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1 .  I n t r o d u c t i o n  2 .  E x c e p t i o n  H a n d l i n g  

CLU [1, 2] is a programming language/system that 
provides linguistic mechanisms supporting procedural, data, 
and control abstractions, and structured exception handling. 
In Implementing CLU, methods of realizing these linguistic 
mechanisms were needed. This paper describes a few of these 
Implementation methods. A n  implementation using these 
methods has been running since the fall of 1977. 

In CLU, a routine (procedure or iterator) can terminate 
In one of a number of conditions. A routine terminates in the 
normal condition by executing a return statement; termination 
in an exceptional condition is accomplished by executing a 
signal statement. In each case, result objects may be returned; 
the result objects may dif fer in number and type in the 
di f fe rent  cases. 

The  methods we describe are ones that we feel are of 
general interest because the features they support are likely to 
be included in other programming languages. In Section 2 we 
discuss how the CLU exception handling mechanism is 
realized. In "Section .~ we describe the implementation of 
iterators. Finally, Section 4 contains a discussion of the 
implementation of parameterized modules. More complete 
descriptions of exception handling and iterators can be found 
In [3] and [4], respectively. 

Th is  work was supported in part by the Advanced Research 
Projects Agency of the Department of Defense, monitored by 
the Off ice  of Naval Research under contract 
N00014-75-C-0661. 

The  information about the ways in which a routine may 
terminate must be included in its heading. For example, the 
procedure performing integer division has the following 
heading: 

d iv  = proc (x, y: int) returns (int) signals (zerodivide) 

w h i c h  indicates that div may terminate normally by returning 
a single integer (the quotient of the two input arguments), or 
exceptionally by signalling zero_diuide (which indicates that 
the second argument was zero) and returning no results, in 
addi t ion to the named exceptions, every routine can terminate 
in the special fai lure condition, with a string as the result. 

The exceptions signalled by a routine must be caught 
and handled by its immediate caller. Handlers are associated 
with invocations statically, and are placed in CLU programs 
by means of the except  statement, which has the form: 

statement except  handler list end 
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Th is  statement has the following interpretation. When a 
rout ine activation terminates by signalling an exception, the 
corresponding invocation (the text of the call) is said to raise 
that exception, if, during execution of the statement, an 
invocation raises an exception, control immediately transfers to 
the closest applicable handler; i.e., the closest handler for the 
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exception that is attached to a statement containing the 
Invocation. When execution of the handler completes, control 
passes to the statement following the one to which the handler 
is attached. Thus  if the closest handler is in the handler list, 
the  statement following the e x c e p t  statement is executed next. 
If  execution of the statement completes without raising an 
exception,  the attached handlers are not executed. 

Each handler in the handler list names one or more 
exceptions to be handled, followed by a list of statements 
(called the handler  body) describing what to do. Several forms 
a r e  available for handlers. For example, the objects provided 
by the signaller may be discarded if desired, and a special 
o t h e r s  form may appear last in the list to handle all 
exceptions not handled by other handlers in the list. 

T h e  example below illustrates the association of handlers 
with exceptions: 

begin ~ start of inner block 
SI e x c e p t  when zero: $2 

end 

end ~ end of inner block 
e x c e p t  when zero: $3 

others: $4 
end 

I f  zero is raised by an invocation in SI, it will be handled by 
52,  not $3. However, i f  zero is raised by an invocation in $2, 
i t  w i l l  be handled by 33. All other exceptions raised in SI and 
,~2 wi l l  be handlfrd by 34. 

Sometimes there is nothing useful that a calling routine 
can do when an exception is raised by some invocation, so no 
hand ler  is provided. In this case, the uncaught exception 
automat ical ly  turns into a fai lure exception of the calling 
rout ine with the string result: 

"unhandled exception: name" 

where  name is the name of the unhandled exception. 

2 . 1 .  I m p l e m e n t a t i o n  

The re  are several possible methods of implementing the 
exception handling mechanism. As usual, tradeoffs must be 
made  between efficiency of space and time. We believe the 
fol lowing are appropriate criteria for an implementation: 

1. normal case execution efficiency should not be impaired at 
all. 

5. exceptions should be handled reasonably quickly, but not 
necessarily as fast as possible. 

3. use of space should be reasonably efficient. 

T h e  t radeoff  to be made is the speed with which exceptions 
a r e  handled versus the space required for code and data used 
to locate handlers. 

Signalling an exception involves the following actions: 

1. discarding the activation record of the signalling activation 
(but saving the result objects associated with the exception). 

2. locating the appropriate handler in the calling routine. 
3. adjus t ing  the caller's activation record to reflect any 

terminations of expressions and statements containing the 
invocation. 

4. copying the result objects into the caller's activation record. 
5. t ransferr ing control to the handler. 

Actions (3) and (5) are equivalent to a goto from the invocation 
to the handler.  Actions (1) and (4) are similar to those 
occurr ing in the normal termination of a routine. Because the 
association between invocations and handlers is static, the 
compiler  can provide the information needed to perform 
actions (2) and (3). Below we sketch two methods of providing 
this  information;  these methods differ considerably in their 
pe r fo rmance  characteristics. 

T h e  first method, called the branch table method, is to 
follow each invocation with a branch table containing one 
entry for  each exception that can be raised by the invocation. 
Each entry contains the location of a handler for the 
cor responding  exception. The invocation of a routine whose 
head ing  lists n exceptions will have a branch table of n ÷ 1 
entries; the first n entries correspond to the exceptions listed in 
the  heading,  while the last entry is for failure. 

Using this method, return and signal statements are easy 
to implement: r e tu rn  transfers control to the location 
fol lowing the branch table, while signal transfers control to the 
location stored in the branch table entry for the exception 
be ing  signalled. The information needed to adjust the caller's 
act ivation record could be stored with the handler, as could 
Informat ion about whether to discard the returned objects; for 
example,  this information could be placed just before the first 
Instruction of the handler. Figure 1 shows the code skeleton 
f o r  an invocat ion using this method. 

T o  invoke p = proc ( ) returns ( ) signals(el, e2): 

call p 
el_.addr ; branch table 
e2_addr 
fai lure_addr 
... ; normal return here 

sizel ; new activation record size 
... ; other info about the handler 

e l_addr :  ... ; code for el handler 

F i gu re  1. Code skeleton using the branch table method 

T h e  branch table method provides for efficient 
s igna l l ing  of exceptions, but at a considerable cost in space, 
since every invocation must be followed by a branch table (all 
Invocat ions may at least signal failure). A second method, the 
h a n d l e r  table method, is the one used in the current CLO 
Implementation.  The method trades off some speed for space, 
and  was designed under the assumption that there are many 
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f e w e r  handlers than invocations,  which is consistent with our 
exper ience in using the mechanism. 

T h e  h a n d l e r  table method works as follows. Rather than 
b u i l d  a b r a n c h  table per invocation, the compiler builds a 
s i n g l e  table  for  each routine.  T h i s  table contains an entry for 
each  h a n d l e r  in the  routine.  An entry contains the following 
i n f o r m a t i o n :  

1. a list o f  the  except ions  handled by the handler  (a null list 
can be used  to indicate  an o t h e r s  handler). 

2. a pa i r  o f  va lues  de f i n i ng  the scope of the handler, that is, 
t h e  ob jec t  code cor responding  to the statement to which the 
h a n d l e r  is a t tached .  

3. t h e  location of the  code of the handler.  
't. t h e  new  ac t iva t ion  record size. 
5. a n  ind ica t ion  of  whe ther  the result objects are used in the 

h a n d l e r .  

T h e  exceptior~ list and  scope together permit candidate 
h a n d l e r s  to be" located: only an invocation occurring within 
t h e  scope  a n d  ra i s ing  an exception named in the exception list 
can poss ib ly  be hand led  by the handler  (for an other, 
h a n d l e r ,  only  the  scope matters). 

A r e t u r n  statement is implemented just as it would be in 
a language wi thout  exception handling. A signal statement 
requires searching the handler table to f ind entries for 
cand ida te  handlers: i f  several candidates exist, the one with 
the smallest scope is selected. Placing the entries in the table 
in the l inear  order in which the corresponding handlers 
appear  in the source text guarantees that the first candidate 
f o u n d  is the handler  to use. Unhandled exceptions can be 
recognized ei ther by the absence of candidates or by storing 
one add i t i ona l  entry at the end of the handler table for this 
case. 

3 .  I t e r a t o r s  

l t e ra to r s  a re  a type of control abstraction that permit 
I t e ra t ion  ove r  a collection of items (such as the elements of a 
set or  a n  ar ray)  wi thout  knowledge of how the items are 
o b t a i n e d  f r o m  the  collection. An iterator produces the items in 
t h e  collection one  at a time; it can only be invoked by a for 
s t a t e m e n t ,  wh ich  uses the  items in performing some 
c o m p u t a t i o n .  Detai ls  of  how the items are selected from the 
col lect ion a re  local to the  iterator; the for statement simply uses 
t h e  I tems,  w i thou t  knowledge of how they are produced. 

T h e  h e a d i n g  of  an  iterator states the types of arguments 
t h a t  t h e  i terator  requires  and  the  types of objects making up 
each  i tem (an  i tem consists of  zero or more objects). For 
e x a m p l e ,  C L U  ar rays  provide an indexes iterator which 
p r o d u c e s  t he  sequence  of integers that  are legal indexes into 
the  g i v e n  ar ray .  T h e  head ing  of this iterator is 

indexes = i t e r  (a: ar ray[ t ] )  y ie lds (int) 

w h e r e  t s t a n d s  for  the  type of element in array a. 

An  i terator  produces  an item by executing a yield 
statement; t h e  i terator is then suspended and its state is 

r e t a i n e d .  W h e n  ano the r  item is needed the iterator is resumed 
w i t h  t h e  s aved  state, f rom which it continues and possibly 
p r o d u c e s  add i t i ona l  items. T h u s  an iterator is a coroutine [5, 
6] .  H o w e v e r ,  the  use  of iterators is limited to permit efficient 
i m p l e m e n t a t i o n ,  as discussed fur ther  below. 

T h e  C L U  for  s ta tement  has  the form: 

fo r  variable-or-decl-list in invocation do 
body-of-statements 
e n d  

T h e  i te ra tor  is initially called in the invocation. Each time an 
i t em  is yielded,  the  objects in the item are assigned to the 
v a r i a b l e s  in the  variable-or-decl-list. Then  the 
bode-of-statements is executed to make use of the objects 
p r o d u c e d .  At the  end of  the body-of-statements the iterator is 
r e s u m e d  to p roduce  ano ther  item. When the iterator 
terminates (because the sequence is exhausted), the for 
s t a t e m e n t  also terminates.  T h e  variables in the 
variable-or-decl-list can be global to the for statement (a 
variable-list), or local to the for statement (a decl-list). These 
v a r i a b l e s  a r e  not  sha red  with the iterator, so assignments to 
t h e m  in the  fo r  loop body cannot  affect  the iterator's behavior. 
T h e r e f o r e ,  such  a s s ignmen t s  are not forbidden.  

It is also possible for  a for  statement to terminate both 
I tself  a n d  the  invoked iterator. T h e  b r eak  statement 
t e r m i n a t e s  the  smallest  enclosing for statement ( they can be 
nes t ed )  a n d  the  i terator it invoked.  An exception raised by an 
i n v o c a t i o n  in the  for  loop body but handled outside the for 
s t a t e m e n t  will t e rminate  both the for statement and the 
l t e ra to r .  Execu t ion  o f  a r e t u r n  or signal statement terminates 
b o t h  t h e  enc los ing  rout ine  and  all iterators it has invoked. 

8 . 1 .  I m p l e m e n t a t i o n  

T h e  use  of  iterators is restricted in two ways: iterators 
are  i nvoked  only by for  statements, and each for statement 
invokes  exact ly one' iterator. These restrictions insure that 
ac t ive  i terator invocations are always nested, which in turn 
means  that  iterators can be implemented using a single stack. 

T h e  implementat ion of iterators is similar to that of 
procedures. Both share a single stack for arguments, linkage 
I n f o r m a t i o n ,  var iab les  and  temporaries, in the following 
d i s c u s s i o n  we a s s u m e  tha t  the reader is familiar with stack 
f r a m e s  (also called activation records). Also, al though it does 
n o t  real ly a f f ec t  the  implementat ion,  it may help to know that 
C L U  m o d u l e s  a re  not  nested in one another  and have no free 
v a r i a b l e s .  

Each stack frame contains the fol lowing linkage 
i n f o rma t i on :  

I. the return address in the calling routine. 
2. the rout ine base address for the current routine fused, e.g., 

f o r  f i n d i n g  literals). 
3. the return l ink, which points to the base of the stack frame 

fo r  the cal l ing routine. There is a single call chain, which 
consists o f  stack frames linked via return links. 

4. the resume l ink, which is used to chain together the 
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i n fo rmat ion  necessary to resume suspended iterators 
invoked by the current routine (null i f  no suspended 
lterators). An iterator chain consists of stack frames linked 
v ia  resume links. Each routine may have a separate 
l terator chain. 

T h e  arguments to the routine are directly above the 
frame's l inkage information (assuming the stack grows down), 
and the local variables are directly below (all local variables 
are allocated together at routine entry, rather than at block 
entry). Below the local variables are temporaries for 
invocat ions (the temporaries become arguments to other 
routines). Figure 2 shows a stack frame. 

arguments 

linkage area 
return address 
routine base address 
return link 
resume link 

local variables 

temporaries 

F i g u r e  2. A stack f rame (assuming the stack grows down) 

Cal l ing  an iterator is identical to calling a procedure: a 
n e w  stack f r ame  is created, and the return address, routine 
b a s e  address ,  and return link a re  set. The resume link is 
initially null, since there are no suspended iterators. Returning 
f r o m  an i terator is identical to a normal procedure return: the 
l te ra tor ' s  f r ame  is removed from the stack and control 
t r a n s f e r s  to the return address. 

Yie ld ing  is somewhat like invoking the for loop body as 
a normal  procedure. When an iterator yields an item, the 
f rame of the iterator remains on the stack, and a special frame, 
called a resume frame, is added to the stack to hold information 
about how to resume the iterator. This resume frame is an 
abbrev ia ted version of a normal frame, containing only 
l inkage informat ion. The return address contains the location 
where control wi l l  go when the iterator is resumed and the 
return l ink points to the frame for the iterator; the routine 
b a s e  address  is null to indicate that this is a resume frame. 
T h e  r e sume  f r ame  is added to the iterator chain of the routine 
t h a t  called the iterator: the resume link for the calling routine's 
f r a m e  is set to point  to the resume frame, and the resume link 
f o r  the  resume f rame  is set to the previous contents of the 
r e s u m e  link for  the calling routine's frame. Finally, control 
t r a n s f e r s  to one beyond the return address given to the iterator 
( the  actual  re turn address is used for returning and contains a 
b r a n c h  a r o u n d  the loop body). 

Resuming an iterator is similar to returning from a 
procedure. When a for loop body terminates, the iterator to be 
resumed is the first one on the iterator chain for the current 
f rame. Its resume frame is removed from the chain: the 

resume l ink of the current frame is set to the resume link of 
the resume frame. The reformation in the resume frame is 
used to locate the iterator's stack frame and resume point. 
T h e n  the resume frame is removed from the stack. At this 
point ,  the stack pointer has the same value as it had when the 
l terator last yielded an item, so the stack can grow as necessary 
d u r i n g  the iterator's execution. 

Execut ing a re tu rn  or signal statement in the middle of 
a fo r  loop is as efficient as a normal return or signal. The 
stack space for  the suspended iterators is reclaimed when the 
stack space for  the current frame is reclaimed. Early 
terminat ion of the for  loop in any other way (e.g., by a break) 
requires a few instructions to reclaim the stack space for the 
appropr ia te  suspended i terators. 

Consider a routine P that contains a nested for loop of 
the form:  

for  ... in Iterl(...) do 
for ... in lter2(...) do 

end 
end 

Assume also that iterator I ter2 contains a for loop of the form: 

for ... in lter3(...) do 

end 

F igure  3a shows the stack as it appears whenever the execution 
o f  P is inside the outer loop but not in the inner one. I ter2 
has not yet been invoked (or its previous invocation has 
terminated).  At  this point, P's iterator chain contains a single 
element: RFI, the resume frame for I ter l .  

In f igure 3b, the stack is shown as it appears whenever 
execut ion is inside P's inner for loop. Now P's iterator chain 
contains two entries: RF2, the resume frame for Iter2, and 
RFI ,  the resume frame for I ter l .  RF2 appears first on the 
chain,  so it is easily found when the inner loop body 
terminates. The  iterator chain for I ter2 contains a single 
entry: RF3, the resume frame for I ter3. 

Iterators are inexpensive to implement. Yielding is 
s imi lar  to cal l ing a routine (a frame is created), and resuming 
is s imi lar  to returning, so the cost of using an iterator is 
rough ly  equivalent to the cost o f  a procedure call for each 
execut ion of the loop body. Even this cost can be eliminated 
by  do ing  inl ine substitution: the iterator body is substituted 
(w i th  minor  changes) for the for loop control, and the code of 
the fo r  loop body is substituted for occurrences of the yield 
statement. I f  the iterator contains more than one yield 
statement, possible code duplication can be avoided by treating 

the f o r  loop body as an internal procedure. 1 

1. I n v o k i n g  this sort of procedure involves remembering only 
the return point; no arguments are passed and no context 
switch need be done [7, 8]. 
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PF: 

IFI: 

R F h  

r e s u m e  link: RFI 
r e tu rn  link: ... 

resume l ink: - -  
r e t u rn  l ink:  PF 

resume l ink: - -  
return l ink: IFI 

PF: 

IFh 

RFI: 

IF2: 

IF~: 

R FS: 

R F2: 

resume link: RF2 
return link: ... 

resume link: - -  
return link: PF 

resume link: - -  
return link: IFI 

resume link: RFS- 
return link: PF 

resume link: - -  
return link: IF2 

resume link: - -  
return link: IF3 

resume link: RFI 
return link: IF2 

< 

F igu re  3a Figure 3b 

RFn:  resume f r ame  for ltern 
IFn: normal  f r ame  for Itern 
PF:  normal  f rame  for procedure P 

F i g u r e  3. Examples  of  iterator chains 

4 .  P a r a m e t e r i z e d  M o d u l e s  

In  C L U ,  procedures,  iterators, and clusters can all be 
parameterlzecl. Parameter iza t ion  provides the ability to define 
a c lass  o f  related abstract ions by means  of a single module. 
P a r a m e t e r s  a re  limited to just  a few types, including integers, 
s t r i n g s ,  a n d  types. T h e  most interesting and useful of these 
are t h e  type  parameters :  objects in C L U  can grow and shrink 
d y n a m i c a l l y ,  so size parameters  are not needed. 

W h e n  a modu l e  is parameterized by a type parameter, 
t h i s  imp l i e s  tha t  the  module  was written without knowledge of 
w h a t  the actual parameter type would be. Nevertheless, i f  the 
modu le  is to do anyth ing with objects of the parameter type, 
cer ta in operat ions must be provided by any actual type. 
I n f o r m a t i o n  about required operations is described in a where  
clause, which is part of  the heading of a parameterized 
module .  For  example, 

set = c l u s t e r  [t: t y p e ]  is create, insert, delete, elements 
w h e r e  t has equal: p roc type  (t, t) returns (bool) 

is the heading of a parameterized cluster defining a 

genera l ized set abstraction. Sets of many different element 
types can be obtained f rom this cluster, but the where  clause 
states that  the element type is constrained to provide an equal 
opera t ion .  

As a second example, . the fol lowing parameterized 
procedure  defines a class of summing functions for collections 
( s u c h  as  sets a n d  arrays) of  integers: 

sum = p roc  [struc: t ype ]  (s: struc) re turns (int) 
w h e r e  struc has 

elements: i t e r t y p e  (struc) yields (int) 
x: in t  := 0 
for elt: int  in struc$elements(s) do 

x := x + elt 
end 

r e t u r n  (x) 
end sum 

T h e  w h e r e  clause constrains the legal actual type parameters 
to  t h o s e  h a v i n g  an  elements iterator of  the appropriate type. 

T o  use  a parameter ized  module, actual values for the 
p a r a m e t e r s  m u s t  be provided,  us ing  the general form 

m o d u l e _ n a m e  [ parameter_values ] 

P a r a m e t e r  va lues  mus t  be computable at compile-time. 
P r o v i d i n g  ac tual  paramete rs  selects one abstraction out of the 
c lass  o f  related abst ract ions  d e f i n e d  by the parameterized 
m o d u l e ;  s ince  the  values  are known at compile-time, the 
compi le r  can do the selection and can check that the where  
clause restrictions are satisfied. The result of the selection, in 
the case o f  a parameterized cluster, is a type, which can then 
be used in declarations and operation names; in the case of 
parameter ized procedures or Jterators, a procedure or iterator is 
obta ined,  which is then avai lable for invocation. For example, 
sum[set[int]] is a use of  the two abstractions shown above, and 
is legal because int  provides an equal operation and set[int] 
p r o v i d e s  an  elements iterator. 

4 . 1 .  I m p l e m e n t a t i o n  

The re  are a number of basic schemes for implementing 
parameter ized modules. These schemes can be characterized 
by the t ime at which the binding of actual parameter values 
takes place. The  possible times include compile time, load time 
(a f te r  compi la t ion but pr ior  to execution), and run time (either 
at  the f i rs t  use of  each distinct set of parameter values, or at 
every  use). The  result of binding parameters is called an 
lnstantiation. 

In a compi le- t ime binding scheme, the compiler produces 
a dist inct  object module for each distinct set of parameter 
values; each use of  a formal parameter in the source text.is 
replaced by the corresponding actual parameter, and then the 
resu l t ing text is compiled to obtain the instantiation, in the 
l oad - t ime  and run- t ime schemes, a parameterized abstraction is 
compi led into a single, parameterized object module; this 
modu le  is later instantiated by supplying actual values for the 
p a r a m e t e r s .  
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T h e  compi le - t ime scheme is similar to macro processing, 
a n d  has  many  of  the associated advantages and disadvantages. 
Its p r i m a r y  advan t age  results from the greater context that is 
a v a i l a b l e  to the compiler when compiling any particular 
in s t an t i a t ion  of  a parameterized abstraction. This increased 
c on t e x t  allows the generation of more time-efficient object 
modules ,  both  because of the greater opportunities for 
o p t i m i z a t i o n  and  because run-t ime binding is avoided. The 
p r i m a r y  d i sadvan tages  of  this scheme are the increased 
n u m b e r  o f  compilat ions performed and the increased amount 
o f  space  needed  to store the object modules. 

In the  load- t ime and run-t ime schemes, binding is 
p e r f o r m e d  on object  modules. The  binding does not require 
t h a t  a new copy of  an object module be created for each set of 
p a r a m e t e r  values; rather,  the code of the module and most of 
its local data  can be made independent of the particular 
p a r a m e t e r  values, and thus can be shared by the various 
tns tan t i a t ions .  

There  are two possible run-time schemes. In the first, 
the b ind ing  of parameters takes place each time a 
parameter ized object module is invoked. The parameter 
values are passed to the object module as extra, hidden 
arguments, and are referred to by the object module just like 
the normal,  expl ic i t  arguments. In the second scheme, which is 
the one used in the current CLU implementation, a new object 
module  is created once for each distinct set of parameter 

values; the b ind ing occurs at the first use during execution. 2 
T h e  new object module is created by building a new structure 
c o n t a i n i n g  the  paramete r -dependent  data; the code of the 
m o d u l e  and  its parameter - independent  data are shared by the 
v a r i o u s  instant iat ions.  

Compi le- t ime and load-time schemes all require that 
eve ry  possible  set of parameter values supplied to an 
abs t r ac t ion  be determined before execution begins. In CLU, 
t h e  poss ib le  parameter  values are restricted to "compile-time 
c o m p u t a b l e "  constants.  However,  despite this restriction, it is 
poss ib le  to implement  recursive parameterized abstractions that 
u s e  an  u n b o u n d e d  number  of distinct parameter values, as the 
f o l l o w i n g  perfect ly legal module (inspired by [9]) demonstrates: 

agen = proc  It: t ype ]  in: int) returns (any) 
i f n < = O  

then return (array[t]$new O) 
else return (agen[array[t]] (n - 1)) 
end 

end agen 

An invocat ion agen[T](n), where T is an arbitrary type, 
even tua l ly  produces  a new array. The  important characteristic 
of  agen, however ,  is that  agen calls itself recursively with a 
p a r a m e t e r  a r r a y [ t ]  that  is distinct from the original parameter 
t; in fact ,  it is distinct from any previous parameter to agen 
w i t h i n  a s ingle  recursive chain of calls. For any positive n, an 
invoca t ion  of one instantiation of agen will use n distinct 

add i t iona l  instantiations of agen. For example, the invocation 
agen[int](3) wil l  result in 3 recursive instantiations of agen: 

agen [a r ray  [ int ] ]  (2) 
agen [a r ray  [ar ray  [ int ] ] ]  (1) 
agen [a r ray  [a r ray  [ar ray [ int ] ] ] ]  CO) 

Thus  there exist f inite CLU programs that use at 
run - t ime  an unbounded number of instantiations of 
parameter ized abstractions. To handle such programs, it is 
therefore necessary to support the dynamic instantiation of 
parameter ized abstractions at run-time. For a compile-time 
scheme to be correct, one must recognize modules such as agen 
and either consider them to be illegal, or provide some means 
fo r  implement ing them that avoids compiling an infinite 
number  of object modules. 

As was mentioned above, the current CLU 
i m p l e m e n t a t i o n  utilizes a run- t ime scheme wherein a new 
ob j ec t  modu le  is created once for each distinct set of parameter 
va lues .  S ince  in the implementation there is no single object 
m o d u l e  fo r  a cluster as a whole, but rather individual object 
m o d u l e s  fo r  each cluster operation, the following (somewhat 
simplistiC) descr ipt ion focuses on the representation of routines. 
T y p e s  a re  represented,  by objects called tTpe descriptors; 
h o w e v e r ,  type descriptors are used primarily in various forms 
of  ident i f icat ion,  and their internal format is not of particular 
Impor tance here. 

T h e  implementation makes use of two types of objects, 
calt blocks and entr7 brooks. A call block is a description of a 
rout ine to be invoked, and contains a type descriptor for the 
data type, i f  the routine is a cluster operation, the routine 

name, and the actual parameters for the routine. 3 An entry 
block represents an invocable entity (i.e., a non-parameterized 
rout ine or an instantiation of a parameterized routine); it 
contains references to constituent objects containing the code 
fo r  the routine, the parameter-independent data, and the 
parameter-dependent data. The parameter-independent data 
consists of  l iteral values, such.as real numbers and strings, and 
call  blocks for  invoked routines that are not dependent on the 
parameters. There is parameter-dependent data only in entry 
blocks for  instantiations; this data consists of the actual 
parameters and call blocks for invoked routines that depend 
on those parameters. 

For example, f igure 4 shows the entry block for the 
lnstant iat ion sum[set[int]]. This entry block refers to one 
parameter- independent  call block, for intSadd, and one 
parameter-dependent call block, for set[int]$tlements. Notice 
that  in the call block for stt[int]$elements there are no routine 
parameters; this is because elements has no parameters besides 
those of  its containing cluster. A call block for sum[set[intil is 
shown in f igure 5. Note that here there is a routine parameter, 
bu t  no type descriptor, since sum is not an operation of a 
cluster. 

2. H o w e v e r ,  one can run through storage looking for uses of 
p a r a m e t e r i z e d  modules  and force binding to take place before 
execution. 

8. I n d i v i d u a l  cluster operations can have parameters in 
add i t i on  to those for the entire cluster. 
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code: 

parameter- 
independent 
data: 

parameter- 
dependent 
data: 

parameters.. 
setCint] 

call blocks.. Y 
. _ . . . . /  

type: 
set[int] 

n a m e :  

"elements" 

Figure  4. Entry block for sum[set[int]] 

name: 
"sum" 

parameters: 
set[int] 

Figure  5. Call block for sum[set[int]] 

T h e  uninstantiated form of a parameterized routine is 
also represented by an entry block, to be used as a template 
when  bui ld ing  instantiations. In the parameter-dependent 
data of this entry block, each would-be reference to the ith 
actual  parameter  is instead a reference to a dummy descriptor 
fo r  "the ith parameter". For example, the template for sum 
looks like f igure 4, except that references to set[int] are 
replaced by references to "the first parameter". 

W h e n e v e r  an attempt is made to invoke a routine 
t h r o u g h  a call block, a dynamic linker intervenes. If the entry 
block for  the specified routine already exists, the call block is 
replaced by that  entry block, thus snapping the link. If the 
entry  block does not yet exist, i.e., a parameterized routine is 
b e i n g  instantiated with a new set of parameters, a new entry 
block must  first be created from the template entry block for 
the routine.  T h e  new entry block shares the code and the 
parame te r - independen t  data with the template (and all other 
instant iat ions) ,  but has a completely new copy of the 
pa rame te r -dependen t  data in which every reference to a 
d u m m y  descriptor for "the ith parameter" is replaced by a 
reference  to the corresponding actual parameter. 

It is important  to realize that instantiation merely 
Involves  substituting actual parameters into the 
pa rame te r -dependen t  data template; no attempt is made to 
s imultaneously snap the call blocks in the resulting data. One 
reason for  this is that  attempts to instantiate certain routines 
(such as agen above) would cause an infinite number of 
subs id iary  jnstantiations. A second reason is that some 
(possibly many) of the call blocks may never be used, so 

snapp ing them is a waste of time. For example, code to handle 
potent ia l ,  but unexpected, exceptions may never be executed. 

T h e  above description omits a number of details that are 
largely related to aspects of performance. For example, the 
parameter-dependent data in an entry block is actually 
separated into two parts: data dependent solely on cluster 
parameters ,  and data dependent on routine parameters (and 
p e r h a p s  also on cluster parameters); in this way, all operations 
of  a parameterized type can share that data dependent on just 
the  cluster parameters, while those (rare) operations that are 
addi t iona l ly  parameterized have separate, additional data 
d e p e n d e n t  on those parameters. Although these details are 
impor t an t  to the actual implementation, they do not 
fundamen ta l ly  alter tile description just given, and so will not 
be pursued  here. 
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