Communication with automata. Rome
Air Develop. Center, Suppl. I tc Tech, Rep. HNo.
RADC-TR-65-377. Reconnaissance-Intelligence Data
Handling Branch, Rome. Air Develop. Center,
Griffin AFB, New York, January 1966.

Misunas, D.P., "Petri Netg and Speed Independent

Design,"” Communications of the ACM, Volume 6,
No. B, August 1973.

-71-

