MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Laboratory for Computer Science

Computation Structures Group Memo 166

Practical Benefits of Research in
Programming Methodology

by

Barbara Liskov

(Published in the Proceedings of the National Computer
Conference, June 1978, pp 666-667.)

This work was supported in part by the Advanced Research Projects
Agency of the Department of Defense, monitored by the Office of
Naval Research under contract NOOO14-75-C-0661, and in part by the
National Science Feundation under grant MCS 74-21892 AOL.

August 1978

PRACTICAL BENEFITS OF RESEARCH IN
PROGRAMMING METHODOLOGY—Barbara Liskov

In the past few years, considerable progress has been
made in the area of programming methodology. Although all
research in this area is interrelated, two main research di-
rections can be distinguished. One direction is the study of
software system structure, in particular study of desirable
kinds of modules and module interconnections. The other
direction is the siudy of the process of developing correct
software having such desirable structure.

Study of software system structure has been particularly
effective within the framework of research on programming
languages, especially the languages CLU' and Alphard.®
This language work has succeeded in identifying new kinds
of modules, and has provided precise rules governing the
implementation and use of such modules. Each kind of mod-
ule supports a kind of abstraction found to be useful in
constructing software. The most important new kind of mod-
ule is that supporting a data abstraction; however, there are
other kinds of modules, and in addition rules governing the
interaction of modules. These latter rules constrain and re-
duce the interconnections among modules.

Earlier work in structured programming® and stepwise
refinement* made evident the advantages of top down de-
velopment of software. Recent work has elaborated the top
down development process, taking into account the work on
software system structure discussed above, and clarifying
the way that top down development proceeds. The most
important contribution has been the recognition of the role
played by program specifications. A program specification
is a description of the behavior of a module, the behavior
that will be depended on by any user, and that must be
provided by any implementation. At any stage of design, the
goal is to identify lower level abstractions useful in imple-
menting the current level. As these abstractions are identi-
fied, their behavior is specified. The specification is given
in advance of the implementation, and it provides a complete
description of the interface of the module that will later
implement the abstraction. The presence of the specification
permits the question of how to implement the lower level
modules to be deferred until a later stage of design.

As programming methodology has become better under-
stood, there has been increasing interest in defining formal
methods to support it. In particular, there has been much
recent research in formal specification technigues,*® which
permit the specifications discussed above to be expressed
in a formal language, i.e., one with a well-defined and un-
ambiguous syntax and semantics. The advantages of such
formal specifications are twofold: they are more precise
and concise than informal specifications, and therefore may
serve better the role of interface descriptions described
above, and, in addition, given formal specifications, a formal
proof that a module’s implementation satisfies its specifi-

cation is possible. However, formal specifications are more

difficult to write than informal enes, and our current under-
standing of specification and verification technigues is in-
sufficient to permit all useful abstractions to be described.

It is my belief that the present and near future construction
of software systems can best be helped by popularizing the
methodology. This can be done in a way that relies neither
on a particular language, nor on the as yet incompletely
understood specification and verification techniques. In-
stead, the following two ideas must be made clear to pro-
grammers:

1. What constitutes good modularity.
2. What constitutes good design practice.

Rules about goed medularity are best explained by devel-
oping conventions, or better yet preprocessors, for existing
languages in actual use; such conventions would "‘permit a
limited use of data abstractions and would prohibit current
bad practices (such as non-local use of data). By expressing
the rules in this way, they are explained in terms the pro-
grammers can understand, and furthermore, a tool is pro-
vided that helps in the development of a well-structured
system. Good design practice then consists of top down
decomposition into the kinds of modules that the program-
mers already understand, with emphasis on the role of (in-
formal) specifications in the process, and especially on the
necessity of specifications being given in advance of imple-
mentation. To aid programmers in understanding what spec-
ifications are, it is helpful to establish a specification stand-
ard which describes the kind of information that should be
included in the specification, and gives a format for express-
ing that information. However, it is too early to require that
specifications be given in a formal language. Formal meth-
ods in system design are not yet ready for practical use, but
I believe use of the methods in an informal way can have
considerable practical benefit.

REFERENCES

1. Liskov, B., A. Snyder, R. Atkinson, and C. Schaffert, ** Abstraction Mech-
anisms in CLU,"" Comm. of the ACM 20, 8, August 1977, pp. 564-576.

2. Wulf, W., R. London, and M. Shaw, ** An Introduction to the Construction
and Verification of Alphard Programs,”” JEEE Trans. on Software Engi-
neering SE-2, 1976, pp. 253-264.

3. Dijksira, E. W., ‘*Notes on Structured Programming,”* Structured Pro-
gramming, A P.1.C. Studies in Data Processing 8, Academic Press, New
York, 1972, pp. 1-81.

4. Wirth, N., "Program Development by Stepwise Refinement,” Comm. of
the ACM 14, 4, April 1971, pp. 221-227.

5. Guttag, }., E. Horowitz, and D. Musser, Abstract Dara Types and Soft-
ware Validation, Report IS/RR-76-48, Information Sciences Institute,
University of Southern California, Marina del Rey, August 1976,

6. Liskov, B. and V. Berzins, An Appraisal of Program Specifications,
Computation Structures Group Memc 141-1, Laboratory for Computer
Science, M.1.T., Cambridge, Mass., April 1977.

