MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Laboratory for Computer Sclance

Computation Structures Group Memo 165

A Structure Processing Facility for
Data Flow Computers

by

William B. Ackerman

(To be published in the Proceedings of the 1978 International
Conference on.Parallel Processing.)

This research was supported by the Advanced Redearch Projects
Agency of the Department of Defense and was monitored by the
Office of Raval Research under contract N00Ol4-75-C-0661..

July 1978

A STRUCTURE PROCESSING FACILITY FOR DATA FLOW GCOMPUTERS!®
Williarn B. Ackerman
Laboratory for Computer Science
Massachusetts Institute of Technology
Gambridge, Massachusetts 02129

Abstract -- A daia siructure pracessing facility for data flow
computers it propoted. It supports dynamic creaion,
allocarion, and garbage collection of arrays and general
acyclic trees. The structures are processed it a compleiely
“pure” manner, that i3, free of side effects, which requires
careful design of the controller. The siructures are stored in a
meraory thal uses “packet communication” at its inserface and
can handle many concurrent transactions. The overall sysiem
is designed to use distributed processing throughout, and
hence an arbitrarily high thraughpur rate can be achieved
with a sufficient number of cormponents of a given speed.

Introduction

Data flow computers of the Dennis-Misunas type (4]
have heen propoted as a means of achieving extremely high
procetung rates through concurrent execution of many
instructions. The execution model of this type of computer I3
a directed graph in which the nodes represent instructions
and the arcs represent data paths which may conmin “tokens”.
An Instruction at the program leve! "fires” when its necessary
data values are available and ils destinations {the instructions
10 which it will send its resuks) are ready 1o receive data.
Equivalently, it fires when its incaming arcs have tokens and
its ourgoing arcs are empty. It consumes the input tokens,
computes 1ts particular operation on the input data, and emits
result wkens on its outpul arcs.

There are many useful computational problems fer
which such a computer requires a data structuré processing
facility. A contrived example program, showing dara
struciure operations, is illustrated in Figure 1 It takes as
input an array (veaor} X with indices 1 to 20 inclutive, and
returns a similar azray ¥ compuled according to 1he rute Y(il
= XMl + (3 x i dor] €i €20, The SELECT aperator reads
the element from the array given o)., lelt input at the ihdex
indic. .ed by its right input. APPEND places the data from
its thard nput on the array given as its first input ac the
index given as its second input,

A few instructions behave slightly differently from the
rules given ahove. The constant operators {those with no
inputs} fire when their destinations are ready, always
producing the indicated consant. When the "T gale” fires. it
produces a copy of the data from its top (data) input il the
value on its side (boolean) input is frug, and consumes both
input tokens. If the booleam vatue is false, it consumes both
Inpu1 tokens but produces no output. The “F gate” acts in 2
complementary fashion. The "M gate” fires when #t has an

(a} This research was supported by the Advanced Research
Projects Agency of the Depariment of Defense and was
monitored by the Office of Naval Research under tontract no.
MNDOOI4-75-C-0661.

Figure L. A data flow graph

input token present on its boolean input and on whichever
dala input is labeled by that boolean valse. It consumes
those two input wkens and produces as it output a copy of
the value present on the selecied dara inpur A tokan s nat
required on the unselected data inpus, and If one ls presest it
is not consumed.

The program is stared in the insraglion memory of the
data flow computer. (See Figurs 2} Each insiruction el
conlains one elémentary instruction along with the nddrestas
of the cells In which us desinarions are swored. An
instruction celi has a register to hold each input argument for
that cel's instruction. When those registers are filled, the cell
fires, emitting an "operation packer” containing the input data
value(s), the instruction operation code, and the destination
cell addresses. The packets so generated by all of the
instruction cells are passed through a very high bandwidth
arbitration network re a collection of functiohal units. When
a functioha) unic recelves such B packet, it performs the
indicated aperation and emits a "result packet” for each of the
indicated destinations. These packets contain the dala value
and desttnation cell address (including the destination
argument number}. They are passed through the disribution,
network back to the instruction cells, where they are sared in
the appropriate argument registers.

The implementations of the SELECT and APPEMD
instructions are the subject of this paper. APPEND rqturns
an output array equivalent to the input array excepr that the
new data exists at the given index, replacing whatever may
have been there previously. It must be emphasited that the
updale takes place without side effects. From rhe program’s
point of view, no existing array is ever madified; racher, new
and different arrays are consiructed. (In the example
program, the array being constructed was paued from the

Figure 2 Dnta flow computer organization

distributian instruction —dsrbitration

functional

unils

<value, dest>
{dest includes
arg number)

LT ™
RNy desl;, - desty>

syslam

APPEND operator back o itself ay each item was idded. It
was not simply "writien on“)

The requirement that structure operations be free of side
effects places a burden on the structure controller, but it is a
nAearly unsvoldable consequance of the nature of the dala flow
computer’s method of computation. The data flow computer’s
ability to concurrently process operations, without making the
programming task inwolerably complex, relies on complete
Achinterference of different parts af the program. If side
effects were permitted, either 1he omputer woukd exhibit
serious and uncontrollable nondeterminacy, or 1 mechanisay
watld have 10 be provided whereby the programmer coukt
explicitly specify instruction ordering constrainis ocher than
the canstraines arising naturally from dara dependency. Such
a mechanism would make the compliter nearly impossible 1o
program efficiently. The data flow campuler’s freedom from
side effects has significant influence on the nawre of the
programming languages that are suitable for datz flaw. Data
flow languages, whether high level or low level, should be
“value orienied” rather than "object erlented”. While value
oriented languages may ar first seem nonintuitive o
programmers accustomed (o handling arrays In object
oriented languages such as Fortran or PL/, they appear to be
well suited 1o clean Program detign, and they make
sequencing and concurrency problems trivial.

In the foliowing sections, we will describe the binary tres
model used far storage of date strictures, and how tha
“purity” criterion 1s met. This will be followed by an overll
description of the structure congroller and memary, showing
the interfaces among the various moduler, The behavior of
the siruciure controller will be outlined, followed by a
discussion of the mechanisms for making a high performance
Mernory systern,

Tzee Syjugures

The structure faciliry’s fundamental datg type (8 acyclic
trees of fixed order, that is, fixed number of branches
emanating from each node. With this base struceure, il js
possible to handle a very generat clas of data structures, of
which arrays are a particulsr cage, Arrays are stored as trees
With the arrsy elements at the leaves, Array ndices are
partitlaned jnto the selectors necessary to specify the
appropriate branch at each level, For oxample, with trees of
order 16, an array of size 096 could be stored in a tree of
depth 3. The SELECT and APPEND Instructions would
divide each 12 bit index into 3 fields af 4 bits each. Each
field, beginning with the most significant, would be used to
select the correc outgeing branch at each node of the tree.

For concreteness and simplicity, the order of the rrees
will be fixed at two, that s, they are equivalent to the binary
frees of LISP 71 This assumpnion implies that large arrays
Must be stared s trees of considerable deprh, but i1 simphifies
the discuision. The trade-off is between the necewlry for
many memory references 1o access an array element il the
order i5 small, and unnecessary data transmistion and wasted
ipace due to excessively large memary blocks If the order Is
farge. Furure simulitions of data flow camputers should help
to decide the optimum order.

The "selector” arguments to the SELECT and APPEND
nstructions are bit strings. The structure controller traverses
the given siructure, under cantrol of the selector bits, to find
the node to be read or written. The selector bits are read
from left to right, that is, the leftmgst bit corresponds to the
root of the tree, For effliciency, it may be assumed rhar these
bit sirings are elemantary data types, and that the compuler's
Instruction set allows efficient transformation of array indices
{integers) in1o the appropriate bit strings.

The totality of the data values handled by the camputer
are divided into two classes; the elementary valyes of all types
{equivalent to LISP aioms), and structures. A structure is the
concatenatian of two data values, whether they be elementary
values or structures, There js a special elementary value nil
which is used to Fepresent “nonexisten:” substruciyres. It is
the only slementary vaiye specifically recognized by the
Structure coantroller - alf others are treated as uninterpretad
data.

Each node of a structure is stored in one word of the
memory system, which has 3 unique address {pointer). Al
Structures and substructures are represented by these painters;
rodes in the memory consist of pairs of items which are either
elementary values or painters, and data tkens jn the
computer arg also elementary values or pointers.

The two machine level operztions performed by the
tructure controller may now be defined;

SELECT [structure, selecter] — value

returns the value at the point in the structure indicated by
the selector, It is an error if the structure controller
attemp!ts to "run past” an elementary value other than pil,
that s, if there is such an elementary value in the given
structure whose selector is @ proper prefix of the glven
selector. If the structure controller attempis 1o run past the
value mil, il stnpiy returns nil as the result.

APPEND[structure, selector. valuel — structure

returnt a structure which is identical to the given one,
except thal it comtains the given value at the position
indicated by the given selector, Whatever value was
previouszly at that position is absent in the result. Any
elementary value tn the original structure st o position
whase selector is a prefix of the given selector will alio be
absent in the result.

Nodes and biranches are added durlng an APPEND as
necessary 1o create a place for the item to be appended. They
are removed a3 necessary 1a avoid any substructures whase
only leaf nodes ate nil, ax shawn in Figure 3, This behavior
of the APPEND operation gives nil two very useful
properties, which make explicit "CREATE" and *DELETE
Operations unnecessary: :

1) To delete part of a structure, simply APPEND nil i its
place.

2) To create a structure, simply use gil as the initial structure,
and APPEND things 1a it.

Reference Counts, Sharing, and Copying

As explained above, the controller must handle
structures in & fmahner that is free. of side effecis. The
meaning of a data struciure must be independent of any
conceptual “global starte™ of the memory, even though the
structures are stored in a global memory. This requires very
careful design of the Structure controller, and proving the
controller’s design correct 15 an intriguing prablem.

Figure 1. Behavior of append operation

A B

A APPEND[A, "1001°, 5] yields
2 3

"APPEND{B, '1001°, pil] then yiaide A

Cne solution ta the problem would be w forbid any
sharing or overlapping of structures. Since every structure
would have its awn private area of memory, there woukd be
o side effects. Hawever, this would probably be
prohibitively expensive. 11 wauld require £ach structure to be
completely copied whenever its value is duplicated. Instead,
the solution used here is 10 copy nodes when they are to be
writien on and there are other pointers o the same hode.
The determination of whether there are other pointers 1o 8
node 15 made by examining the reference count associated
with rhe node.

Each node of & structure has a reference count, which |s
the taral number of pointers to that node from all sources:
other nodes and tokens in the computer. All operations that
create or destroy poinlers must aker the refarence count, For
example, when a true or falje operator destroys a roken, the
caunt must be decreased, When a SELECT s performed, the
count of the result node must be incraased, and the count of
the original struciure must be decreated, to account for the
input token that was desiroyed. Similar care mui be aken in
accounting for pointers that are copied (rom ane sirugture to
anather or destrayed within & structure by belng over-written,

The structure pontroller meets the criterion of avolding
side effects by never wriling on a node whose reference count

- Is greater than one. If the reference count is greater than one,

a pointer to the node exists elsewhere, and modification of the:
node would alter the structure represented by that ather
pointer. In this case, the structure controller copies the aode
onto a freshly created node, whose refsrence count Is sef o
one. Il the original node's reference count it ohe, the
structure controler knows that it has exclusive access t¢ the
node, and can write on it directly.

The ceil allocation and, management algorithm (see [6)
section 2.3.5) is as follaws: Free cells are kept on a free storage
list. When 3 new cell is neaded far creation of & struclure
node, one 1s removed from this list, and its reference count ls
set to one. Whenever a reference count Is decreased and the
resulr 45 zero, that cell is reclaimes, that is, returned to the
free starage list. When this happens, the pointers cantained
in the cell are destroyed, so the reference counts of the nodes
pointed to must be decreased. 1f either or both of those
COUNis go Lo zero, those cells are reclaimed, and the process
repeas.

The reference count method of cell management ls
known (o work if no directed cycles ever exist in any
structure. (If directed cycles can exist, such a cycle could be
“abandoned” by destroying all painters to it from the rest of
the computation, but it would never be rechimed because
each node would have a reference count of one)

Absence of directed cycles can be shown ilo be a
consequence af the method for aveiding side effects. This ia
because whenever a cell would be written on lo make a cycle,
its reference tount would have ta be at teast {wor one for [he
process daing the writing and ane for the structure that
would form the cycle,

The effecx of the structure controller's copying behavior,
and lts svoidance of circular lats, is Hustrated In Figures 4
and 3. The numbers appearing inside nodes are reference
ceunts. If A and B denote pointers into the strucure of
Figure 1 (ignoring the docted line). a naive execution of
APPEND(A, 000", B] might replace the pointar 10 “1° with a
pointer back to B, as shown by the dotted lng. This is
incorrect. The carrect resul of APPEND{A, D00, B) is
shown sn Figure 5.

Because reference counts must be updated whenever
structure-valued tokens are duplicared or desiroyed, and only
the structure concraller can manipulate reference courks, [he
structure controller must perform all instructions that
duplicate or destroy structure tokens, In particular, the T and
E conditional gates cause rokens 1o be conditionzlly destroyed.
These instructions can be handied by very simpie functional
unics if the type of the data token is clementary, but if it is »
aructure, the instruction must be processed by the structure
contraller to decrease the referancs count,

The Controller’s Interface

The structure controlier is one of several identical wisits
connected 1o the rest of the computar through the asbieration
and distribution networks, to the Mmemory through the
intergoanection neiwerk, and to each ather through the UID
petwark, as shown in Figure 6. (UID stands for unique
identifier.}

Figure 4. Structare prior 1o APPEND

1 q il .14

Figure 8. Interconnection of controllers and memory
1o distributian

from wrbitralion retwork af
network of computer
campuler

interconnectian
network

MGy
‘wystem

The reason for using several comtrollers is that the
processing rute for any one controller is limked by the
technology used in its communication ports and other
circuitry. A major design goal of the daw flow computer i3
that its overall processing rate not be limited by the speed of
by individuat components. This requires careful design to
climinate "bottlenecks™ There ate multipke functicnal units
for ather instructions feg. arithmetic) for the same reason.
The arbitration network sends each operation packet 1o any
Tunctional unit or structure controller that §s of the right type
and is not busy,

© Al communication 3 through asynchronous
unidirectional transmission of packers (3] Every pachet
transmission link has a link in the opposite direction carrping
acknowledgment signals. The packet communication concept
iMmpases no timing restrictions on packet transmissions except
that a system wili eventually transmit its required oulput,
This freedom from globa! timing considerations it very
important in large systemt that perfarm many processing
operations concurrently.

The ports of the structure controller have the jollowing
functions:

OPNI - "operation in" - rersjves operation packeis from the
computer, These packets are either SELECT{struct, sel,
dest, . dest,) or APPEND{struct, el new-val,
dest,, . dest,).

RESO - “result out™ - transmits results of structure operations
back to the computer, one Packet for each destination that
was given in the operation packet. These packets are
RESULT{value, dest).

MEMQ - "memory out” - transmits commands through the
intercannection network 1o the memory. These packers are
Mamed FET (“fetch™) or UPD (“updace”). '

i-ﬂ

MEM! - “memory in" - receives replies from FET commands.
These packeis are named RTR {Tretrieve). The
nlerconnection network routes them from the memory
back to whichever structure contraller gang the command,

UIDI - "unique 1D in” - receives UTD packets, giving fresh
cefls to be used for the creatioh of new nodes. These
packets are UiD{addr).

UIDO - “unique LD out™ - iransmits UID packets. The UID
network simply takes UID packets according to the various
structure controllers’ abilities and redistributes them
acording to the controllers’ needs,

The Memory System Behavior

The principal design criterion for the memory is that it
be able to handle a great number of overlapped randem
access transactions to achieve a high dara rare. A packet
memory salisfies this need through is abiliy to treat a
request for data and the return of the requested data as
completely distinct events on the interface, possibly separated
by many other unrelated requests and data transmissions.
Unlike convenlional “crossbar switch® networks between
processors and memory LRI, it 13 not pecessary to alocate a
path through a packer switching network for the duration of
a memory cycle. The command and response packets pass
through the interconnection necwark independently.

From the memory's point of view, each word contains a
data field and a reference count field; the subdiviston of the
data field into pointers and indicator bits I3 of no concern ta
the memory.

Since result packets from the memary are separate from
the command packets, some means of awociating 2 result
packet with its originating command is necessary. This is
done with a "tag” field in the command and result packets.
The memory returns the contents of the tag fiekl of each
comiand packet in the tag fiekd of the corresponding resuk
packet. The interconnection network uses the mg MNelds to
transmit result packeis from the memory back to the correct
structure controller, and each controlier uses the g fields ra
match result packets with the correct structurs operations, if
more than one operation is in progress at one time.

The basic memory operations are reading with optional
increase ar decrease of reference count, and writing. Tha
rommands are;

FET{addr, tag) - reads the addressed word and rewrns s

dara and reference count in a packet RTR{addr, datm,
refct, tag). The retumned tag 13 the same as the lag in the
command.

FET™(addr, rag) - same as FET, but increases the reference
count and returns its new value. The returned packet Is
RTR*(addr, data, refct, tag).

FET (addr, tag) - same as FET®, but decreases the reference
count lnsread. The returped packet is RTR (addr, data,
refct, tag). ’

UPD{addr. dala, refct) - wriles the data and referance count
an the addressed word. This generates no reply packes,
and hence uses no tag field.

The UID Network apd Free Storape

The controller expects UID pacheis 1o be pravided in an
"unending” supply at port UIDL, When il needs & fresh esll,
the controlter simply takes B packet and schnowledpes it
Upon receiving the acknowledge, the UID network provides
another packet. The sirucure controller must comsandly
provide fresh cells to the network through port UIDO.
Whenever the UID network acknowledges the last packet
from UIDO and che controller’s free storage list iz not empty,
the controller takes a cell from the list and transmite it at
UIDG.

Whenever the structure controlier reduces the reference
count of a cell to zero, it reclaima that cell by placing it on the
free storage list. It muaz also decrease the reference counts of
the cells pointed to by the polnters in the reclaimed cell. Thia
may cause one or both of those cells to be rechimed, so tha
procecture is recursive. Since each reclamation can cause two
others, the recursion is difficull te handle. (The mructure
controller has no stack memory.) The procedurs used is only
to reduce the reference count of the node pointed to by the
right half of the word at the time it is reclalmed. While the
ward I3 an the free storage list, its leRt half 13 preserved, and
its right half is a pointer 1o the next cell an the lit. This
makes reclamation of Lhe cell give rise to only one other
reclamation instead of two, 30 the recursion can be handled
iteratively without a stack.

When the structure controller receives a cell at UIDI, the
left half still contains a pointer to a node that mun have Iy
reference count reduced. The structure controller then
reduces That count befare using the cell,

It no packet is availabie at UIDI when one is needed,
the computer has presumably run out of memory. This s an
unpleasant situation to deal with, slnce it occurrence i
nondererminate (one run of a program might succesd while
another run fails). The nmplest thing to do is to earminnte
the computation. Thare is a chance that, by simply waiting, n
free cell might be created by another part of the pregram,
allowing the compuratian to proceed. Hawever, this strategy
gives no positive Indication that a computation has failed
ather than the fact that it stops executing Instructions, which
may be undesirable.

Initiatizanion af the Fiee Storage Lisa

Befare starting program execution in a data flow
computer, all of memory must be put into the free sorage
lists. These ists are initialized by dividing up the total
MEMOTY space INte as many parts as there are contrallers, and
tinking all words 10 each part into a chain. The head of each

thain 13 pointed 10 by a register of ita structure controller,
The right half of the data in each word containg the addresy
of the next word in the chain, and the tight hak of the s
word containg an ¢lementary value to mark the end. Sinee
the delt hall of each.word contains a value whose reference
count is to be reduced when that word is taken from the lis,
the left halves must be initistized o some armiess elemeniary
value such a1 mit A the final initalization Hep, mach
controller must then behave ag though it had receivad an
acknowledge on port UIDO, that s, it muk take & word from
the list and send & out through UIDO. '

Geners! Design of the Controfler

The controller’s algarichm will be given here only in'

broad outline. A detsifed algorithm may be found i (21

Each controller tan handle some Nxed number of
wancurrent operatiens. Each of these Operaticns requires a
humber of private variables that must be stored Ia the
controllers local memory. When an Operalion beging, i i
Biven a “ag”, or index, which i3 used ro identify the private
variables and Memory transaciions.

The total number of controliers, and the number of
concurrent operations that each conirolier s designed 1o
handie. is a complex decislon based on the spesd of the
MEmMory system, the speed of the centrallers' logic nnd Incernal
memary, the speed of the Wwitching networks and
communication ports, and the required performance of the
sysemn. In general 3 controller should - handie maugh
concurrent operations to keep its intemnal logic bugy
processing the required memory transactions.

When 2 srructure operation is received at OPNI, an
unused tag is selecred for it. (If there are N0 unused tags, the
contraller does net accept packets ar OPNI) The operation
then proceeds concutrently with alt the others, with afl of itz
memory fransactions labeled with i tag. and all of ity state
information stared in the controller's internal memory. When
the structure operation is complete, the resuk packets are sent
out and 11 tag becomes free.

The "SELECT" and "APPEND" Algorithms

The SELECT operation is draightforward. The
Controlier scans the selector string from left to tight. For mach
bit. it reads the current node {arting from the given
structure) by issuing a FET cammand and waiting for rhe
RTR packet, It then picks out the appropriate half of the
data, depending on the selector bit, and uses this as the
Pointer to the next node. When finithed, the current node is
the answer It increases i3 reference count with a
FET*/RTR* transaction, and then decreases the reference
coumt of the original structure with a FET/RTR~
transaction.

The APPEND aperation 5 much More complex. It is
deslgned 1o require enly a single pass down through the
structure, creating new cells only when the refarence count
forbids writing on existing cells. As soon us a node is passed

whote reference count is greater chan one, all subsequent
nodes must be copled.

A apecial case arises if the value to be appended is nal,
The structure controlier must lake care o remove any
structure that would contain nothing but pil as itz terminai
hodes. It dees this by Femnembering the last place in the
Structure that contained data other than nil When it reaches
the end, the superfivous chain of Dil's can be destroyed.

Structure of the Memory System

The memory system i3 designed in tevens of an abstract
memory module calied "MM™ that obeys a formally defined
specification (Il MM has an input port called CMD}
(command in) and an output port called RESO {result ou).

MM can exi in mapy forms. It can be construcled
direcily out of conventional memory circults. A larga MM
AN be cansiructed out of smaller MA's and some packet
routing necworks, and a fast MM can be ronstructed from a
slow MM and 2 cache moditle. Thess constructions will be
given belgw. By treating MM as an abstract object which

“alwaps obeys s uniform functional specifiontion, one can
construct hierarchial interconnections of devices and

subsystemns with complete flexibility, and use mtercannection
theorems for packet systems 1o Prove that the resuking system
will bahave properly [5] (8]

The Horizonta] Interconnertion

MM modules may be connected in AN arrangement
similar te {he "mzerluvlng' of customary memories in order
to increase frantaction rate. The address space to be realized
by the interconnection is divided inte parts, with ane modyle
handling cach part. For example, the least significant bits of
the address might be used 1o seler the modute. Incoming
commands are sent 10 a digributor which sends them oul
through one of several poris depending on the least
significant address bits. Those birs are reroved from the
Packet, 5o the individual memory modules only “see® their
share of the addyess space. Result packets are sent 1o an
arbitrator, which merges them into a singlke stream. The
incoming port number is encoded into the output packets,
reinstating the removed address bits. Such an interconnaction
1s shown in Figure 7. IF sach of the smalf boxes labeled MM
obeys the functionai specification, the entire intervonnection
will also. .

Figure 7. Horizen1al inlerconnection

This connection 15 one of the methods by which the
transaction rate can be increased. Random accese memary
devices usually have the property that every read or write
transaction causes the device 1o become busy for some perlod
of time, during which It cannat handle any ather transactions.
Far example, 2 MOS RAM might be busyy for %00
nanosecands during every transaction, and therefore be able
¢ handle 2 million transactions per second. The anly way to
increase the data rate is to ute many memory units. If a
duseributor can handle 64 million packets per second on its
nput pait, and an arbitrator ean handle 64 million packets
per secand on its outpat port, it might be reasonable 1o use 32
MOS RAM'. each in a separate MM unit. These are
connected 10 a 32 port distributor and » 3% port arbitrator.
The average rate at which packets come out of sach port of
the distributor i3 2 million per second, which i the rate at
which individual units ¢an handle them. Aswuming the
commands are uniformly distributed over the address tpace,
this interconnection will hardle 64 million transactions per
second. The reirieval delay for each item will siill be 500
nanoseconds, but that is an unavoidable consequance of the
memary technology being used.

Vertica) [nterconnection (T he Cache Module)

A memory module may also be cornected 16 a eache
maduie "CM”, which then realizes an MM system with the
same address space. CM tends commands to the “main
memory” through part MEMO, and receives reuln through
part MEMI, as shown in Figure 8.

In each of these interconnections, the small boxes labeled

MM may be further Interconnections, o arrangements such
as thase in Figure 9 are permissible.

The Interconneciion MNetwork

The interconnection netwark is somewhat similar to the
horizontal interconnection described above, except that It
handles packets from multiple structure contrallers,
Command packels are distributed 1o the correct memary
module accarding to address, uad the tag felds of
FET/FET™/FET™ packets are are augmentsd with bils

Figure 8. Vertical interconnection

4
Y YR N 1
i oML RESO |
N i
' :
| oM X
| [
X MEMO MEM :
: MO RESC |
]]
(' MM |'
i i
1 1
R o

Figure 8. Memory structures

indicating which controller sent the packet. When a
RTR/IRTR*/RTR" packet is received from the memory
system, the axtra bits in the tag fleld are removed and uied @
determine che controller to which the packet i to be sent.

Reference;

B W. B. Ackerman, A Siyucture Memory for Dats Flow
Computers, Laboratary for Computer Science, M.[T,
TR-186, (August, 1977), 125 pp.

[2) W. B Ackermsn, A Sltvcture Comroller for Daty Flow
Compurers, Laboratory for Computer Science, M.LT,
Compuiation Structures Group Memo 156, {January,
1978}, 18 pp.

(31 j. B Dennis, “Packet Communication Archltecture,”
Proceedings of the 197 Sagamore Computer Conference
on Parallel Processing, (August, 1975), pp. 224-229,

{4] j. B. Dennis, D. P. Misunas, and C. K. C. Leung. A
Highiy Parallel Processor Using a Data Flow Maghine
Language, Laboratory for Compuler Science, M.IT.
Computation Structures Group Memo 1M, {Janvary,
1977), 79 pp. :

5) D. J Elis, Farmal Specifications fer Packet

Communication Systems, Laboratory for Computer

Science, M1 T, TR-183, (Mavember, 1977}, 138 PP

[6] D.E. Knuth, The Azt of Computer Programening, Val,
I: Fundamental Algorithms Addison-Wesley, (1973), 634
Pp- '

01) McCanthy, e al, LISP 15 Proyramener's Manual
MIT Press, (1966}, 106 pp.

[8) s 8. Patil, “Closure Propertias of Inierconnections’ b
Determinate Sysems” Record of the Proist MAC
Conference on Concurrent f and Paralgl

Computation, {July, 1970), pp. 107116,

