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COMPUTATION $TRUCTURES GROUP

A, INTRODUCTION

In the past vear, werk conducted in the Computation Structures Group has
emphasized the study of asynchronous systems, the design and application ol data-
driven camputer languages and architeclures, and the developmenl of new programming
methodologies using data abstractions.

The wark on cencurrent systems has concentrated on the analysis ol cerlain
properties of Palri nets along with the use of nels [ study aspacts of formal language
theory. The study of data-driven languages and architactures has examined the
dovelopment of computsr languages o explait concurrency of program parls and the
structura of computer systems which can efficiently execule programs expressed in
parallel forrm A number of computer and memory syslem architectures which execute
programs representad in data-driven form have teen invesligaied. Such systems are
censtructed of darge numbers of medulas which communicate asynchrenously through
the lransmission of information packets. To study tha feasibility ot these syslem
strucliures, we hava daveloped the inilial specification of a micraprocessar-based
simulation facilily and are engaged in its furthar design.

The study of programming methodologies based on dala abstraclions invoives lhe
study of toois and techniques to enhance the etiectivenass al programmers in
producing quality software -- software thal is reliable, has comprehendable struclure,
and iv relatively easy to modify and maintain. Two majer directions are bang followed.
A programming language/system, CLU, is under development. CLU enhances program
quality by permittiag direct expression of the kinds of program strugctures anwing from
promising desipn methadelogies. In addition, a sludy of specificalion tachniques well-
suited to tha program structures of CLU is under way; using these technigqueas, the
programmer will be able to express and Investipate properties of his program design in
advarce of actual implamentation, and o prove the correctness af his implementation
once [t exists.

B. THE CLU LANGUAGE/SYSTEM

Barbara Liskov and her greup hava been developing the Cull programming
language and system. The mativation behind the development of CLU is discussed in
[34] Briefly, CLU is intendad toc simplily the design and implemeantation of quality
software by providing linguistic constructs that allow the kinds of moduies identified
during design to be written nalurailly as CLU programs. The most important such
construct, and tha ons that is original in CLY, is the cluster The cluster permils a
pragram module to be written that implements a data abslraclion, or abslract data
type, consisting of both a set of sbjects or values belonging to the type, and a set al
aperations that completely determine the behaviar of the type's objects. Data.
abstractions sre a particularly veivsbie sort of program madule: thay eccur widely,
sinca tha manipulalion of data is a primary concern al programming, and although much
sharing ol informalion and resaurces takes plece within the data abstraction
{particularly important ie information about how objecls of lhe type are represented in
storage), this sharing is limited to the implementation af the dals absiraclion, and is not
visible to the abstraction's users. The advantages of such an organizalion have baen
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discussed in {1,25) for example, the interlace ol a dala abslraclion module is vary
simple, and the hiding of infarmation within tha modulg means that the imptementation
of the abstraction can be ch.unged without requiring recoding of the programs using the
abstragtion. One gsuch change thal might be made is to chogse an alternative
representation for the dala abstraction’s objects.

CLU differs fram other languages in its emphasis on constraints, enforced by Lhe
langusge and its compiler, thal guide the pragrammer's search lor & pood design by
removing his or her freedom lo viclate certain pracapts of good programming practice.
A cammon constraint, found in almost all higher levaer langusges, protects ha local
variabies af a procedure fram manipulation outside af tha procedure’s code. CLU
exlends this idea of constrainta ta parmit a group of progcedures to share a local
environment: this is done throcugh the cluster, which limits infarmation aboul a type’s
implementation to the operatians belonging t @ the type. Conventional languages {e.g.
FORTRAN, PL/1) pravide no mechanism like the ciuster. Even advanced extensibie
languages (eg ELL[B)]), which pravide data typs exlensions and sven permil some
aperations 1o be defined along with the type, stil do nol constrain access to the type
to just the operations, so tne advantages menticned abave ¢an be oblained by Lhe
pragrammer onlty by exira-language means. The issue here is not whether weli-
structurad programs can be writlen, since they can be writlen even in assembly
isnguage. Howewver, in iangLagas ather than CLU, such programs can be written only in
spite of the language. Our goal is to mimplily the writing of programs by having tha
language provide guidance aboul what ¢onstitutes good programming praclice.

CLU 15 a languaze/system A CLU program cansisls of a number of modulas;
each module implements an abstraction identified as usefu! during program design. The
CLU syelem includes a description unit for each module, conlaining all in-computer
information aboul the modula. The descrigtion wnit is crested as saon as the medule
interface 15 hnown (befare the moduie is imptemanted); formal epecifications would
aisa be enlered at this stage Modules are compiled separately; the CLU compiler
makes usa af the intarface informalion to check that modules refer to ather modules
carrectly. The CLU system is also usad to centrol tha loading and execulion of
programs.

Our major activity during the past year has been lhe implementalion of & first
versian of CLU  The implementalion is divided into three pieces: the CLU compilar,
inter-module typa-checking, ang the TLU system. The CLU compiler was implemented
tirst and has been runming faor several months; it transiates CLU modules into a LISP-
like languapge called MOL [7]. The type-checker has been implemented and debugged,
and is awaiting integration with the CLU syslem (which containe the information about
the type requirements of modules, and also establishes the meaning of types!. The
CLU system is currently being designed and implemented. A very interesting problem
arising in the design of such a syslem cencarns how to cope wilh muitipe
implementations of a dala type. We are warking an providing multiple implementalions
of & lype in a very flexibla way: differant users can select different impiamentations,
and even wilhin the same program, difterent implementalions can be used for different
dala abjects af the ssme type.

The implementation of CLU was underishen for two ressors: 1o establish the
scundnens of our design, and to parmit us Lo gain experience in using CLU. Ne
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problame with tha design of CLU were uncovered during tha implementalion; some
minar madifications have been made to the languaga to maxa CLU programs easier to
wrile. Wae have used GLU beth for the CLU implamantation, ang to wrile many smaller
programs. The resulis have basn sncouraging: programwer productivity is high, and
the rasulting programs have a good slructure and are easy for olhers to undersiand
We have discovered that data abstractions are indead vary valusble for structuring
programs, and that we design programs by identifying data abstractions, and then
specifying the properties of their operaticns, in advance of any implementation, The
transition from design to implemantalion is parlicularly simple, sinte each design unit
tecomes a CLU program module.

Tha language bsing implsmented is only en imtial version of CLU, and we have
conlinued to work on the design of CLU itself. One accomplishment ol the past year
has been the design of the structured exception handiing machanism described telow.

C. STRUCTURED ERRQOR HANDLING

in designing the exceplion handling mechanism of CLU, our primary concern was
the support of “robust” or “fauit lolerant™ pregrams, ie., programs that are prepared to
cope with the prasence of arrors by attempting various error recovery lechnigques.
Note that it is tne programs themselves that must recover from errors ‘We do not
gssume thal & person heips in the error recavery {aithaugh this wiil semetimes
happan}, and tharafors tha mechanism naad not facilitate person-computer inleraciion
In parlicutar, the mechanism is not inlended Lo suppor! interaclive debugging.

Successiul handling of errars involves two separate activities. First the errors
must be detecled. After an srror has baen datected, it may then be possible Lo
‘recover from the arrar. II it wers alwsys possible (o recover from an errur in the
gsame local conlext in which the error was detected, no special error handling
mechanism would be needed. However, often recovery must accur at a very different
point in the program from where the error was defected Thus the purpese al tha
mecharism is to parmit information about errors {o be comrauniceted from ong part of
the program to another. Nole thal we are not concerned here with how error
detection and recovery are accomplished (through redundancy) except to recognize
that paths parmitting communicatian of informatian about arrers ere required.

The use of the ward "error” in the above discussion is somewhat misieading
becsuse what may appear as an error to one part of a progrem may be consdered as
reascnabla baehaviar in ancther part. For exsmple, en eliempt to read from an empty
file raises an “end-of-lile” error; to the user ol the read command, this merely means
that all data has been read Tharefore, in thae ramainder ol this section, we will use
the more neutral term “exception” {o refer lo the oecurrences ef interest.

{Our study of excepticrn handling has lad lo the following analysis of how such a
machanism should behave:

1. Information about exceptions alwaye resulls from & procsdura invocation and
flaws from tha called procedure io its caller. Whenever B pracedure /s invoked,
it ix invoked to perform a cerlain aclion or cause a cerlpin effecl. Il the
procadurs s unable ta de this, then [t muat natify its caiier that somelhing
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exceptional has ocourred

It is important Lo recopnize that information about an exceplion results
fram an invocation even if tha invocation does ot actually ococur. For example,
the integer divide-check exception may resull from the invecation of tha integar
division operation. In CLU, as in most Janguages, divisian may be written as part
of an expression:

yix

and the code to da the division cecurs in-line in the procedure containing this
exprassion. Nevertheless, conceplusily tha awceplion is detected in a lower
level pracedurs invacation, and the procedure canisining the expression is
notified of the exception, :

The prazapte of structured programming raguira that only the pracedure
gerlorming an invocation can handie exceptions wising from that invocation, as
the following discussion shows. CLU pragrams have s hiersrchical struclure.
Consider, for example, the foliowing graph:

SN
VAN
Q1. Qp

Each node in this graph represents a CLU module, which implements an
abstracbon: P is programmed in terms of abstrachions Q, R, and §; O makes use
of abstractions Ql' -Qp and so on The graph is a static view af the program
slructure; each module makes use af tha modules connected lo it by tha
vutward pointing arcs. Oynamically, 3 moduie makes use al another medule by
invoking one cof ils pracadures; invocations can anly occur in the direction
specitied by the arc Gelween two modites. Information about exceplions flows
in the apposite direclion; a procedure notifies procedures higher in the call
chain of the axistence of an exception.

Soma rules aboul struttured excaplion handiing can be derived frgm
considaring the reiationships belween modules in the graph. An important
precept of structured programming in that & module knows anly about the
abslraclions it uses; it knows nolhing ebout the abstraclions used in
implementing those abstractions. Thus P knaws nothing about Qv -Qy Bulifa
madute knaws nothing abaut the impiementation ol a module it uses, it cannot
possibly respond inteliigently o exceplions delected by procedures calied in the
course of that implementalion. The only module Lhat can respond to the
exceplions detaciad by a procedurs is Lhat procedure’s celler. Eg., only Q can
raspond te lhe orrors detected by Ql. My P cannob
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3. A principle of medularity is that a moedule shouid ba proegrammed ta know nathing
about the module usirg it, so that il can be used in many differant placas  Thus,
a procedure knows nothing about ils calier, and should not reporl an exceptlian
by a mechanism that assumes something abaut lhe caller's environment. In
particular, a jump ta a nan-lacal label (as in PL/IY is nat a satistactory
machanism, nor shadld information about the exception pe communicaled using
non-local varisbles. Instead the mechamsm should permit a procedure Lo
communicate infarmation about an exceplion to its cailer without making any
assumplions about wha its caller js. Note that this is very simdar ta ke way
that procedures return conlrol ta their callers under normal conditions.

The uge of a non-local goto ms an exception mechanism is unsatistactory
for another reason. Even if a program is unable lo recover from an grror, 1
sheuld restore its non-transiant data te a consistent state; this ie necessary to
prevenl an arrar from causing mesny other, uarelated errors later on. Ths
exception mechanism musl ensure thal active programs, whose dala may be
incensistent, will have the oppertunity ta respand to exceplions before becoming
wactive. Thus, a mechanism that aulomatically terminates procedure aclivalions
is unsatisfactory.

4. Finally we come to the gueston of whal aclisns the caller of a proced.re can
perlorm when notifiad abact the occurrence of an exceplion. The simpiest view,
which is the one we take, is that one of two aclions can eccur: If the procedure
is unable to recaver from the exception, it may nelily ils caliar thal an
exception (different trem the one detecled: has oCourred; or, if he procedure
i able to recover, it may continuaits normal flow.

Whal is explicitly forbidder here is the ability far the celling procecure to

resume processing in the precedure that detected the axceplion Althougn we
recogniza that the apiiily to resume is samelimes convenient, we bDoelieve
resuming is not necessary (proviced lhe mechaniem is sulficienlly peneral, o
ours is) and that resuming recessitalas s much more compicaled madel of
computation, in which the exceplion-reporting procedures act like coroutines

The recult of our aralysis of exception handling 15 the following simple modul of
haw the exception handling mechanism should behave: Each procedure can terminate
execution in one of several slates; ane of these states is the “narmal” state, whie the
others reprasent excepliona! conditicns. Each state is given a symbolic narme {the
narmal state is impiicitly named "normal®. Finally, in each slate, vaiues may be
returned to the calling procedure;, these values can difer in type and number from
one state lo another. Allowing paramelers te be returned eliminales the need for
gicbal variakles to hold error information.

We believa the abave model strengthens Whe abstraction power al the language.
Each procedure is expected to be defined over all possible values of iz input
parameters and all possible actions of the procedures it calls. However, it is not
expecled ta behave in lhe same way in afl cases. instead, 1t may respond
appropriately in each case.

We consider thal sn abslraction is not meaninglul unless all the exceplions that
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can arise from ils use ars identified. Thug, the specification of integers must indicate
that divide-chack can oteur, and (in most languages) that integer-ovarilow can alse
occur; wilhout this information, ihe user of inlegers will nol fully understand their
bebaviar. Simitarly, stacks have associated overflow and underflow exceptions.

The requirement that an absiraclion identify all exceptions apples whelher the
abstraction is language or user defined For all the primilive types in CLU, exceplions
have beeen identified and made pari of the abstraction. The inventor of new
abstraclians {e.g. stacks) should do the same. As an added benefit, tha procaess of
identifying exceptions cen be guite valuable during progrem design: an abstraction
with many exceplions znd special cases can probably be improved by redesign. CLU
arrays raflect this cancern wilh limiting excspltions; TLU arrays have an "indax out of
bounds" exceplion, bul act the "undefined element” exceplion thal arises in array
abstraclions in which space for array elements can exisl in advance of values ta store
in the elements.

Wa have a partial design of how the excaption handling mechanism is to be
incarporated in the CLU language. The mechaniem is complately dafined as far as
reporling excaphions is concerned.

1.  The mechanism for reparting exceptions is the signal, which is a special type of
return. Since the sigral is a return, the activation of the signalling module will
disappear; therefora the procedure must ensure that all its nen-transienl data
objacte are in consislent slates bafars gignalling Tha best mathed of ansuring
Lhis is to detect sxcepticns balore any objscly are modified, but this is not
always possible,

A sgnal always specifies a parliculer sxception name: thus a procedure
may have several exceptions associated with it. In addilion, some values may
also be raturnad by a signal. For exampla,

signal foa{x}

terminates exscution ol the procedure contaiming the signal statement with an
indicalion that the "loo™ exception has occurred; the currant value of x is
relurned as a result,

2. Al the sxcaplions ta be raparted by a pracedura must be specified as part of
) the header of that procedwre. For example,

push = aper(s:atackirslume(int)
signals{underflow)

This irformation is also included in Lhe CLU systam library as part of the
cescription unil of lthe absiraction that the procedure implements. If the
excaption raturns values, tha types of these values must always be specified,
and thasa lypas must sgree with the types of values acluslly bming returned.
For axample, the operation te read the nth character ot » string hee interface
descriplion
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cn = pperisstring, ndntirglurns{char)
gignals(boundelint)

The bounds exception relurns tha valus of Lhe oul-of-bounds intagar.

As wag mantioned earliar, the calling procedura is required to respond ta, ar
*oatch,” all exceptions arising from procedures it invokes. The hardest part of
designing an axception handling mechanism, once the basic principies are worked out, is
to provide good human enginearing for catching excaptions. Flexibility in placement of
the exceplion handiers is essential; olherwise the readability of pragrams will be
compromised. Exceplions can arise from the avaluatian of every expression, bul
requiring handiars inside ol expressions would make programe unreadable. At present,
we ara investigating the semantic and pyniaclic issues that arise from the requiremant
of flexible placement of exceptien handiers within the calling procedure.

D. SPECIFICATION TECHNIQUES FOR DATA ABSTRACTIONS

One of tha properties of data abstractions mentioned garlier is that their
interiaca is particularly simple, sinca so much information is hidden within the module.
Theralore, we can hope Lhat data abstractions will have simple spacilicalions, since it
is precisely the interfate that a specification must describs. A study of specificatian
techniques for data abstractions was undertaken this year by B. Lishov and S Zilies
and is reported in [8] Inciuded hera is a brief summary of this work.

A farmal specification for a functional abstraction describes the effect ol a single
eperation; a canvenient way ta do this s by an inpul/output specilication. A
specilication far a data abstraclion, which contains many sperations, must describa the
affacte of all the operations, and algo the behavior af the objecls belenging lo the
type. Mew techniques are hsing delined for spacilying the behavior of data
abstractions. Using thasa technigues, the enlire data abstraction is specilied as a unil,
with the advantage thel & more minimal specilication resuits, describing just the
sxtarnaliy abservable bebavior.

Tha inlermation contained in a specification of a data absiraction can be divided
into a semantic part and a syntactic parl. Information abaut lhe aclual meaning or
behavior of the data mbetrection is described in the semantic parti the description s
axprassad using a vocabulery of terms or symbels defined by the syntactic part,

The firsl symbols Lhat must be delined by the syntaclic part of a specilication
idenlity the abstraction being dafined and its domain or clags of dafined objects, and, in
this case, it is conventicnal Lo use the same symbal to danote both the absotraction and
its class of abjects. Thus, the objects belanging lo the dala abstraclion, slack, are
ralerred to as stacks.

The remairing symbols introduced by the ayntactic park nsme the aparatigns of
the abstraction, and dafine their lunctionality -- ths domains of their input and oulput
valuet. An example describing Lhe functionality of the operatians al the data
abstraction, stack, is shown befaw.
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CREATE: -> STACK

PUSH: STACK X INTEGER -> §TACK
POP: STACK => STACK

TOP: STACK -» INTEGER

{TOP returns tha value in the top of the stack without removing it, while POP removes
the velue withaut returning it.}

Note thal more than one domain appesrs in the specification; this is trua far
aimost all interesling data abstractions. Normally, only one of these {the domain of
slacks in tha example} is being defined; tha ramaining damains and their properties
are assumed to be known. Given this distinclion, the group of operalions can be
partitioned into three blocks. The first black, the primitive constructors, consists of
those cperations that have na operands in the domain baing defined, but which yield
results in the defined domain. This black includes the conslants, represented as
argumentiess operations {lar example, tha CREATE operation for stacks). The second
block, the combinatorial constructers, consists of those operations (PUSH and POP in
the example! that have some of their operands in and yield their rasults in the defined
domain. The third black consists af those operstions (TOP for stacks) whosa rasuits
ara not in the delined domain.

The semantic part of the specilication uses the aymbals inlroduced in the
syntaclic part to exprans the meaning of the dala sbstraction. Two diffarent
approaches are used in capluring this meaning: either an abslracl modsel is provided
tar the class of objects end the oparations dafined in terms of the model, ar the class
ol objects i defined implicitly via assertions of properties of the operalions.

In tollowing the abstract model approach, the behavier is actually defined by
giving an abstract implementslion in tarms of anolher data abslractlion, one whosa
properlies are well understoodd The dala abstraction being used as the model alsg has
a number of operations, and lhese are used lo define the operalions of the naw dala
iypa.

The approach of defining tha objects implicitly via descriplions of the operations
ts much closer to the way malhematical theories sra usually defined. Axioms are given
that describe the behavior of the aperations. Tha domaln ar class of objects ie
determined inductively, Usually it is the smallest set closed under the operatians.
Crly these operations identified above as conslructors are used in defining this closure,
The closure is the smailest set containing the results of the primitive canstructors and
the results of the combinaticral canstructors when the appropriste opersnds are drawn
from the set. For example, with stacks, tha anly primitive conslructor is the constant
operation CREATE, which yields the empty slack, and tha claes of stacks consists of the
emply stack and all stacks that result from applying saquences of PUSH's and POP's ta
it One difficully with the implicit dalinitian approach is that if the specificalians are
not eufficiently camplete, in the sense that all thae relstionships among the operalions
ara indicated, several distinct sate may be clased under the operations. The dislinct
sely result fram different resolulions of the unspecified reislionships.

In [8] & rumber of wpecification techniques for data sbatractions were surveyed
ond comparad. Twa absiract model approaches wars considersd: use of & single fixed
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modelling domain {e.z, zraphs or sats) and use af an arbilrary lixed modelhing domain.
When using a single fimed domain, the specilications ara usually easily understooed and
easily constructed by someone familiar with the modelling domain, if they describe
concepts within tha range al applicability of the chosen domain. However, a fixed
modelling domain usually has a somewhal limited range of spplicabilily; only cerlain
absiractions are expressed easily within the domain. Using such a tachnigque is simiiar
to writing programs in a programming language that pravides a single data slructuring
method; although & single method can be powerful enough to implement all user-
defined data structures, it does notl follow that all gata structures are implementad
willh egual facility. Thiz limitalion is semewhal miligaled by silowing the specifier to
make use of an arbitrary fixed modeiling domain However, the number of domains
avaiiabie for use is not large, and, in agdition, it a complelely free chaite of domains
cauld ba mads, it i# doubtfui that Lhe rasulting specification would be comprehensible.
Thus, in reality, the specifier must choose among 0 small aumber of domains. This
situation is analogous to wriling programs in a language providing several data
structuring facilities; programming experience indicates that there will always be
{problem orientsd) abstracticns lhat cannct ba ideally rapresented by any of the dala
structuring methods. Thus, it appears unlihely that el dala absiractions can be given
minimal spacifications by choesing amorg a small number of modelling domains.

Included among the implicil definition approaches are the slale machine model
approach af Parnas [8] and the algebraic approach of 2illes [10] and Guttap [11]. The
slate machine model approach as originally described by Parnas is not a formal
technique: English is used to describe behavior when all else fails. Two technigues
are being investigated to correct this: the hidden funclion approach at SRi [12], ang
a naw appraach by Parras [13] The hidden function approach appears to introduce an
abstract model to describae behavior, while the appreach of Parnas uses axiams to
express the behavior ol Lhe abstraction a5 @ whole, snd appears lairly close tc the
algabraic approach. Both approaches require more development before their
proparties will be known.

The algebraic approach of Zilles appears to be quite pramising. From Lthe

‘syntactic part al tha specification {tha lunctionality ol the aperations) the set of legal,

finitely consiructible expressions in lhe operatians can be defined; these expressions
are the words of a waord slgebra. Then axioms are given thal specily when lwo words
are equivelent; an axample of such an axiam, lar the stack example given earher, is:

poplputh{sili=s

whare 5 ls a stack, and i is an intager. Al words whose aguivalence does not follow
from the axioms ara taken Lo ba dietinet

Tha aigebraic approach can ba usad le construel minimal specifications,
contuining no extraneous information, and thers is no limit on the range of applicability.
The main problem is that it may prove difficull lo conslruct and comprahend lhese
spacifications, because thay are so abstract. It i difficull to be certain that a set of
axioms is complete and consistent. Howaever, our experience in using the lechnique
indicales that it is reasonably easy o use. in addition, tools can be devised lo help
the specilier determins the consistency, cempletenass, end meaning of thasa
specificationa [11]
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As was mxplained in the intraduction, tha study of spacification lechniquas was
motivatad by the desire to anhance the quality of software. Spacifications are nol
only useful in proving the correctness of programs they ars a valusble sid during the
process of system design. When a program Is developed by stepwise refinement [14,
15], the problem of concern at a program level is scived by introducing sbslractions
that provide usaful primilives lor thal problem domain The original problem is salved
in terms of tha abstractions; each abstraction then becomes a new prablem lo be
solved. Specificalians provids a way to make this process precise; if each abstraction
is defined complelaly by means of a specification, then wa can be surs ihe
implernertor of a program using an absiraction and the implamentor of the abstraclion
agree sbout the mesning of the abstraction. This is particularly impertant for large
programs in which lhe abstraclions may be implemented by different people.

in addition, we hava lound the actual writing ol ths specifications to be a
valuabie addition to the dasign process: if an abstraction has a complicated
specification, allen a better form of the abslraction with a simpler specification can be
found. The provision of taals for exaemining properties of spacifications in advance of
implementation, which will ba possible when specifications are added to the CLU
systam, algc appesrs promising.

E. THEQRY OF PETRt NETS

|. Repracentalional Powsr of Nets

while last year's affort was mainly directed at the Livenass and Reachability
Problems, a largs part of lkis year's research has focused an the representational
power of tha Felri net madel. We have baen invastigaling the sats af firing
sequances generaied by a Pelri rel and the Iangusges that can be cbtained from such
sets of firing sequences by assigning labels, which are symbels from soma elphabet, to
some ar all of the transitions in the Petri nel. By analogy with firite-slale machines,
the firing af & transilion in the Paliri nat corresponds ta the reading aof the
corresponding symbol [vom an input tape (language recognizer), or ta Lhe printing af the
symbol on an output tape (language generator). Two main classes of such Petri nai
languagas are distirguished, depending on whethar wa consider ell firing sequances
from an initisl marking, or only terminal firing sequences, i.e. sequences which reach a
givan final marking, ususlly tha zero marking, skin to an accepling stote of an
automalen. A further threa-fold subdivision dapands on whethar ail transitions havae
distinct lapels (free iabelling), whether all lransitions are |sbelled, but not nacansarily
distinctly, {x-free labelling}, or whethar there may ha uniaballed transitions (a-
lransitions, whosa firing does not shew up in the language). Table 1 shown the
resulting six langusge familias.

A summary ol the closure proparties af these language families, their ralatian o
other formel lenguage famitias, and thair various dacision problems is presented in
Table 2. Some resulls about the family LO, in particulsr the closure properties and the
relation to Regular, Contaxl-Free snd Context-Genailiva languages, had been cblained
praviously by J. L Pelerson [16], who calied this family “Compulstion Sequence Sets”

Ali Batri nat langusges can be obtained from tha frae Potri net isnguages by
homomorphisms, and the frae languages can be abtained by intersection, concurrency
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and inveree homomarzhkiem fram the Reguler languages ard the simple parenthets
languages (one pair of parenthesas oniy). This research abaut Petri nel languazes 12
reported in detail in [17]. That repert alsc demonslrates how Petri nete can be
extended to generate all recursively enumeratle languages, either by axplicitly tesling
far zers (Inhibitor Nets) or by submitiing tha firing af transislions to a Prionly Rule
(Priority Nets); similar resuits have been reported by T. Agerwala [1B]

Last year we reported that the Eguality Problem for Veclor Additian Sysiers
was stil an open probiem. In Getever 1974 Michel Hack finally seltled the conjecture
ot Hs undecidability by reducirg the Inclusion Problam -- which Rabin proved to ce
undacidable in 1967 -- to the Equality Praklem. In Pelri net lerms, it is thuas
undecidsble whether lwo Pelrt nels with lhe same number of places have the same
sal of reachable markings This rasult, as well as a Pelri net version of Rabin's prood,
is reparted in [13], and will appear in the Journal of Theoratical Computer Science:

Thesa recursiva recLeibility technicues have also produced lwo more prooicms
equivalent to the Reachability Problem. A lransilion is said o be percistert of il
cannot ba disabled by firing any transition ather than itself. The question of the
persistence of & transition cen be reduced lo tha submarking reachabiiity problem (this
was also proved independently by L. Landweber), and thus to the Reachability Probiem,
But it turns out thal tha Reachahbility Problem is raducible ta 1he special case ol zero-
reachability in a single place, which in. turn can be reduced o the persistence ol a
single transition. Therefore persistence of & given transition and reachability of zero in
a given place are two problems recursively {actually efficiantly) reducible "io the
Reachability Problem.

These recenl results will be published in Michel Hack’s forthcaming Ph.D, thesis
[20] )

2. Prompl Nels

In related work, P. . Thiagarajan and $. S. Patil have beaen studying an
interasling behavioral property of nels lermed as promptness. Informally speaking, if
we identily certain transilions of a Patri net as external transilions anc the alher
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trangitiona as inlernal transitiors, then the net is said ta be prompt il thare can be at
mast & bounded number of firings of internal transitions belwaen successive firngs of
axternal transitions. Thus, if a Petri net is viewed as 8 black box and the firing of an
pxiernal transition interpreted as an interaction with the external world, then
promptness demands thal lhere be na more than a bounded numbar of occurrences al
gvents within the box betwesn successive interactions wilth the external world.

Such & notion of promplness leads us lo conclude thal non-pramptness of a net
implies uncertainty sboul the response time and lack of a priari knowledge concerning
the axtent of resource consumpiion by the system that is represented by the nel.
Conversely, promplness under suilable interpratalion would guarantee that the
extarnal world has an adequata amount af “control™ avar the aclivities initiated by the
sysiem

From the theoretical etandpaint, it turns out ta be useful ta identify two kinds of
promptness, as axplained below:

Let G ba a Petri net with initia! marking M whose set of {ransitions has been
partitioned inte external iransitions T and internal transibions Tj. H there exists an
integer K such that starling frorw ary rescheble marking M’ can lira internal transitions
siona at most Ky times, lhen we wiil say that & is strangly-prompt. Given a net G,
such an a priori bound Kp; might not exist Howavar, corresponding to every reachable
marking M’, there could be an intagar bound Ky such that, starting trom M’ we can fire
intermal transitions alone, al masl Ky timas. this case, we wil sey that the net is

weskly-prompt.  Clearty, if a nel is sirongly-prompt then it is weakly-prompt also.

Figure 1 shaws a net that is oot stronziy-prompt bul is weakly=prompt. This
nat is nat stremgly-prompt because given ary integer k (as a possible candidale for lhe
a priori bound Kg), we can first fire t k times. Then starting from the marking thus
reached, a single firing of to followed by k firings af tg will yield k+} tirings ef internal
transitions alone. Tha net is weakly-prampt since for any reachable marking M, K
defined as Kyyr = M{pg) + 1, will satisfy the raquired condilion. '

e

EO t3
iy

B .

Ty=itata}  Te® 14}

Figure 1. An example of a nat which is waakly-prampt, but not atrengly-prompt.
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We have shown that strang-prompiness of a Petri net is decidable. in doing 3o,
we have also baan abla to raduce the problem of deciding the wesk-promptness of a
net to an interesting apen cecision problem in nat thaary -~ namely, tha problem of
deciding whether a given transition in a net iv hot in the sense of Keller [21], i.e, if
thara axisls s firing segquence in which the transilion appears an infinite number of
limes.

At prasenl, hawever, wa are mainly interasted in studying the prampiness of
bounded Pelri nels. This is due lo our feeling thal for representing physically-
realizable gencurrent systems, only bounded Pelri nets would be required. To begin
with, we have shown easily thal for bounded Pelri nels, strong-promptness and weak-
premplnese are equivalent nolions. Hence for bourded nets, our definitions provide a
iermai counierpart to tha intuitive nolion of prompiness. Sscondy, we hava carriad
out a detailed study on the prompiness af sn interesting clawe of bounded nets, namely,

Hack [22]

We shall infrodure the following terminology to aid in stating eur main resuit.
Let G be a Petri net and let T be its set of transitions. #f T) T, then <T{> dencles
the Patri nal {a subnat of G} consleting of transitions T ol places that are input or
output ptaces of transilicns in Ty, snd all arce of G connecting thesa places and
transitions.

Now let G be alive and bounded tres-chaica net snd let |, a set of subnets of
G, contain mach subnet of G thal is a strongly connected marked graph. Then  is aaid
to be the sel of mg-companants of G. One main resull mey now be stated es follows:

Theorem: Lat G bs a liva and bounded free-chaice net with lransitions T. Let
Tir T2, .. Ty be subnats of T such that (<12, <Tg>, ., <Ty>} is lha sal of mg~
components of G. Then G is prompt with respecl fo a sel Tg ol external Iransitions iff
for 1cick T,RTp 40

In other words, il a live and bounded frae-choice nat hes an mg-component all of
whose transitions are internal transitions, then snd only then is the nel non-prompt.
Consequently, the task of checking the promptness of a nel belonging to the above
clazs al nats reduces to datermining its set of mg-compananls. Moraovar, using tha
above resull, we can aasily transform a non-prompt live and bounded free-choice net
into a prempt one by introducing a minimum number of addilional axternal transitions to
the appropriata mg-componants.

F. PROGRAM SCHEMAS

We previously reported [23] work on progress in comparsiiva schemslology and
aquivalence problems of data flow schemss. This work has baen concluded with tha
complation of twe thases during the past year.

In hle dissertation, J. Qualitz conducted studies of tha deciasbility of aquivalence
for a class of monadic schemss [24] This class, celled iteration schemas, consists of
schames whoss programs comprics assignment staiements, conditional statemants, and
iteration statemants. They correspond ta pragram schemas which we structured smd
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ara therstare [ges gowartul than the monadic program schemas.

Schema equivalerca is farmaiized as the functional equivalence of schemas under
fraa inlerpretations; ths! is, intercretations which represent symbolically the set of all
interpretations of a schema. Vre werk sncws that the equivalence problem tor
iteration schemas is uresivable, ¢ven it certain highly restrictive canditions are
impaead. On the other hand, aguivaiance is found to be decidable for several
interesling subclasses of erution soremus

Our work in program schematology has alse lesd us te study the class of open
and complete well-tormed data flaw schamas. This class al program schemas is
praposad as a model for well-consiruzied compuier programs. The lolowing
undecidabilily resuils about such schamas ave proved in [25):

{i) the equivalence problem for gpen anc complete widl’s is undecidadle, and
(i) spenness is undecidable for complete schemas.

G. DATA FLOW LANGUAGES

A continuing abjective of our research is the formulztion al a suitable base
language for use in guiding architectursl sludies for advanced compuler systems.
Current work is directed at the design of a base language using the principles of data
flow, which are tonsistent with racant findings about good program struciure and
expase concurrency af program parls lor explaitation by computers ol appropriate
design. The dala flow languasa descriced in [26), while sufficently expressive to
ancampass programs in Algol 60 or pure Lisp, is incomplete in several ways {jusl as
Algel 60 ie itsalf similarly incomplete): thera iz na pregram unit or medule able to
communicate with olher madules by sending 8 stream af veiues; and thera is na means
ol representing nondelermirate computatiens such as those involving updating of &
shared data base. Progress has baen madas towards finding good approachas to bath
problems.

Tha Isrguags TOFL under dsvalcpmenl by K. Wanz approachas the lormer
problem in a menner which guasrantiees determinacy and allows the exploitation of the
puotenlial parallelism in siream-oriented computation. Parallelism in TDFL is impncit in
that no primitives are explicitly used for invoking concurrent processes; this implicil
paralialism is exploited by providing a transiation rule lar convarting TOFL programs
inte data flow schemas in which the parallelism is represented explicitly. The
translation ruls is grsally simplifiad by the absence af GOTO's and non-local variables,
and by incorporating additional semantic constraints,

An axampla TOFL program is given in Figure 2 to lllusirate a module definitian in
the language. The program deletes ali inlegars from the input stream “in" which sre
multiples of the input integer "basa”.
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dalata : rmadule {baseint, inist int; out:st inb)
it empty (im) then [ ] -» out
elsa gel {int -> head: int, tail:st int;
med {head, base} -> residus: inl;
delate (base, tail) - {temp: st in;
if regidue = 0
then tamp -> out
elsa cons-s (head, lemp) -> out
end

Figure 2. An sxample TOFL program.

An identifier in TOFL can bs af typa integar {ink), Boolean (boo!), stream of
integer (sf int}), or stream of Boolean (st bool). A module definition in of the form:

<name>: medule { <inputs>; <outputs?) <body> mend

or
<name>: rmodule (<inputs>; <outputs>) <body™ mand

The rmodule is used to define a recursiva module, auch ax the moduls “dalets™ of
Figura 2.

Each slalement of a TOFL program defines an identifier {or identifiars} in tha
sensa Lhat the identifiar sppears either as the target of an assignment, ee an cutput of
a medule cali, or is defined in bath branches al a condilional statement. (If an identifier
is defined in otly gne branch of a conditicnal statemant, it is considered Jocal to that
branch; far inslance, the idenlifiers "head®, “taii" and “residue” sre considarad local ta
the else branch of “deiste” and ars nal defined aulsida of the conditional.l The
samantic constraints require that all referenced idantitisrs must be dafined by sama

preceeding statements. Furtharmore, the single assignment rule requires that no
identitier be defined twice within the same synlactic unit <body>.

An integer (or Boolean) straam is denaoted by an ordered sequence of Integers
{Boolean values) enclosed by brackels. Examples ol stream constania ara [1, 2, 3] and

[trua, lalse, false] An empty stream is denoted [} Possibie operations on a stremm x
e

empty {x)
first (x)

rest (x)
cons-s {y, x}
gat (=)

Tha predicata empty (%) tesls if x in on empty sireey if oo, its vaiue is trus,
otherwise false. The cperationa first {x), rest (x}, and gat {(x) are dafined oniy an non-
emply streams: first (x} yiolds the first ilem in the siream x; rest (x) yisids the

- R o R

!
3
}
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stream x with the first itam remocved; and gel () returns lwo outputs corresponding
to first (x} and rest (x), The operalian cons-s [y, x} requires y lo be of a lype
corresponding to the typa of tha stream x. Tha result of cons-g (y, x) is the stream x
with y atlached ta the baginning.

To illustrate the exploitation of paralielism in siream-oriented computation, we
present in Figure 3 an exampia program Lhat generales a straam ol primes using the
seive of Eratosthenes. The module “generate” in Figure 3 produces a slream of
integers consisting ol a ‘2’ followed by all edd integers between two and 'n’. The
meodule “delete_np" simply perfarme the daletion ol non-prime numbers by remaving
the first item in the inpu! siream and using it as tha base ta remove all multiples
through calls te "delete”. The main medule "prime™ comprises simply invocations of the
“generate” and "delete_np" modules.

The structure of the program i readily seen in 2 snapshot of the camputation
{Figura 4} in which gates and olher Baolesn operataors are not shown lor simplicity.
Note that parallelism is exhibited by the concurrent firing of data flow operatars in
diffarant activations af the module “delete_np".

The language TDFL pravides a program consiruct, called a perform-graup, for
reprecanting a s&t of modules communicaling in an arbitrary conliguration. An example
©f such a system is shown in Figure 5 The module 5, receives an inleger value on
one input and a stream value = on the olher input. The module Sy receives a stream y
and produces two straams, x ard cutput. Whan properly designed, the madules Sy and
52 cooperate by passing inleger values along tha “channals™ x and y. The system 5 of
Figure 5 can be expressed in TDFL as laliows:

S: perform linputint; cutput:st int)
S (input, x:5t int; y:8t inty;
5o (y:st int; x5t int, output)
pend

In a system wilth eyclic connections, undasirable properties such as “hung-up” (in
tha sense that a subset of modules may be waiting indefinitely for some inputs) may
exist. From the rasearch in marked graphs we have been able to define a subset of
the modules for which these properties sre decidable, and furtharmora, can translata
the cyclically connected syctem inle recursive data flow schemas withoul cycles.
Exampies of programming applications far this rastricted subset ol interconnected
systams car ba caen in such areas as digital filtering.

H. DATA FLOW COMPUTER ARCHITECTURE

Two approaches to the architecture of a procasser for dala flaw programs have
basn investipated during tha past year. One spproach, which was initially described in
last years report [27), derives from conventional multiprocessar arganizalion: each
“activation processer” ol tha machine parforms the execulion of one activation al a
dnta-flow procedure held in its lscal memory, Procedure cail instructions cause the
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(m)
generate : module tndnt; outist inty
itn<2thenl]-> out
elge evary_other (3,n) - odd_seg;
cons-3 (2, odd_saq) ~> ot
end
mend

{b}
avery_other : rmodule {bdnt, updnt; eutiet inl)
il Ib> up then [ -> oul
alsa (b + 2 -> pext;
every_other {nextup) -> temp;
cong-silb, tamp) ~=> out
end
mend

[{ 4]
delete_np : rmodute (in:st int; out:st int)
If ampty (in) than [ > ot
slsa gat tin} => prims, tall;
delete (prims, tal) => new;
delete_np (new} > temp:at int;
cans-s (prime, tamp) => pul

(ch
prime : moduls {Inputdnt; prima_ntrasm:el int)
genserate (W) -> integar_stream:st int;
deiste_np lintagar_slream) -» prime_sirean
meond,

Figure 3. An sxsmple pragram te genarate & siream of primes.
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{2

prima-straam 3t ot

input : int ﬂat":"

prime -sir

Hret activation of k-th activation of
delete-np delate-np

Figure 4. A snapshot af “prima.”
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Figure 5. An axample of 3 system of communicating medul as.
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creation of mew aclivations in other processors. Qperations on dala siructures are
pertarmed by specializad processing unite in rasponse to reguesis from activation
pracessors. Sinca dela flow procedures have na side alfects, the activalion proceseors
may operate independently wilhout need for synchrenizalion. Furthermere, bulfer
memories may ba readily incorporated into the activation processors -- lhere is ng
“multipracessor cacthe problem.” The behavier of this machine is specified by s
descriplion in a formal descriptian language, snd the machine hes buen shown te
correctly implement the dala Row language [28l

The seceond approsch ta a general data How processor is through generalization
of the cancepts developad sarlier for processors thet implement restricted versions of
the data flow langusga [29, 30] These machines o net have processors in lha usual
sense, ps the functions ol memery and ol instruction sequencing and decoding are
intarmixed in the unils of the machine. The extensians developad by D. Misunas
incorporata a general class of data structures and a form ol pracedure invecation 31}

A data structure wilhin the data flow procassar is represenled as an acychic
directed grapb having one root node with the praperly that aach node of the graph can
be reached by a directed path from the roet node. A node of the graph is eithar a
structure node or an elemenlary node. A stricture nade serves Bs tha rool noda for a
substructure of the struciure and reprasentc a valus which is a set of selectar-vaiue
pairs

s, vih oo (B v}
where
5; ¢ {integers} U {strings}
v; t {elementary values} U {structure values} i {nil}

ard 5; is the seleclor of node vi. An elamentary nods has no emanating arcs; rather,

an elemantary value is assccialed with the rede. A node with na amanhating arca and
no asscciated elementary value has value {niil.

A structure valua is represented by @ dala token carrying a peinter lo the root
node of the structure. In Figure G he structure o<y containg ihree elementary valuas

5, b, and ¢, designated by the simple selector L and the compaund selactors RL and R'R
respectively. Structure node o3 of structure o) is shared with structure eto and i9
designated by s different eslectar in ecq Lhan in oty

The dats-flow program of Figure 7 transposes the eiemants of the {our-element
structure presented on ita input initially, tha input link of Lhe program is enabled and,
upon liring, craales lour copiey of tha token conveying a pointer to struclure o and
places the copies oh the inpuls af the four asiect operatars. Each salect operator
ratrieves Lhe value {either an elementary value of @ siructure value) at the end af the
path specifiad as its srgument. The resulting valus is atsocisted with a tokan placed
on the autput ar¢ of tha operator.

A construct operater is enabled when it has & token on each input arc and, upan
firing, creates a new structure of the values assaciated with the input tokens. In the
program of Figure 7, each input arc of & construct aperator is labslled wilh a symbal
descignating tha selector to be associatad with that input in the rasuiting structure.
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Figura 6. An example of two structures sharing a common substructiure,
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Figura 7. A simpla data-flow program to transpose a four-element structure.

The procassor described in {21] is composed of two sections, ane of which
parforms instruclion processing in a manner similar to What presenled previously in [29]
snd [30), and the other which stores data etructures and performs operalions upon the
data structurss it containz. Tha structure processing seclion shown in Figure 8
consists of a Structure Oparatien Unit and a Struclure Memory with altendent
Distribution and Arbitration Networks. This saction of the procassor it viewad a5 @
functional unit by the instruction processing seclion; that is, instructions specilying
structure cperations are sent o the saction, and any resutting velues are returned to
the inslrugtion processing section
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Structura - o | Distribwti
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Figure §. Orgarization of tha struciure processing saction
of the data-flow processor.

The Structura Memary is composed of & number of Structure Cells, sach cepable
of hoiding one node of 8 structure. Commands specifying structura operations are
received by the Struclure Cells irom the Structure Oparation Unit. The Structure
Dperation Unit interprats instructions received from tha inslruction pracessing section
to issue the correct sequence of commands. The Uiatribution Network providay the
mesans far distributing commands amang the Indivicual Structure Cells, whereas tha
Arbltration Netweork serves to collect any reeults. The datails of operatian of such 3
structure processing section sre described in [32]

The study of procedurs invecation in & data-How processor has proved tc De
quite inleresting Initisl investigations yielded the implemantalion presented in (31}
This implementation assumes a data flow procassor with muiti-level memary, such as
the basic machina described in [30) An activation al » procedure is uniquely
designaled by the identifier of its argument structurs. One copy af each procedure i
maintained in the lower lavel memary, and the identilier ef an instruction in & parlicular
activation i¢ lormaa of the activslion identifier anc tha instruction idanlifier in the ane
copy. This cambined identifier is used to mep instructions into the Instruction Cells for
axecution, hance thers is no intarference within the instruction Ceils betwaen separata
sctivations of & procedure. Tha possibility of conflict srises, however, due to the fact
thel the Inatruction Cells musl acl a0 & cacha snd, whan (uil, mey have to relurn scme
instruction to the lewar level memory. it is than necessary to allocsle space for the
dincarded instruction in that memory and 1o note that it wee discarcad trom the cache
a0 the next tims a referance is made to the instruction, the correct copy is readily
rotrieved.

Dala flow precedures in the procassar ara represented as acyclic directed

grophs; that iv, as dste flow dats siructures, sllowing beth ihe insteuclion processing
saction ard the structure processing seclion to e structured with multi-level memory

[
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systems, sharing a comman lower-level memory.

I. PACKET MEMORY SYSTEM ARCHITECTURE

The dgata flow processors just described ara composed of many units that
operate asynchronaously and communicale only through transmission of infarmation
packats. We have found that this architectural principle also leads tc stiractive
prgenizations for large memory systems capabie of simullsneousty processing large
rumbars of concurrent memary transactians. :

Just as the function of a data fiow procassar is specilied by the formal
semantlcs of a data flow language, a packat memory systam is specilied by a formal
memory model which definee tha kinds of trsnsactions that may be requested of a
memory- system, and defines the change in memary systum state end the information to
be returned in response to a request. Mamory models under consideration have been
designed as specifications af memary systems for use with the data fiow processors
describad abave.

The mamecry system shown in Figure 9 is cennected lo a processing system Dy
four channels. Command Packets sent to the memary systam at port cmd are requests
for memory transactions, and specify the kind of transaction to be performed. llems ta
be storad are prasantad as Store Packels al port store, and items retrieved Irom
sterage are delivered as Retrieval Packels at pert rtr. A unique igentifier is
associated with each item stared in the memory system, and these idenlifiers are useg
in command and data packals to referance items held by the memary. Unique
identifiers not currently bound to stored items are available at the unid port of the

memory system for sllocation to iteme entarsd in the memory system by slora
commands,

Figurs 9. Structurs of a mamory system

Two ways of structuring memory systems lrom indapendanl memory systems
uging asynchronous packet communication have been developed Modular Struclues
{Figure 10) is a way of crganizing a packal mamory ¢yslem as a collection of many
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simpler packet memoty systems to which requasts lor items ars routed by sorting
them {in s Distribution Metwork) accarding to same property of the item idantifier.
Guch an organization supporis nghly concurrant procesing of memory transactiohs by
tha separate memory modules. Hisrerchical Structure {Figure 11) organizas a mamary
system as lwo or mare packst memory systems that represent differant trade-aofls of
speed, capacity and cast, and arranged so that information is automatically redistributed
among levels of tha mamery accarding o intensity of access. We have shown how
carrectnass of a complels mamary systam (i.e. that il implamants the specified formel
memary madel} follows from \he structure of the memory sysiem and the spacifications
of its constituenl subsystems 1331

cmd store
Command Store
Packseta Packels
Cammand
Pacheis
(2T sots

Distribution  Network

Figure 10. Modular memary vystem structura.

J. EVALUATION OF ARCHITECTURAL CONGEPTS

Encugh interesting archilectursl proposals have emerged (rom our recent werk
thet it ia essential to bagin avaluation of Thair soundness and performance potential.
Aftar censidering allernative approaches, wa conciuded that the modeiling of the
physical struclure of 2 packet communication sysiam by microprocessory is 8 taasible
masns of simulation, and is warlhy ol investigation

The simuation faclity shown in Figure 12 is compased af & hast computer, &
numbar of microcomputer foduies, sach consisting af & micraprocessor and & number of
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cind sioia
Store
Packels
Command
Packels
conpd = stgre
My,
st 2
Retrievl Retrieval
Packets| - Pacheta
Command
Pacheis 3
grnd sloee
M L
iy e unid
A
LS . Umid
Retrieval . |Pachels
Packets
rir wnid

Figura 11. Hierarchica! memory systom structure.

memory modules, a contral bus for host-microcompuler cammunication, and 8 routing
retwerk for transmitling packets batween microcomputar madules. The host computer
loads simulation programs inle micrecomputar modulas, manitors and controls the
prograss aof a simulation, and collecls statistical data for performance avaluation. The
cantral bus transmils commands, sddressing information and data from the host to tha
microcomputer modules, and transmits acknowledie signals and memory word contents
from the micracomputer modules to tha host. Under control ol the host, micracaomputer
modulas sxecule programs which simulate the cperation of units of a simulated system.
In additian to commuricaling with the hest via the control bus, sach microcompuler
module i2 connected by an inpul port and an outpul port to the routing network,
through which the modula sends or receivas packels to ar from other modules during
the course of a simulalion -

Concurrent with the develapment of the hardwsre lfor the simulation lacility, we
sre dasigning an Architecture Cescription Language lor the description of Packel
Communication Systams. A system to be simulated upan the {acility ia described in the
Archiisciure Oescription Language, and that dsscription is transiated inla
microprocessor object code for execution upon the simulation factlity. 1t is inlended
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Figura 12. Qrganization of the simulation facility.

that the Architecture Description Langusge alsc ssrve sz s formal descriplion of »
Packet Communication System lor dasign purposes

T
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