

Aspects of Implementing CLU

Russell R. Atkinson
Barbara H. Llskov
Robert W. Scheifler

Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, MA 02139.

Linguistic mechanisms used in CLU to support 1) structured exception handling, 2) iteration over
abstract objects, and 3) parameterized abstractions are briefly reviewed, and methods of realizing these
mechanisms are described. The mechanisms discussed support features that are likely to be included in
other programming languages, and the implementation methods should be applicable to a wide range of
languages.

Key words: CLU; exception handling; iterators; parameterlzed modules; programming language
Implementation methods.

1 . I n t r o d u c t i o n 2 . E x c e p t i o n H a n d l i n g

CLU [1, 2] is a programming language/system that
provides linguistic mechanisms supporting procedural, data,
and control abstractions, and structured exception handling.
In Implementing CLU, methods of realizing these linguistic
mechanisms were needed. This paper describes a few of these
Implementation methods. A n implementation using these
methods has been running since the fall of 1977.

In CLU, a routine (procedure or iterator) can terminate
In one of a number of conditions. A routine terminates in the
normal condition by executing a return statement; termination
in an exceptional condition is accomplished by executing a
signal statement. In each case, result objects may be returned;
the result objects may dif fer in number and type in the
di f fe rent cases.

The methods we describe are ones that we feel are of
general interest because the features they support are likely to
be included in other programming languages. In Section 2 we
discuss how the CLU exception handling mechanism is
realized. In "Section .~ we describe the implementation of
iterators. Finally, Section 4 contains a discussion of the
implementation of parameterized modules. More complete
descriptions of exception handling and iterators can be found
In [3] and [4], respectively.

Th is work was supported in part by the Advanced Research
Projects Agency of the Department of Defense, monitored by
the Off ice of Naval Research under contract
N00014-75-C-0661.

The information about the ways in which a routine may
terminate must be included in its heading. For example, the
procedure performing integer division has the following
heading:

d iv = proc (x, y: int) returns (int) signals (zerodivide)

w h i c h indicates that div may terminate normally by returning
a single integer (the quotient of the two input arguments), or
exceptionally by signalling zero_diuide (which indicates that
the second argument was zero) and returning no results, in
addi t ion to the named exceptions, every routine can terminate
in the special fai lure condition, with a string as the result.

The exceptions signalled by a routine must be caught
and handled by its immediate caller. Handlers are associated
with invocations statically, and are placed in CLU programs
by means of the except statement, which has the form:

statement except handler list end

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM'copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for Com-
puting Machinery, Inc. To copy otherwise, or to republish, requires a fee and/or
specific permission.

'~ 1978 ACM 0-89791-000-i/78/0012/01Z3 /$00.75

Th is statement has the following interpretation. When a
rout ine activation terminates by signalling an exception, the
corresponding invocation (the text of the call) is said to raise
that exception, if, during execution of the statement, an
invocation raises an exception, control immediately transfers to
the closest applicable handler; i.e., the closest handler for the

123

exception that is attached to a statement containing the
Invocation. When execution of the handler completes, control
passes to the statement following the one to which the handler
is attached. Thus if the closest handler is in the handler list,
the statement following the e x c e p t statement is executed next.
If execution of the statement completes without raising an
exception, the attached handlers are not executed.

Each handler in the handler list names one or more
exceptions to be handled, followed by a list of statements
(called the handler body) describing what to do. Several forms
a r e available for handlers. For example, the objects provided
by the signaller may be discarded if desired, and a special
o t h e r s form may appear last in the list to handle all
exceptions not handled by other handlers in the list.

T h e example below illustrates the association of handlers
with exceptions:

begin ~ start of inner block
SI e x c e p t when zero: $2

end

end ~ end of inner block
e x c e p t when zero: $3

others: $4
end

I f zero is raised by an invocation in SI, it will be handled by
52, not $3. However, i f zero is raised by an invocation in $2,
i t w i l l be handled by 33. All other exceptions raised in SI and
,~2 wi l l be handlfrd by 34.

Sometimes there is nothing useful that a calling routine
can do when an exception is raised by some invocation, so no
hand ler is provided. In this case, the uncaught exception
automat ical ly turns into a fai lure exception of the calling
rout ine with the string result:

"unhandled exception: name"

where name is the name of the unhandled exception.

2 . 1 . I m p l e m e n t a t i o n

The re are several possible methods of implementing the
exception handling mechanism. As usual, tradeoffs must be
made between efficiency of space and time. We believe the
fol lowing are appropriate criteria for an implementation:

1. normal case execution efficiency should not be impaired at
all.

5. exceptions should be handled reasonably quickly, but not
necessarily as fast as possible.

3. use of space should be reasonably efficient.

T h e t radeoff to be made is the speed with which exceptions
a r e handled versus the space required for code and data used
to locate handlers.

Signalling an exception involves the following actions:

1. discarding the activation record of the signalling activation
(but saving the result objects associated with the exception).

2. locating the appropriate handler in the calling routine.
3. adjus t ing the caller's activation record to reflect any

terminations of expressions and statements containing the
invocation.

4. copying the result objects into the caller's activation record.
5. t ransferr ing control to the handler.

Actions (3) and (5) are equivalent to a goto from the invocation
to the handler. Actions (1) and (4) are similar to those
occurr ing in the normal termination of a routine. Because the
association between invocations and handlers is static, the
compiler can provide the information needed to perform
actions (2) and (3). Below we sketch two methods of providing
this information; these methods differ considerably in their
pe r fo rmance characteristics.

T h e first method, called the branch table method, is to
follow each invocation with a branch table containing one
entry for each exception that can be raised by the invocation.
Each entry contains the location of a handler for the
cor responding exception. The invocation of a routine whose
head ing lists n exceptions will have a branch table of n ÷ 1
entries; the first n entries correspond to the exceptions listed in
the heading, while the last entry is for failure.

Using this method, return and signal statements are easy
to implement: r e tu rn transfers control to the location
fol lowing the branch table, while signal transfers control to the
location stored in the branch table entry for the exception
be ing signalled. The information needed to adjust the caller's
act ivation record could be stored with the handler, as could
Informat ion about whether to discard the returned objects; for
example, this information could be placed just before the first
Instruction of the handler. Figure 1 shows the code skeleton
f o r an invocat ion using this method.

T o invoke p = proc () returns () signals(el, e2):

call p
el_.addr ; branch table
e2_addr
fai lure_addr
... ; normal return here

sizel ; new activation record size
... ; other info about the handler

e l_addr : ... ; code for el handler

F i gu re 1. Code skeleton using the branch table method

T h e branch table method provides for efficient
s igna l l ing of exceptions, but at a considerable cost in space,
since every invocation must be followed by a branch table (all
Invocat ions may at least signal failure). A second method, the
h a n d l e r table method, is the one used in the current CLO
Implementation. The method trades off some speed for space,
and was designed under the assumption that there are many

124

f e w e r handlers than invocations, which is consistent with our
exper ience in using the mechanism.

T h e h a n d l e r table method works as follows. Rather than
b u i l d a b r a n c h table per invocation, the compiler builds a
s i n g l e table for each routine. T h i s table contains an entry for
each h a n d l e r in the routine. An entry contains the following
i n f o r m a t i o n :

1. a list o f the except ions handled by the handler (a null list
can be used to indicate an o t h e r s handler).

2. a pa i r o f va lues de f i n i ng the scope of the handler, that is,
t h e ob jec t code cor responding to the statement to which the
h a n d l e r is a t tached .

3. t h e location of the code of the handler.
't. t h e new ac t iva t ion record size.
5. a n ind ica t ion of whe ther the result objects are used in the

h a n d l e r .

T h e exceptior~ list and scope together permit candidate
h a n d l e r s to be" located: only an invocation occurring within
t h e scope a n d ra i s ing an exception named in the exception list
can poss ib ly be hand led by the handler (for an other,
h a n d l e r , only the scope matters).

A r e t u r n statement is implemented just as it would be in
a language wi thout exception handling. A signal statement
requires searching the handler table to f ind entries for
cand ida te handlers: i f several candidates exist, the one with
the smallest scope is selected. Placing the entries in the table
in the l inear order in which the corresponding handlers
appear in the source text guarantees that the first candidate
f o u n d is the handler to use. Unhandled exceptions can be
recognized ei ther by the absence of candidates or by storing
one add i t i ona l entry at the end of the handler table for this
case.

3 . I t e r a t o r s

l t e ra to r s a re a type of control abstraction that permit
I t e ra t ion ove r a collection of items (such as the elements of a
set or a n ar ray) wi thout knowledge of how the items are
o b t a i n e d f r o m the collection. An iterator produces the items in
t h e collection one at a time; it can only be invoked by a for
s t a t e m e n t , wh ich uses the items in performing some
c o m p u t a t i o n . Detai ls of how the items are selected from the
col lect ion a re local to the iterator; the for statement simply uses
t h e I tems, w i thou t knowledge of how they are produced.

T h e h e a d i n g of an iterator states the types of arguments
t h a t t h e i terator requires and the types of objects making up
each i tem (an i tem consists of zero or more objects). For
e x a m p l e , C L U ar rays provide an indexes iterator which
p r o d u c e s t he sequence of integers that are legal indexes into
the g i v e n ar ray . T h e head ing of this iterator is

indexes = i t e r (a: ar ray[t]) y ie lds (int)

w h e r e t s t a n d s for the type of element in array a.

An i terator produces an item by executing a yield
statement; t h e i terator is then suspended and its state is

r e t a i n e d . W h e n ano the r item is needed the iterator is resumed
w i t h t h e s aved state, f rom which it continues and possibly
p r o d u c e s add i t i ona l items. T h u s an iterator is a coroutine [5,
6] . H o w e v e r , the use of iterators is limited to permit efficient
i m p l e m e n t a t i o n , as discussed fur ther below.

T h e C L U for s ta tement has the form:

fo r variable-or-decl-list in invocation do
body-of-statements
e n d

T h e i te ra tor is initially called in the invocation. Each time an
i t em is yielded, the objects in the item are assigned to the
v a r i a b l e s in the variable-or-decl-list. Then the
bode-of-statements is executed to make use of the objects
p r o d u c e d . At the end of the body-of-statements the iterator is
r e s u m e d to p roduce ano ther item. When the iterator
terminates (because the sequence is exhausted), the for
s t a t e m e n t also terminates. T h e variables in the
variable-or-decl-list can be global to the for statement (a
variable-list), or local to the for statement (a decl-list). These
v a r i a b l e s a r e not sha red with the iterator, so assignments to
t h e m in the fo r loop body cannot affect the iterator's behavior.
T h e r e f o r e , such a s s ignmen t s are not forbidden.

It is also possible for a for statement to terminate both
I tself a n d the invoked iterator. T h e b r eak statement
t e r m i n a t e s the smallest enclosing for statement (they can be
nes t ed) a n d the i terator it invoked. An exception raised by an
i n v o c a t i o n in the for loop body but handled outside the for
s t a t e m e n t will t e rminate both the for statement and the
l t e ra to r . Execu t ion o f a r e t u r n or signal statement terminates
b o t h t h e enc los ing rout ine and all iterators it has invoked.

8 . 1 . I m p l e m e n t a t i o n

T h e use of iterators is restricted in two ways: iterators
are i nvoked only by for statements, and each for statement
invokes exact ly one' iterator. These restrictions insure that
ac t ive i terator invocations are always nested, which in turn
means that iterators can be implemented using a single stack.

T h e implementat ion of iterators is similar to that of
procedures. Both share a single stack for arguments, linkage
I n f o r m a t i o n , var iab les and temporaries, in the following
d i s c u s s i o n we a s s u m e tha t the reader is familiar with stack
f r a m e s (also called activation records). Also, al though it does
n o t real ly a f f ec t the implementat ion, it may help to know that
C L U m o d u l e s a re not nested in one another and have no free
v a r i a b l e s .

Each stack frame contains the fol lowing linkage
i n f o rma t i on :

I. the return address in the calling routine.
2. the rout ine base address for the current routine fused, e.g.,

f o r f i n d i n g literals).
3. the return l ink, which points to the base of the stack frame

fo r the cal l ing routine. There is a single call chain, which
consists o f stack frames linked via return links.

4. the resume l ink, which is used to chain together the

125

i n fo rmat ion necessary to resume suspended iterators
invoked by the current routine (null i f no suspended
lterators). An iterator chain consists of stack frames linked
v ia resume links. Each routine may have a separate
l terator chain.

T h e arguments to the routine are directly above the
frame's l inkage information (assuming the stack grows down),
and the local variables are directly below (all local variables
are allocated together at routine entry, rather than at block
entry). Below the local variables are temporaries for
invocat ions (the temporaries become arguments to other
routines). Figure 2 shows a stack frame.

arguments

linkage area
return address
routine base address
return link
resume link

local variables

temporaries

F i g u r e 2. A stack f rame (assuming the stack grows down)

Cal l ing an iterator is identical to calling a procedure: a
n e w stack f r ame is created, and the return address, routine
b a s e address , and return link a re set. The resume link is
initially null, since there are no suspended iterators. Returning
f r o m an i terator is identical to a normal procedure return: the
l te ra tor ' s f r ame is removed from the stack and control
t r a n s f e r s to the return address.

Yie ld ing is somewhat like invoking the for loop body as
a normal procedure. When an iterator yields an item, the
f rame of the iterator remains on the stack, and a special frame,
called a resume frame, is added to the stack to hold information
about how to resume the iterator. This resume frame is an
abbrev ia ted version of a normal frame, containing only
l inkage informat ion. The return address contains the location
where control wi l l go when the iterator is resumed and the
return l ink points to the frame for the iterator; the routine
b a s e address is null to indicate that this is a resume frame.
T h e r e sume f r ame is added to the iterator chain of the routine
t h a t called the iterator: the resume link for the calling routine's
f r a m e is set to point to the resume frame, and the resume link
f o r the resume f rame is set to the previous contents of the
r e s u m e link for the calling routine's frame. Finally, control
t r a n s f e r s to one beyond the return address given to the iterator
(the actual re turn address is used for returning and contains a
b r a n c h a r o u n d the loop body).

Resuming an iterator is similar to returning from a
procedure. When a for loop body terminates, the iterator to be
resumed is the first one on the iterator chain for the current
f rame. Its resume frame is removed from the chain: the

resume l ink of the current frame is set to the resume link of
the resume frame. The reformation in the resume frame is
used to locate the iterator's stack frame and resume point.
T h e n the resume frame is removed from the stack. At this
point , the stack pointer has the same value as it had when the
l terator last yielded an item, so the stack can grow as necessary
d u r i n g the iterator's execution.

Execut ing a re tu rn or signal statement in the middle of
a fo r loop is as efficient as a normal return or signal. The
stack space for the suspended iterators is reclaimed when the
stack space for the current frame is reclaimed. Early
terminat ion of the for loop in any other way (e.g., by a break)
requires a few instructions to reclaim the stack space for the
appropr ia te suspended i terators.

Consider a routine P that contains a nested for loop of
the form:

for ... in Iterl(...) do
for ... in lter2(...) do

end
end

Assume also that iterator I ter2 contains a for loop of the form:

for ... in lter3(...) do

end

F igure 3a shows the stack as it appears whenever the execution
o f P is inside the outer loop but not in the inner one. I ter2
has not yet been invoked (or its previous invocation has
terminated). At this point, P's iterator chain contains a single
element: RFI, the resume frame for I ter l .

In f igure 3b, the stack is shown as it appears whenever
execut ion is inside P's inner for loop. Now P's iterator chain
contains two entries: RF2, the resume frame for Iter2, and
RFI , the resume frame for I ter l . RF2 appears first on the
chain, so it is easily found when the inner loop body
terminates. The iterator chain for I ter2 contains a single
entry: RF3, the resume frame for I ter3.

Iterators are inexpensive to implement. Yielding is
s imi lar to cal l ing a routine (a frame is created), and resuming
is s imi lar to returning, so the cost of using an iterator is
rough ly equivalent to the cost o f a procedure call for each
execut ion of the loop body. Even this cost can be eliminated
by do ing inl ine substitution: the iterator body is substituted
(w i th minor changes) for the for loop control, and the code of
the fo r loop body is substituted for occurrences of the yield
statement. I f the iterator contains more than one yield
statement, possible code duplication can be avoided by treating

the f o r loop body as an internal procedure. 1

1. I n v o k i n g this sort of procedure involves remembering only
the return point; no arguments are passed and no context
switch need be done [7, 8].

126

PF:

IFI:

R F h

r e s u m e link: RFI
r e tu rn link: ...

resume l ink: - -
r e t u rn l ink: PF

resume l ink: - -
return l ink: IFI

PF:

IFh

RFI:

IF2:

IF~:

R FS:

R F2:

resume link: RF2
return link: ...

resume link: - -
return link: PF

resume link: - -
return link: IFI

resume link: RFS-
return link: PF

resume link: - -
return link: IF2

resume link: - -
return link: IF3

resume link: RFI
return link: IF2

<

F igu re 3a Figure 3b

RFn: resume f r ame for ltern
IFn: normal f r ame for Itern
PF: normal f rame for procedure P

F i g u r e 3. Examples of iterator chains

4 . P a r a m e t e r i z e d M o d u l e s

In C L U , procedures, iterators, and clusters can all be
parameterlzecl. Parameter iza t ion provides the ability to define
a c lass o f related abstract ions by means of a single module.
P a r a m e t e r s a re limited to just a few types, including integers,
s t r i n g s , a n d types. T h e most interesting and useful of these
are t h e type parameters : objects in C L U can grow and shrink
d y n a m i c a l l y , so size parameters are not needed.

W h e n a modu l e is parameterized by a type parameter,
t h i s imp l i e s tha t the module was written without knowledge of
w h a t the actual parameter type would be. Nevertheless, i f the
modu le is to do anyth ing with objects of the parameter type,
cer ta in operat ions must be provided by any actual type.
I n f o r m a t i o n about required operations is described in a where
clause, which is part of the heading of a parameterized
module . For example,

set = c l u s t e r [t: t y p e] is create, insert, delete, elements
w h e r e t has equal: p roc type (t, t) returns (bool)

is the heading of a parameterized cluster defining a

genera l ized set abstraction. Sets of many different element
types can be obtained f rom this cluster, but the where clause
states that the element type is constrained to provide an equal
opera t ion .

As a second example, . the fol lowing parameterized
procedure defines a class of summing functions for collections
(s u c h as sets a n d arrays) of integers:

sum = p roc [struc: t ype] (s: struc) re turns (int)
w h e r e struc has

elements: i t e r t y p e (struc) yields (int)
x: in t := 0
for elt: int in struc$elements(s) do

x := x + elt
end

r e t u r n (x)
end sum

T h e w h e r e clause constrains the legal actual type parameters
to t h o s e h a v i n g an elements iterator of the appropriate type.

T o use a parameter ized module, actual values for the
p a r a m e t e r s m u s t be provided, us ing the general form

m o d u l e _ n a m e [parameter_values]

P a r a m e t e r va lues mus t be computable at compile-time.
P r o v i d i n g ac tual paramete rs selects one abstraction out of the
c lass o f related abst ract ions d e f i n e d by the parameterized
m o d u l e ; s ince the values are known at compile-time, the
compi le r can do the selection and can check that the where
clause restrictions are satisfied. The result of the selection, in
the case o f a parameterized cluster, is a type, which can then
be used in declarations and operation names; in the case of
parameter ized procedures or Jterators, a procedure or iterator is
obta ined, which is then avai lable for invocation. For example,
sum[set[int]] is a use of the two abstractions shown above, and
is legal because int provides an equal operation and set[int]
p r o v i d e s an elements iterator.

4 . 1 . I m p l e m e n t a t i o n

The re are a number of basic schemes for implementing
parameter ized modules. These schemes can be characterized
by the t ime at which the binding of actual parameter values
takes place. The possible times include compile time, load time
(a f te r compi la t ion but pr ior to execution), and run time (either
at the f i rs t use of each distinct set of parameter values, or at
every use). The result of binding parameters is called an
lnstantiation.

In a compi le- t ime binding scheme, the compiler produces
a dist inct object module for each distinct set of parameter
values; each use of a formal parameter in the source text.is
replaced by the corresponding actual parameter, and then the
resu l t ing text is compiled to obtain the instantiation, in the
l oad - t ime and run- t ime schemes, a parameterized abstraction is
compi led into a single, parameterized object module; this
modu le is later instantiated by supplying actual values for the
p a r a m e t e r s .

127

T h e compi le - t ime scheme is similar to macro processing,
a n d has many of the associated advantages and disadvantages.
Its p r i m a r y advan t age results from the greater context that is
a v a i l a b l e to the compiler when compiling any particular
in s t an t i a t ion of a parameterized abstraction. This increased
c on t e x t allows the generation of more time-efficient object
modules , both because of the greater opportunities for
o p t i m i z a t i o n and because run-t ime binding is avoided. The
p r i m a r y d i sadvan tages of this scheme are the increased
n u m b e r o f compilat ions performed and the increased amount
o f space needed to store the object modules.

In the load- t ime and run-t ime schemes, binding is
p e r f o r m e d on object modules. The binding does not require
t h a t a new copy of an object module be created for each set of
p a r a m e t e r values; rather, the code of the module and most of
its local data can be made independent of the particular
p a r a m e t e r values, and thus can be shared by the various
tns tan t i a t ions .

There are two possible run-time schemes. In the first,
the b ind ing of parameters takes place each time a
parameter ized object module is invoked. The parameter
values are passed to the object module as extra, hidden
arguments, and are referred to by the object module just like
the normal, expl ic i t arguments. In the second scheme, which is
the one used in the current CLU implementation, a new object
module is created once for each distinct set of parameter

values; the b ind ing occurs at the first use during execution. 2
T h e new object module is created by building a new structure
c o n t a i n i n g the paramete r -dependent data; the code of the
m o d u l e and its parameter - independent data are shared by the
v a r i o u s instant iat ions.

Compi le- t ime and load-time schemes all require that
eve ry possible set of parameter values supplied to an
abs t r ac t ion be determined before execution begins. In CLU,
t h e poss ib le parameter values are restricted to "compile-time
c o m p u t a b l e " constants. However, despite this restriction, it is
poss ib le to implement recursive parameterized abstractions that
u s e an u n b o u n d e d number of distinct parameter values, as the
f o l l o w i n g perfect ly legal module (inspired by [9]) demonstrates:

agen = proc It: t ype] in: int) returns (any)
i f n < = O

then return (array[t]$new O)
else return (agen[array[t]] (n - 1))
end

end agen

An invocat ion agen[T](n), where T is an arbitrary type,
even tua l ly produces a new array. The important characteristic
of agen, however , is that agen calls itself recursively with a
p a r a m e t e r a r r a y [t] that is distinct from the original parameter
t; in fact , it is distinct from any previous parameter to agen
w i t h i n a s ingle recursive chain of calls. For any positive n, an
invoca t ion of one instantiation of agen will use n distinct

add i t iona l instantiations of agen. For example, the invocation
agen[int](3) wil l result in 3 recursive instantiations of agen:

agen [a r ray [int]] (2)
agen [a r ray [ar ray [int]]] (1)
agen [a r ray [a r ray [ar ray [int]]]] CO)

Thus there exist f inite CLU programs that use at
run - t ime an unbounded number of instantiations of
parameter ized abstractions. To handle such programs, it is
therefore necessary to support the dynamic instantiation of
parameter ized abstractions at run-time. For a compile-time
scheme to be correct, one must recognize modules such as agen
and either consider them to be illegal, or provide some means
fo r implement ing them that avoids compiling an infinite
number of object modules.

As was mentioned above, the current CLU
i m p l e m e n t a t i o n utilizes a run- t ime scheme wherein a new
ob j ec t modu le is created once for each distinct set of parameter
va lues . S ince in the implementation there is no single object
m o d u l e fo r a cluster as a whole, but rather individual object
m o d u l e s fo r each cluster operation, the following (somewhat
simplistiC) descr ipt ion focuses on the representation of routines.
T y p e s a re represented, by objects called tTpe descriptors;
h o w e v e r , type descriptors are used primarily in various forms
of ident i f icat ion, and their internal format is not of particular
Impor tance here.

T h e implementation makes use of two types of objects,
calt blocks and entr7 brooks. A call block is a description of a
rout ine to be invoked, and contains a type descriptor for the
data type, i f the routine is a cluster operation, the routine

name, and the actual parameters for the routine. 3 An entry
block represents an invocable entity (i.e., a non-parameterized
rout ine or an instantiation of a parameterized routine); it
contains references to constituent objects containing the code
fo r the routine, the parameter-independent data, and the
parameter-dependent data. The parameter-independent data
consists of l iteral values, such.as real numbers and strings, and
call blocks for invoked routines that are not dependent on the
parameters. There is parameter-dependent data only in entry
blocks for instantiations; this data consists of the actual
parameters and call blocks for invoked routines that depend
on those parameters.

For example, f igure 4 shows the entry block for the
lnstant iat ion sum[set[int]]. This entry block refers to one
parameter- independent call block, for intSadd, and one
parameter-dependent call block, for set[int]$tlements. Notice
that in the call block for stt[int]$elements there are no routine
parameters; this is because elements has no parameters besides
those of its containing cluster. A call block for sum[set[intil is
shown in f igure 5. Note that here there is a routine parameter,
bu t no type descriptor, since sum is not an operation of a
cluster.

2. H o w e v e r , one can run through storage looking for uses of
p a r a m e t e r i z e d modules and force binding to take place before
execution.

8. I n d i v i d u a l cluster operations can have parameters in
add i t i on to those for the entire cluster.

128

code:

parameter-
independent
data:

parameter-
dependent
data:

parameters..
setCint]

call blocks.. Y
. _ /

type:
set[int]

n a m e :

"elements"

Figure 4. Entry block for sum[set[int]]

name:
"sum"

parameters:
set[int]

Figure 5. Call block for sum[set[int]]

T h e uninstantiated form of a parameterized routine is
also represented by an entry block, to be used as a template
when bui ld ing instantiations. In the parameter-dependent
data of this entry block, each would-be reference to the ith
actual parameter is instead a reference to a dummy descriptor
fo r "the ith parameter". For example, the template for sum
looks like f igure 4, except that references to set[int] are
replaced by references to "the first parameter".

W h e n e v e r an attempt is made to invoke a routine
t h r o u g h a call block, a dynamic linker intervenes. If the entry
block for the specified routine already exists, the call block is
replaced by that entry block, thus snapping the link. If the
entry block does not yet exist, i.e., a parameterized routine is
b e i n g instantiated with a new set of parameters, a new entry
block must first be created from the template entry block for
the routine. T h e new entry block shares the code and the
parame te r - independen t data with the template (and all other
instant iat ions) , but has a completely new copy of the
pa rame te r -dependen t data in which every reference to a
d u m m y descriptor for "the ith parameter" is replaced by a
reference to the corresponding actual parameter.

It is important to realize that instantiation merely
Involves substituting actual parameters into the
pa rame te r -dependen t data template; no attempt is made to
s imultaneously snap the call blocks in the resulting data. One
reason for this is that attempts to instantiate certain routines
(such as agen above) would cause an infinite number of
subs id iary jnstantiations. A second reason is that some
(possibly many) of the call blocks may never be used, so

snapp ing them is a waste of time. For example, code to handle
potent ia l , but unexpected, exceptions may never be executed.

T h e above description omits a number of details that are
largely related to aspects of performance. For example, the
parameter-dependent data in an entry block is actually
separated into two parts: data dependent solely on cluster
parameters , and data dependent on routine parameters (and
p e r h a p s also on cluster parameters); in this way, all operations
of a parameterized type can share that data dependent on just
the cluster parameters, while those (rare) operations that are
addi t iona l ly parameterized have separate, additional data
d e p e n d e n t on those parameters. Although these details are
impor t an t to the actual implementation, they do not
fundamen ta l ly alter tile description just given, and so will not
be pursued here.

R e f e r e n c e s

[1] Liskov, B., Snyder, A., Atkinson, R., and Schaffert, C.
Abstraction Mechanisms in CLU. Comm. ACM 20, 8
(Aug 1977), 564-576.

[2] Liskov, B., Moss, E., Schaffert, C., Scheifler, B., and
Snyder, A. CLU Reference Manual, Computation
Structures Group Memo 161. M.I.T., Laboratory for
Compute r Science, Cambridge, MA (July 1978).

[3] Liskov, B., and Snyder, A. Structured Exception
Handl ing , Computation Structures Group Memo 155.
M.I.T., Laboratory for Computer Science, Cambridge,
MA (Dec 1977).

[4] Atkinson, A., and Liskov, B. Iteration Over Abstract
Objects in CLU, Computation Structures Group Memo
167. M.I.T., Laboratory for Computer Science,
Cambr idge , MA (forthcoming).

[5] Dahl, O.-J. , and Hoare, C.A.R. Hierarchical Program
Structures. Structured Programming, Academic Press,
London (1972).

[6] Conway, M.E. Design of a Separable
Transition-Diagram Compiler. Comm. ,4CM 6, 7 (July
1983), 396-'1.08.

[7] Allen, F.E., and Cocke, J. A Catalogue of Optimizing
Transformat ions , RC 3548. IBM Thomas J. Watson
Research Center, Yorktown Heights, NY (Feb 1975).

[8] Geschke, C.M. Global Program optimizations. Ph.D.
Thesis, Computer Science Dept., Carnegie-Mell:'~
University, Pit tsburgh PA (Oct 1972).

[9] Gries, D., and Gehani, N. Some Ideas on Data Type~
High-Leve l Languages. Comm. ACM 20, 6 (June 1[7 ,
414-'t20.

129

