Massachusetts Institute of Techmology
Laboratory for Computer Science

Computation Structures Group Memo 170

Computation Structures Group Progress Report 1976 - 1977

This research was supported in part by the National Science
Foundation under grant DCR75-04060 and in part by the Advanced
Research Projects Agency of the Department of Defense under
contract N00Q14-75-C-0661.

October 1978

COMPUTATION STRUCTURES GROUP il COMPUTATION STRUCTURES GROUP

COMPUTATION STRUCTURES GROUP

Academic Staff
J. B. Dennis, Group Leader

Research Staft

0. P. Misunas
Graduste Students

W. B. Ackerman D. L. Isaman
K. Amikura P. R. Kosinski
S. A. Borkin C. K C. Leung
G. A. Boughton G. S. Miranker
J. D. Brock L. B. Montz
R. E. Bryant K. S Weng
D. J. Ellis

Undergraduate Students
T. B. Freeman T. L. Kuehn
S J. Grossman D. R. Nadler
R G Jacohsen

A. L. Rubin

Support Staft

COMPUTATION STRUCTURES GROUP 13 COMPUTATION STRUCTURES GROUP

COMPUTATION STRUCTURES

A. INTRODUCTION

Research in the past year has concentrated on various aspects of data flow
programming languages and computer archilecture. The current efforts are directed
toward the examination of uses of dala flow processors, the resolution of architecturs
issues such as the implementation of procedures end data structures, the development
of simulation facilities, the study of hardware and software implementation issues, and
the investigation of formal semantic models for data flow languages and systems.

B. APPLICATION OF DATA FLOW PROCESSORS

In two studies carried out this year, differenl applications of data flow
Processors have been described and their potential performance evaluated. The two
areas of application are representative of many computational problems, and the
rasults of the studies have shown great polential for use of data flow processors.

1. Signal Processing

As 8 demonstration of a signal processing mpplication for which utilization of a
date flow processor sppears quite feasible, the fast Fourier transform (FFT) has been
expressed in data flow form and its potential performance on a data flow processor
evalusted [1]

The discrete Fourier transform of 8 sequence of N = 2" jnput samples xg, ...
XN-1 is the sequence of values fow o fy-1 where

N-1

ik

fk =Z ijl
i=0

and: -
W = o~ 2% /N}

The direct computation of these values invoives the accumulation of 3 product terms;
the Fast Fourier Transform {FFT) is based on the observation that the transform on 2P
data samples can be simply expressed in terms of two transtormations on 2P-1
samples. Contitwing recursively, one discovers that the transform on 2" points can be
expressed in terms of n 211 transformations of two points each, Figure 1 shows the
flow of values in one arrangement of the FFT computation for eight data paints (n=3).
This arrangement, in which the computation consists of n stages (the columns of the
figure) having identical form, is known as the time decimaled constanl geometry FFT
[2). Each stage of the computation is compased of N/2 units of similar form, known as
“butterflies” which compule two-point transforms.

Figure 1. The sight-point, constant geomelry, tima decimated FFT.

WINPT M S 5S4 FWNT W F S T A Re— AR T amrwes - THWATES W) VS NN M P S A kMt e e

The general form of this FFT slgorithm may be described as foliows: let Up i be

the kth component of the vector of values computed by the pu‘ stage of the
computation. Then Bp.q, the qu‘ butterfly of stage p computes

€
Yp,g = Up-1,2q * Yp-1,2q W P
:)
bl - Pa
“p'q,,zn-l Up-1,2q = Yp-1,2q+1W
8 .
where the exponent 0. of each phase factor Yoq = W P8 g given by
= 2P n-p
€n.q 2 quo{},2* P

and '
0zqeaml

O<px<n

The symbol quo denotes the function quo{m,n) which yields the integer quotiant of m
divided by n. The input values for stage one sre related to the data samples by

Yok = X%p wherei = revik)

in which rev is the operation on integers such that the n-bit binary representation of
is the reverse of the n-bit representation of k. The output values are

fk"-’n,k' 0§i&<2n

We wish to take maximum advantage of parallelism in representing the FFT as a
data flow program, but, to conserve space within the machine, we do nol want to use a
larger program than necessary to exploit concurrency. Since each stage of the
computation uses values computed by the preceding stage, it is appropriate to write
the program as an n-cycle iteration in which the body consists of tha N/2 butterfltieg
comprising one stage of computation written out explicitly. The form of the
corresponding data flow program is shown in Figure 2 for the eight-point case.

The constant geometry of the computation illustrated in Figure 1 over alt stages
makes it-possible to use » fixed routing of values from the outputs of the butterflies
to their inputs, where they become operands for lhe next cycle. However, generating
the phase factors for each butterfly presents a problem. The usual technique is to use
a table lookup in a table of powers of W, but our present data flow fanguage includes
no suitable machanism for this function. Instead, the factor ¥p.q used for buttertly q in
stage p may be computed from the factor w -1q used for the previous stage by a
simple rule derived as follows: the exponents of W for Wp,q ™d Wp-1,q ore:

epq = 2P quo{g2™P)

®-1, = 2Pl quota2™P*)

COMPUTATION STRUCTURES GROUP

16

COMPUTATION STRUCTURES GROUP

B o Spp

Phase Constant Queue

—

Phase Factor Generation ™

Loop Control

*tor each q in j0.1,2,3}

Figure 2. lterative data flow program for the aight-point FFT.

Xrav(2q+1)

'q \

AR e R

COMPUTATION STRUCTURES GROUP 17 COMPUTATION STRUCTURES GROUP

- Then

%, = ®p-1,9 * (®p,g ~ ©p-1,¢
=ep.iq* 2"Pquolq.2™P) - 2 quolg 2™ Pt

where the term factor (quo(a,2™P) - 2 quolq,2™P*1)) is denoted Tpq Cereful study
of the factor Tp'q reveals thal:

0 if rem{q,2"P) is even

Toq ™=

1 if rem{q2" P is odd
Thus T, is the (n - p)tP bit in the binary representation of q. Let bit(r, q) be a
primitive function that yields the r' bil of g. Then we have

if bit{n-p, @) = 1

w *

P = wp-llq n
then W2 p' else 1
The initial value of the phase factor for the q!P butterfly is

L]
wy,q = W19, where o) o = 21 quolq 21)
= WO = (1 «jO)

The computation of the phase factors wo, is performed by the sections of Figure 2
labelled "Phase Factor Generation™ and "Phase Constant Queue.”

Signal values are delivered to the program as a continuous etream through a
single input operator, and must be distribuled smong the 2" input links of the FFT

“program. This may be done by means of a binary tres of data flow program fragments,

which we may call fan-out alternstors, connected as in Figure 3. A similar binary tres
of fan-in alternators (Figure 4) can be used o form the transform values for - IN-1
into a stream

To analyze the performance of the FFT compulation on a data flow processor,
we represent the cyclic execution of the FFT program by a special kind of Petri net
known as a marked graph [3]. Each node of the marked graph of Figure 5 corresponds
to ona machine instruction participating in the cyclic computation or to a source of
input velues from the Loop Control Section of the program. Each directed arc
represenis a data path between instructions of the program. The arrowheads of the
arcs indicsle the lype of the packels -- data, boolean, or signal -- that flow over the
corresponding path Tokens are placed on arcs of the marked graph to represent a
live and safe initial tonfiguration of the data flow program. Acknowledge values, which
are required to maintain a safe configuration, are denoted by ¢ and dats tokens
carrying unknown values indicsted by (}.

COMPUTATION STRUCTURES GROUP 18 COMPUTATION STRUCTURES GROUP

fan-out
alternator

—————————————

1
!
I
|
I
!
|
|
|
|
I
|
]
]
1

Figure 3. Tree of fan-out alternators for sampie distribution

Figure 4. Fan-in siternator.

Each arc of the marked graph has an asgociated “propagation delay™ which is the
time interval from the moment a token is piaced on the arc by its origin node to the
moment presence of the token is observed by the deslination nods. For dats arcs, this
time consists of the time required for an operation packet to be transterred from the
Memory to a Processing Unit plus the time for the data packet resulting from
instruction exacution to pass from the Processing Unit to the specifiad successor
instructions in the Memory plus the time for processing an operation packet by a
Processing Unit. The propagation delay for Boclean and signal srcs is derived in a
similar manner.

Now the question of computation rate for the FFT program becomes a question
of the minimum period for the cyclic behavior of a marked graph when each arc has a
known propagation time. This problem was previously soived by Karp and Miller [4):
the minimum period is determined by the directed cycle in the marked graph having the
largest value of total delay divided by the number of tokens on the cycle. Utilizing
packet propagation delays corresponding to use of a technology such as Schottky TTL
in the routing networks, we find there are two critical cycles in the program -- one
involving nodes Gen-2, Gen-4 and Gen-7, and the other involving nodes Gen-5, Gen-7
and But-2. Each of these cycles has ona token and a total dalay of approximately 80
microseconds. Thus, data flow processors can be constructed with execution times for
the FFT computation as little as (log N}s(80 microseconds) for a feasible technology of
Interconnection network. For further details of the parformance analysis see [1]

20 COMPUTATION STRUCTURES GROUP

COMPUTATION STRUCTURES GROUP

jo

a > control
— data

e — ﬂmc_.-_

Figure 5. Merked graph description of the FFT computation.

COMPUTATION STRUCTURES GROUP 21 COMPUTATION STRUCTURES GROUP

2 Weather Simulation

In an effort to demonstrate application of a data flow processor to a complets
computation, a data flow language which includes structure operations on arrsys has
been used to describe implementation of 2 global general circulation model {(GCM) for
numerical weather forecasting [S1 The nature of this computation permils exploitation
of much parallelism in the data flow representation, allowing balanced utilization of the
units of a data flow processor. Preliminary performance results indicate that a
hundred-fold performance increase over the current IBM 360795 execution time is
feasible.

The general circutation model used in this study is the GISS fourth order model
developed by Kalnay-Rivas, Bayliss and Storch [E] in which the atmospheric state is
represented by the surfsce pressure, the wind field, the temperature, and the water
vapor mixing ratio. These stale variables are governed by a set of partial differential
equalions in the spherical coordinate syslem formed by latitude, longitude, and
normalized atmospheric pressure. In this fourth order model, the computation is carried
oul on a three-dimensional grid that partitions the atmosphere vertically into K levels
and harizontally inte M intervals of longitude and N intervals of latitude.

The main computation is the evaluation of the time derivatives of the state
variables from the current atmospheric state, using the physical laws that govern the
stmosphere. In addition 1o the main computation, there are several other incidental
computations which must be performed, such as poler computation, filtering, and
stability computation

The data flow program for the simulation medel is organized sc the paralielism of
the GCM computation is exposed in two major ways: first, in the main computation,
evaluation of the time derivative is carried oul concurrently for all K atmospheric
levels. This is accomplished by wsing K copies of the data fiow program appropriate
for & single grid poinl. Second, the main computation is coded so grid points are
processed in a pipeline fashion by scanning slong the latitude lines.

Analysis of the complete dala flow program reveals that the machine level
program will consist of about 13,000 instructions. If the data flow version is to have a
hundred-fold performance increase over the IBM 360/95 implementation, the
processor/memory interconnection networks must be able to perform packet switching
8t 175 MHz, and the instruction execulion deiay shou!d be no more than 20
microsecords. These speeds are readily schievable for the processor structures under
discussion, implemented in a conventional technology.

Several probiems related to the structure of the data flow machine and the
language have been revesled by this study. The pipsline orgsnization of the program
necessilates special instructions in the data flow program for efficient execution of
data structure operations. In addition, a higher level language which can be efficiently
trensiated into the machine level reprasentalion is necassary for the expression and
understanding of the computation Such a language may be based on an extension of
the language previously studied by Weng [7]

COMPUTATION STRUCTURES GROUP 22 COMPUTATION STRUCTURES GROUP

C. DATA FLOW COMPUTER ARCHITECTURE

In prior years, a number of data flow computer architectures have besn
proposed. Such architectures have ranged in complexity from simple processors
designed to execute programs with no conditional, data structure, or procedure
capabilities to complex mechines for the implementalion of programming langusges on
the order of Algol. This year, we concenirated our architectursl studies on two
important issues: the implementstion ot dsta structures and procedures.

1. Dala Structures

The struclure handiing facility being developed by Bill Ackerman is designed to
support arrays and records of the lype that occur in conventional programming
languages. Structures are implemented ss binary trees; that is, as scyclic directed
graphs in which each node is either a leal {elementary value) or has two immadiate
subordinates. In the latter case, the arcs to the subordinates are labeiled in a manner
which aliows the directed path from any node to any descendant to be specified by &
compound selector.

The structure handling facility incorporates two structure operations: SELECT
and APPEND. The SELECT operation requires as arguments a structure and a bit
string, returning the subsiruclure reached by following the directed path indicated by
the bit string. The value returned may be an elementary value or a structure. The
APPEND operation requires a structure, a bit string selector, and 8 value. It returns a
structure equivalent to the inpul structure except that the input value is located at
the position designated by the selector, replacing whatever was previously located
there. The appended value may be en elementary value or a structure.

The appearance of the elementary constant NIL in 8 structure denotes the
shsence of any data. (n addilion, NIL is ulilized to denote the empty structure, an
arbitrary structure may be crested by APPENOing values to NIL.

Data structures in data flow are handled in a purely spplicstive fashion. The
value of an existing structure never changes as the result of any cperation performed
elsewhere in the program. The change effected by an APPEND operation appears only
to the instructions which receive the structure from the APPEND opersior over some
directed path. If the original struclure was shared wilh other parts of the pragram, the
shared structure is not changed. To achiave this result, the APPEND operation copies
any shared part of a structure belore modifying it.

A structure controller has been designed which efficiently implemeants creation,
transformalion, retrieval, and deletion operstions on dats structures, using s packet
memory for the storage of the structures. The packat memory system which contains
the data structures has the property thet il can be expanded both lsterally and
vertically. That is, it can be realized as separate smaller units, each handling » subset
of the tolal address space. Furthermore, these separate units can be realized as
separate units in a hierarchy, with the higher level units containing only the most active
dala. These lateral and vertical expansions ars the data flow squivaiant to the
common lechniques of interieaving and use of & cachs, respectively.

COMPUTATION STRUCTURES GROUP 23 COMPUTATION STRUCTURES GROUP

2. Procedures

In a recently completed master's thesis [8], Glen Miranker has completed the
work described in a previous report [9]. The thesis investigales in detail an
implementation scheme for procedures on a dala flow processor. The language leval
semantics of several alternative implementations are investigated and presented. The
principal scheme exhibits a high degree of parallelism, yet the amount of state
information required to be maintained by the processor is beunded and small.

Central to the implementation scheme is:
a. Creation of a virtual cell name space using a herarchical assoc_iativa store;

Creation and se'paratiion of ditferenl procedure instances through runtime
renaming of the ceils that store the encoded procedure instance; and

¢ Selective copying of the parts of procedures as they bacome active.

It is shown that implementation of the general class of dsta flow schamas with
procedures would give rise to nondelerminate behavior in a data flow processor,
However, a large syntactic subclass of such schemas is presented and proven to be
determinate.

D. SIMULATION OF PACKET COMMUNICATION SYSTEMS

We have been studying methods of simulating systams with packet
communication architecture; that is, systems of independent units which communicate
through the transmission of information packets, of which our data flow processors sre
prime examples. This year we made advances in the specification of an architecture
description language for use in description of a simulated system, the development of
coordination methods for the paraliel unitg being simulated, and the development of a
software simuialor.

1. Architecture Description Language

One of the major accomplishments this yeer is the completion of the preliminary
design of a formal ianguage for the specification of packel communication systems
(PCSs). This architecture description language (ADL) is intended to serve as » medium
for system documentation and human communicalion, as & formalism for design
verification, and as the language inlerface fo » design sutomation and simulation facility,
The ADL complements existing computer hardware description languages in that it i
designed for architecture descriplion st the algorithmic behavior/system struclure
level, not for straightforward transiation into existing component technology. As it
stands, ADL can be used as & design toal to support design methodologies for PCSs and
for PCS specification. The novel features of ADL include the adoption of data flow as
@ basis for its operational semantics, slate variables tor implementing functions on data
streams, and monitors for sharing dats objects,

COMPUTATION STRUCTURES GROUP 24 COMPUTATION STRUCTURES GROUP

P e e
b 1
I 1
: alu-1 :
operation! (!
packets | 2ee . !
——f il *
1 controller :
A———— -
resuit : P A E
packsts : k t
| L |
L N

Figure 8. An example of an architectural unit:
The arithmetic logic processor.

Figure 6 illusirates an architectural unit consisting of a number of identical
arithmetic logic units managed by a controller, Requests for processing arrive at the
unit in operalion packets, each operalion packet containing » specification of the
operalion to be performed, the necessary operands, and the destination address(es) for
the result(s). This architeclural unit provides as output result packets, each holding
one copy of a resull value produced through execution of an operation specified in sn
operation packel and each tagged by a destination address. The controllar receives
operation packets when the arithmelic logic units are available and dispatches each
request to a free unit. The controller also appropristely tags the results computed by
the arithmetic logic units and transmits them in result packets.

A descriplion of the structure of this architectural unit, the arithmetic logic
processor, or ALP, is formalized in ADL 8s a module -structure type. The structural
type definition for ALP is shown in Figure 7. This type definition contains declarations
of input and output porls, Lhe type of packets received or transmilted at each pori, &
list of subrodules, and a list of interconnections joining pairs of submodule poris. In
this example, ALP is defined as an interconnection of its submodules, demonsirating the
hierarchical module decomposition of ADL.

The behavior of a module is described in the ADL by composing expressions.
The semantics of expression evaiuation is based on the principle of data flow: each
evalualion of an expression is initisted as soon as a new set of operands is svailable
and the resull of the previous evaluation is no longer needed. Many expressions can
thus be viewed as funclional modules with well-defined input and output interface
behavior.

The concept of a module state which can be updated is incorporated in ADL
behavioral expressions to allow definition of functions on data streams. Also, a
simplified version of Hoare's monitors is utilized to introduce nondelerminism vis shared
stale veriables. The incorporation of these features is carefully structured so that
expression evalustion is still governed by the flow of dala.

T e

J U & S -

COMPUTATION STRUCTURES GROUP 25 COMPUTATION STRUCTURES GROUP

ELE R AW

type ALP = module
inlet opn-in: operation-pkt;
outlet res-out: result-pkt;
param n-of-alu: integer;

P L o TR

e

; submod
" k: controller {n-of-alu)
inlet opn-in: operation-pkt, alu-in1..n~of-alu}: alu-res;
outiet res-out: result-pkt, alu-cut[!.n-of-alu}: alu-opn;
end k;

[P —

. toreach isinteger in [1..n-of-alu]
{a[i} alu

P intet in: alu-opn;

o aullet out: alu-res;
o ‘ end;

s : ‘ }

connection
opn-in -> k.opn-in;
k.res-out -> res-out;
foreach i: integer in [1.n-of-alu)
{ kalu-out[i] -> alufiin;
alufijout -> k.alu-infi]

g e

A A

end ALP;
Figure 7. Structural Type Definition for ALP.

Figures 8 and 9 illustrate the semantics of the monitor construct in ADL with a
simple example. The architectural unit described in Figure 3 receives integer packets
st two input ports |1 and 12 and maintains a state variable sum which is initislized to 0,
The content of each packet received at [l is added to sum, those from 12 are
subtracled from sum. These modifications are performed using monitor procedures,
each of which relurns the current value of sum. The relevant fragment of the
behavioral specification of this module is Eiven in Figure 8,

The. semantics of this behavior is given in terms of the data flow program
fragment in Figure 9. To simplify the discussion we have used some macro-cperators.

The scase and mease operators perform seleclion and switching operalions, controlied by
& neme lag which is a monitor procedure name.

The data objects available at data links ; and # in Figure 9 are firet tagged by
the name of the monitor pracedure to be invoked. The objecls are then merged to form
a single request stream to the monitor. The scase operalor C1 swilches the input to
the data flow program fragment implementing the corresponding monitor procedure.
Each monitor procedure invocation may generate a set of return values and/or a set of
new values for the state variables of the monitor. The output of each procedure

COMPUTATION STRUCTURES GROUP 26 COMPUTATION STRUCTURES GROUP

invocation and the new slate variable generated have identicel values in this example.
The oulput is then routed to the appropriste link (y or ¢) and the new value of the
state variable is routed to the state variabie link {sum) via the mcase operstor C2

2. Asynchronous Simulation Techniques

In his master’s thesis, Randal Bryant has explored methods of simulating highly
parailel asynchronous computar systems. In particular, methods were developed which
would exploit the modularity and parallelism in the systems to be simulated and yield a
simulation which is itself highly modular and parsllel. The simuiation techniques which
were developed aliow execulion of the simulation on any computer system which
supports communicating processes, including a network of microprocessors.

Besides modeling the functional behavior of the system, a proper simulation must
also model its time behavior. To avoid placing real-time constraints on the simulation
processes, a time-indapendent atgorithm for simulating the time behavior is required.
Furthermore, lo avoid the need for a high-speed cenlral controller for the simulation,
all the time simulation algorithms must be decentralized, requiring special control
operations to prevenl the simuiation from deadlocking and to ensure its proper
termination.

m: monitor
state sum:= 0;

J+ procedure to increment sum s/
add: procedure(n: inleger) result(integer);
x: integer = sum + n;
update sum := x;
return x;
end add;

/+ procedure to decrement sum /
sub: procedure(n: integer) result(inteper);
x: integer = sum - n;
update sum = Xx;
raturn x;
end sub;
end m;

i integer = I.l;
j: integer = m.add(i);

p: int.ager =|2;
q: integer = m.sub(p);

Figura 8. An Example of Monitor Declarstion and Uss.

o Mkl ey e

F g PN Y

T awh w e

PEIE

27 COMPUTATION STRUCTURES GROUP

COMPUTATION STRUCTURES GROUP

"i0jMI0W ¥ JO uonNUeseIda) ewayds moy sjeq 6 endiy

Z2

)
oL \r
m \/

B L ST S IR T CL e S S

ha

COMPUTATION STRUCTURES GROUP 28 COMPUTATION STRUCTURES GROUP

The major contribution of this work involves the presentation of the necessary
algorithms for controlling the simulalion and proving its correctnass. Thess slgorithms
involve a number of computstions proceeding at different iecations concurrently, where
each compulation has only & limited amount of information about the state of the rest
of the system. As is typical of many parsllel computations, it is difficult to prove
correciness, yel prools of correclness are slmost imperative, considering the great
potential forms of incorrect behavior. Fortunately, since s simulation need only mode)
the behavior of some other syslem, one need only prove that st no point will the
values produced by the simulation diverge from those produced by the simulsted
system, and that the simuiation will not deadiock or fail to terminate. Thus, rather than
facing the more general issue of praving the correctness of paraliel computations,
specislized techniques were developed for this particular problem.

3. Software Simulation

A software simulation facilitly for packet communication systems has baen
developed. The software simulstor resides-on the PDP-11/70 computer operated by
the Domain Specific Systems Research Group of LC.S. and consists of a compiler and a
simulator. Descriplions of a proposed architecture in the ADL are transiated by the
compiler into code executed by the simulator. The simulator provides the necessary
tools for the execution of simulation programs and the control and monitoring of the
simulation process. The system is currently in the final debugging phase and should
prove a uselul tool over the next few years for the other werk in progress.

E. IMPLEMENTATION STUDIES

In a preliminary laok at the issues involved in implementing our concept of a dala
flow processor, we have been studying the design of the unique elements required for
its construction. We have examined the structure of the interconnection networks that
route packels between sections of the machine and the hardware design of a basic
component of the machine: the instruction cell block. Also, we have studied the
problem of translating data flow graphs to machine language representations, and the
implications of fault tolerance for the design of packel communication systems such as
our proposed data flow computer.

1. Routing Network Design

Andy Boughton has conducted extensive studies on the compiexity and
performance of routing nelwerk designs for use in packet communication systems. This
work has cenlered sround two basic types of networks and has examined the structure
of such networks along with their essociated complexity and delay.

Routing networks are packet communication systems snd, as such, are
conslrucled from modules and links. Each component module of a nelwark has
associaled with it sn independent controller and is connected via links to s fixed
number of other modules. A packet may be transierred between two connected
modules over their common link if all preceding packets transmitted over that link have
been acknowiedged. Thus, a routing network demonsirates the packet communication
system characteristics of asynchronous concurrent operalion and decentralized control.

b e A i, § e

et e A, MR AL R TR L i e

il R e o

LT A Ll i A et

R ot ¥

g A

T

+ b A Ve e e e e et s

o,

pEeer)

PSRV

S

COMPUTATION STRUCTURES GROUP 29 COMPUTATION STRUCTURES GROUP

The research on routing network design has examined two basic networks
(concentration networks and connection networks) from which most routing networks
can be constructed. This examination has been concerned with the complexity
raquired lo construct & routing network with a particular number of inputs and outputs,
and with a particilar level of performance, Complexity is measured in terms of the
number of medules required by the network. Performance is composed of {wo
components, network throughput and network depth. Throughput is tha rate at which
the network will accept packets, whereas depth corrasponds to the average time a
packet spends in the network.

A concentration network has more inputs than outputs. Each packet accepted by
the network will eventually be placed on some output. A nonblocking concentration
network is a concentration network which will accepl all packets on its inputs at a
given time unless during some period ending at that time it has accepted a number of
packets greater than could possibly be placed on the outputs in that pericd. We have
shown that no N input, fixed-fraction-of-N output, nonblocking concentration network
can be constructed with less than O(N tog N} modules. We have given the construction
of such a network with depth Otlog N) and: with asscciated complexity within a constant
factor of optimal.

A connection network has the ssme number of inputs as outputs. Each packet
accepled by the network has s label snd is eventually placed on the output of the
network which corresponds to that label. A nonblocking connection network is a
connection network which accepts all packets on its inputs at a given time uniess
during some period ending at that time it has accepted a number of packets labeled for

_ & particular output greater lhan could possibly be placed on that output in that period.

Woe have shown the construction of a class of N input connection networks for which
the expected throughput in a typical application is close to that of a nonblocking
connection network. The complexity of a network of this class ranges from O(sz to
O(N (Iog_N)z}. with corresponding network depths ranging from Oflog N) to Ol{log Ny 2.

It is interesting to note the comparison between this connection network and
sorting networks, which have been weli-studied in the literature (a sorting network
sorts & group of packets placed on its inputs based on their labels as opposed to a
network such as the connection network which places all packets with a particular
label on & particular output). The best known construction for a sorling network has,

for an N input network, complexity of O{N (log N)z) and a depth of Of(log N2,

We have studied two specific varielies of routing network with application to
the design of data flow processors: arbitration networks and distribution networks.
An arbitration network is » routing network with a larger number of inputs than
outputs, whereas a distribution network is a routing network with fewer inputs than
outputs. We have developed constructions for arbitration and distribution networks
which are simple compositions of concentralion and connaction networks. These

networks have expected throughputs in typical applications closs to that of the
nanblocking networks,

COMPUTATION STRUCTURES GROUP 30 COMPUTATION STRUCTURES GROUP

2 Hardware Design

An implementation scheme for an elementary data flow processor is being
developed by K. Amikura. To examine the methods and technologies of such an
implementation, the study has concentrated on the most compiex part of the processor,
the instruction cell block. The cell block under study i the basic buliding block of the
memory of a dala flow computer and is composad of 16 distincl instruction cells, each
of which holds one instruction of a data flow program In execution en the procassor.

An instruction cell performs a number of complex cperalions, including the
reception of packets, the loading of opersnds, various managerisl operations to update
the status of the cell, testing of enabling conditions, and the transmission of its
contents to a processing unit. In addition, each cell must contain & mechanism for initial
loading of the program, a facilily to dump its contents for debugging purposes, and an
error mechanism for handling received packets that do not have the required format.

The behavior of a cell block was firet formally described in the archilecture
description language. This descriplion was then utilized to generate data flow
interconnection graphs snd a Petri net control graph of the system. From these graphs,
the design was generated by s top-down decompesilion of the specifications, utilizing
conventional components and asynchronous communication disciplines for both externat
and internal communication.

3. Program Translation

An examination of the problem of translating data fiow graphs to machine
language representations for a dela flow processor is being conducted by Lynn Montz
to provide a second phase to the previous work on textual dals flow languages that
transiale into data flow schemas. The naive transiation of a data flow graph into a
machine |angusge representstion would Jose the enabling constraints imposed by data
flow firing rules, so that the resulling ceil representation would no longer be
delerminate and could possibly deadlock. A solution of this problem appears possible
using the theory of Pelri nets, in which the properties of safety and liveness
correspond respectively lo the concepls of delerminacy and deadiack in data flow
graphs. More specifically, by representing data flow graphs as free choice Petri nels,
we hope (o apply theorems dealing with safely and liveness for such Petri nets.
Although examples of a desired solution have been worked out, the algorithm for
producing such resuits is currently under development.

4. Faul_! Tolerance

One of the primary reasons for the development of the architecture description
language is to facilitate the design and specification of fault-iclerant packet
communication systems. The major challenge in this work lies in the ssynchronous
nature of operations within & packet communication system. Classical fault-tolerance
schemes such es triple-modular redundancy schemas rely on system clock pulses as
raference points for sampling input to establish agreement or disagresment. In s
packal communication system, fault-tolerant communication protocols must be
established to perform any desired comparison. The deveiopment and description of
such protocols is currently under study.

LIRS,

2w e e e

TR Vst e L, e

i AR ¢ st ORI

s i g waay B P ol a0 e e

H
#
3

'

A R kg s

COMPUTATION STRUCTURES GROUP 31 COMPUTATION STRUCTURES GROUP

F. SEMANTIC ISSUES

1. Data Flow Progromming Languages

Data fiow programming languages (DFPLs) sre especially amenable to
mathematization of their semantics in the style of Scotl and Strachey [10] That is, a
daie flow operator can readily be viewed as a function from input data sequences to
output data sequences. However, coping with non-cdeterminate programs is » more
challenging problem, as the functions must be from sets of sequences to sets of
sequences and finding a partial order in which the functions are continuous is difficuit.
This problem is being exlensively sludied by Paul Kosinski in his doctoral research.

Since determinate operators are adequately characterized as functions from
sequences 1o sequences, the well known pertial order on sequences, namely the
“prefix™ relation, would be adeguate for their semanlics [11]. If the infinite sequences
are included, the poset characlerized by the prefix relation is chain complete. All the
determinate operators of DFPL, if viewed as functions from sequences to sequences,
are both isotone (monotone) and continuous in this poset.

Unfortunately, non-determinate operators are best viewed as functions from
sets of sequences {0 sets of sequences. Furthermore, determinate operators must be
treated the same so that the domains end codomains of sil operstors are compatible.
ihposing a partial order on sels of sequences is a frustrating task. For example, the
Egli-Miiner ordering {12] is really only s quasi-order, which masns that the fixpoint
equations can only be solved to yield a congruence class of sets of sequances. For
DFPL at least, such congruence classas have the counter-intuitive property that one
class contains two sets which have no elements in common!

It is possible to obtain a straighlforward partial order by considering sets of
tagged sequences of data. Each data sequence in the set has asscciated with it zero
or more tags, each of which idantifies the sequence of arbitrery decisions made by a
non-determinale operator which contributed to the existence of thal data sequence.
These tagged sets bear some resembiance to the multi-sets of Lehmann's power
domains [13]. Two sets are compared by matching up the tags on each element of the
first set with the corresponding tags on the elements of the second set. Only then are
the data seqences compared by the prefix ordering. This relation may be shown to be
a true partial ordering of sels of tagged sequences, and the resulting poset is chain
complete if infinite sequences and sets are admitied

Any determinate operator, whose functional behavior on simple data sequences
is known, may be easily extended to a function on sets of tagged sequences. If the
aperator has N inputs, apply the sequence function for tha operator to each N-tuple of
dats seguences (in the Cartesian producl of the tagged sets) for which all tags
associaled with those sequences are compatible, where compatible means that decision
sequences from the same non-determinate opsrator are all squal. The output set’s
sequences are then tagged with the union of the tags of all the inputs in the
corresponding N-luple, assuring that the operstor's function is not spplised to input
ssquences which could never co-exist because thay arose from different decision
sequences of some non-determinale operator. The simple rules of only spplying the
function to each N-tupie of the Cartesian product of the input sets fails in this regard

COMPUTATION STRUCTURES GROUP 32 COMPUTATION STRUCTURES GROUP

The only primitive non-determinale operslor is the Arbiter which, viewed as a
function from sequences to sets of sequences, produces the set of all possible ways of
merging the input sequences such that each element is Lagged by the unique name of
the Arbiter {which just tells which Arbiler in the program it is) and the seguence of
decisions made {i.e. which inpul sequence supplied the next element of the merged
sequence). For example, if the input sequences "AB“ and “CD" were merged by the
Arbiter named “Z", the output set would be {Z0011:ABCD, 20101:ACBD, Z0110:ACDB,
Z1001:CABD, Z1010:CADB, Z1100:CDAB}.

Viewed as a function from sels of tagged sequences to sets of tagged
sequences, the Arbiler is extended in & manner similar to that of any determinate
operator. That is, the merging function given above is applied to sach teg compstibie
N-tuple of the Cartesian product of input sets, wilh the exception that the output set
is tagged with the union of the input tags with the Arbiter generated tag added.

Since the delerminate operators are isolone and continuous in the posst of data
sequences, they are isolone and continuous in the poset of sets of tagged date
sequences. Similarly, the Arbiter is isolone and continuous in the poset of tagged
sequences. Therefore, any recursive system of equations involving these oparators
has a unique minimal fixed-point in that poset. This means that any DFPL program,
with or without iteration (cycles in the directed graph), but wilhout recursion,
corresponds to s well defined function from sels of lagged sequences to same, and all
such functions are themselves isotone and continuous.

Furthermore, since the set of continuous functions from complete posets to
sams, is itself a complete pose!, any system of recursive funclions! equalions has a
unigue minimal fixed-point in the poset of continuous functions. This means that DFPL
programs with recursive operators correspond to well defined functions from sets of
tagged sequences to same. Hence. sll DFPL programs correspond to well defined
functions,

Data ftow programming languages have cleaner mathematical semantics than
ordinary programming languages. Becsuse they are basically applicative in nature and
local in effect, the funclions act solely on the data without states, continuations or
other complications. The tags associaled with the data sequences do complicate
matters of course, but this complexity is for the purpose of dealing with non-
determinacy, which is not addressed by stales, continuations, etc. Furthermore, the
tags serve double duty. First, they allow the construction of a ltralghll‘orwnrd partial
order. Second, they are necessary to lha specilication of how operators functionally
iransform inpul sets of sequences to oulput ones. Hencs, they are less onerous than
they might seem at first.

s + i, et ot SR

P LT

TR SRS

i e e e

- e e

PEEER Y NS

B et

e 2

iy b - e

!

Lo

COMPUTATION STRUCTURES GROUP 33 COMPUTATION STRUCTURES GROUP

2. Packet Communication Systems

To better understand the design principles utilized in the development of
systems with packet communication archilecture, David Ellis has continued the research
program reported last year [9] which is simed al the development of theorstical
models for precisely describing the structure snd behavior of packel systems. The
program has resulled in a mathematical characterization of the behavior af packet
systems in terms of their internal structure. This cheracterization has been used to
formally prove the correctness of several simple packet systems.

A packet system is an interconnection of independently functioning modules
which interact only by passing discrete packets of informalion to each other over one-
way data paths known as channels. The structure of a packet system is determined by
ite composition of modules and channels and always remains fixed for a particular
system Figure 10 depicts a packet system DAS composed of three modules D, 4 and
5. There is one system input channel X and two system output channels ¥ and 2. The
internal chenne! U connects module D to module A, and channel ¥ cohnects module D to
module 5. :

The behavior of a packet system is specified by two components: its structure
and the behavior of ils component modules. Thus, if we are given formal descriptions
for the operation of the modules [, 4 and 5, then we have il the information needed
to characterize the behavior of the system DAS.

The behavior of a packet module is specified by & characteristic relation
between its inpuls and the semantically valid corresponding outputs. Since a module’s
response lo a packel received on some input channel may in general depend on
previously received inputs, module specifications must take inlo account sequences of
packets rather than just individual packets. The characterislic relation for a module is
thus taken over domains of streams, which are sequences of packets.

-~

e gy

f

- —————

N

&

[PN SRS TP

Figurs 10. A sample packet system DAS.

COMPUTATION STRUCTURES GROUP 34 COMPUTATION STRUCTURES GROUP

As an example, imagine an sdder module 4 which pairs up integer-valued
packets in corresponding positions in its input streams x and r, adds the pairs and
sends the sums oul as a stream on 5. If one input siream is longer than the other, the
axira packels absorbed from the ionger input stream are not reflected in the output
response. The behavior of 4 is specified by a characteristic relation ~, which relates
input streams from ¥ and inpul sireams from R {o output sireams on 5. The formal
dafinition for ~ is

((x.r), ()} €~y <m> w5 = min{ox, wr) and s[i] = x[e] ¢ J VI 5 05,

where »x denotes the length of the siring x. This formel definition stetes that s is a
valid response {o the input streams x and r if and only if 5 has as many packets as the
shorter of x and r and each element of 5 is the sum of the corresponding siements of x
snd r. As examples, we have:

x = <8,1,-6>, r = <3,-5,6%, 5 = <11,-8,0%;
= (4'-9'0.4-18)' r=< >' s = <X

x = «<§,35,.,2-1,.2, r = <2,46,..,2,.> s = <3,7,11,.4i-1,.>,
where the third example describes infinite input sireams and an infinite response

The approach used in this research is based on an operstional view of systems.
We model the operation of a system by recording the progress of a computation in a
series of internal system states. The sysiem's response to particular input is
characterized by a time-ordered progression of internal states, which we cali an
execution sequence. in general, there are a large number of possible execution
sequences that correspond to a particular system response to some inpul. The proof
of any system property must show Lthat the property holds over all possibie execution
sequences which may be taken by the system.

The progress of a computstion in a packet system is modeled by the succession
of internal states in an execution sequence. An important property of exscution
sequences is that one can construct a system state which repressnts the computstion
running to completion, For such a state, known as a limit state, the output streams
represent the system's ultimate responss to its presented inpul. An execution
sequence for which a limit state is well-defined is ssid to reslize the system’s
particular cutput response to its presented input. The system’s inlernal specificalions
are then lhe relation between input streams and the corresponding outpul streams
realized by some axecution sequence.

The correctness of a packet communication system is determined through the
comparison of ils behavior with a predetermined set of specifications. These
specifications lake the form of a relationship between the inputs of the system and the
outputs generated in response to thoss inputs.

The behavior of a packet system is described in terms of its internal
composilion, which has two parts: a.) 8 structural description, and b.) the characteristic
relation for each of its component modules. This internal specification of s system will
take the identical form as the externsl behaviorsl specification; that is, 8 relation
between input streams snd output streams.

¢ A

COMPUTATION STRUCTURES GROUP 35 COMPUTATION STRUCTURES GROUP

To prove a packet system is correct, one must show thst its internal

-specifications malch a given external characteristic relation. Thers asre two parts to

such a proof:

a. demonstirating that the behavior reslized by a given exscution sequence sslisfies
the external specifications, snd

b. showing that all instances of valid system behavior are reslizeble by sppropriate
‘axacution sequances.

Although a genersl proot mathodology is not developed in detall, compiste proois have
been worked cut for several cample systeams. The methodology utilized in these
proofs, in addition to aiding formal verification, has proven a significant aid to
understanding the operation of such asynchronous, nondelerminata systems.

G. LANGUAGE DEVFLOPMENT

In conlinuation of our studies on the expressive power of the data flow language
{7}, we have been examining lhe use of this language for the expraession of non-
determinate computation. A study of the merge operator as a basic approach to
representing such computations has led to an exceptionally claan expression of a mock
airline reservalion system (ARS)..

The expression of the ARS algorithm in this form eliminales certain problems
associated with a sequential implementation of such a system. A sequential
implementation could be determinate, but would not be efficient due to such physical
constraints as the differing access times of various storage media. To provide an
efficient implementation of the ARS which avoids these limitations requires the
exploitation of perallelism within the system and, hence, the use of programming
constructs such as the merga operator. .

To illustrale this approach we have constructed program modules for a very
simple form of airline reservetion system (ARS): ow sirline operates M flights and
there are N agents that handle reservations for airline customaers (each flight operates
exactly once), where M and N sre detarmined by information about flights and agents
provided as inputs to lhe ARS module. This module processes a siream of requests,
each tagged with lhe agent’s identity, and yields & siream of tagged responses. The
data base for the ARS is 8 record of the number of ssats booked on each flights and
its seating capacity. Three kinds of requests sre handied: request to reserve or
cancel a specified number of seats, or a request for information about the svailability
of seats. The response indicsles success or failure for "RES™ or "CAN" requests, and
the seats booked and available for sn "INFQ™ request. Figure 11 gives the input and
output data types for the ARS module.

COMPUTATION STRUCTURES GROUP 36 COMPUTATION STRUCTURES GROUP

Agents Flights
input-Stream Output-Stream
‘ ARS
. 8t input stream of output
stroam of input

Figure 11. Input and output data types for the sirline reservation system.

Figure 12 illustrates the internal operation of the ARS module. The module is
composed of two types of processing modules: agent modules (A_mod) and flight
medules (F_mod). Requests received by the system are distributed to tha sgent
modules, and the agent modules in turn distribute each request to s flight module
according o the flight specification in the request. Nota that the data base in this
system amounts to the collection of flight modules to which the requesis are
disiributed.

A program describing lhe ARS system illustrated in Figure 12 is presented in
Figure 13. The flight module and agent module programs are determinats programs
which are specified in Figures 14 and 15.

The ARS medule illustrated in Figure 13 receives s stream of requests trom
agents on its input stream and handies the requests through appropriate calls to the
flight and sgent modules, F_mod and A_mod, yielding the appropriste response on the
output stream.

A-mod M| F-mod

tag-res

A-mod M| F-mod

Figure 12. internal operstion of the ARS moduls.

A-mod M| F-mod M _?—-

tag-res

o i ok e sl L Rt 0 S

e s

COMPUTATION STRUCTURES GROUP 37 COMPUTATION STRUCTURES GROUP

ARS := module (
Flights: array integer of integer,
Agents: array string of null,
Input-Stream: stream of input
Yields Output-Stream: stream of output);

type input = [agnt: string, ree: request}
type output = [agnt: string, res: response};

type request = one of [

INFO: [fl: integer],

RES, CAN: [6: integer, quant: integer]}
type response = one of | :

INFO: [bocked, avail: integer],

RES, CAN: boolean}

Output-Siream := for ali f in Flights merge
F-mod (Flights {f], :
forsll ® in Agents merge
A-mod (a, f, Input-Stream}

K

end ARS;
Figure 13. ARS Program Moduls,
The key program construct in the ARS‘description of Figure 13 has the form
Serall { in Flights merge <expression> '

where { is a free identifier in <expression>, and Flights is bound to a data structure in
which flight numbers occur as selectors. The effect of svaluating such a construct is to
form a collection of streams by evalualing <expression> with f bound to each selector
of Flights; these streams are merged nondeterministically to produce a single stream.
In the ARS module, this construct is used to merge the streams of requests that each
sgent generates for a particular flight f inlo one stream that is processed by an
instance of the request Processing module sssociated with flight f. The construct is also
used to merge the streams of responses for each flight into the output stresm of the
ARS module.

The flight module F_mod and the sgent module A_mod, illustraled in Figures 14
and 15, sre examples of modules whose function is expressed by means of the
recursive definition of a function on streams. The Process modute of Figure 14 has
iwo arguments: the stream of requests to be processed and the stata of booking for
the flights. it specifies that the job lo be done is to act on the first request,
determine the appropriate response and the new state of booking, and append this
response to the response stream that results from processing the remainder of the
input in the new slate.

The A_mod is similarly structured as a recursive module which forms an output
stream for aach of the flight modules of the agent requests for that module.

COMPUTATION STRUCTURES GROUP 38 COMPUTATION STRUCTURES GROUP

F-mod := module {capacily: inleger, in: stream of input
yields out: stream of output);

Process = recmod (x: stresm of input, booked: inleger
returns y: stream of outputh;

if ampty () then []
slse

first, rest :»= first (x), rest (x);

agent, request := firstagnt, firstreg

quantity := request.quant;

rasponse, new = case request of
tag INFO:
make INFO:[booked: booked, avail: capacity - booked)
tag RES: if booked + quantity > 0
then make RES: trus, bookad + quantity
cise make RES: {aiss, booked
tag CAN: if booked - quantity > 0
then make CAN: true, booked - quantity
eise make CAN: falss, booked
endcase;
y := cons{[agent: agent, res: rasponsa), Processirest, new));
end Process;

out :» Process (in, 0);
end F-mod;

Figure 14. Program description of the Flight Module.

A-mod := module (agnt: string, fit: integer, in: strasm of input
yields out: stresm of output);

Seloct ;= recmod (x: stresm of input yields y: stresm of output);
if empty () then []
elsa
firet, rest .= first (x), rest (x);
ageni, request :« firstegnt, firstreg
flight := raquest.t};

out := if agent = agnl and flight = fi{
then cons (firsl, Select (rest))
olse Select (rest);
end Select;
out = Selact (in);
end A-mod;

Figure 15. Program description of the Agent Medule.

et T T UL T TR R PEe Y-

SabiMLiE e 2 L

S

=UPRPRRENSRY, S -

e e

COMPUTATION STRUCTURES GROUP 39 COMPUTATION STRUCTURES GROUP

1.

1l

REFERENCES

Dennis, Jack B; Misunas, David P; and Leung, Clement X. C. A Highly Parslisl
Processor Using a Data Flow Machine Language. M.LT, Laboratory for Computer
Science, Computation Structurss Group, Memo 134, Cambridge, Ma,, 1976.

Gold, Bernard, and Rader, Charles M. Digital Processing of Signals. New York:
McGraw-Hill, 1969.

Commoner, Frederic; Holt, Anatol W,; Even, S; and Pnuelli, A. "Marked

Directed Graphs.” Journal’ of Compuler and System Sciences Vol. S No. §

(Octaber 1971), 511-523. _

Karp, Richard M., and Milier, Raymeond E. “Properties of a Model for Parallel

Computations: Determinacy, Termination, Queveing.” SIAM Journal of Applied
Mathematics Vol. 14 No. 6 (November 1966}, 1390-1411.

Dennis, Jack B, and Weng, Kung-Song. "Application of Data Flow Computation to
the Weather Problem" Proceedings of the S sium_of High S Computer
and_Algorithm Organization New York: Instituts of Electrical and Electronics
Engineers,-1977.

Kalnay-Rivas, E; Bayliss, A; and Storch, J. “Experiments with the 4th Ordar

GISS Model of the Global Atmosphere.® Proceedings of the Conference on
Simulation of Large-Scale Atmospheric Processes, Annalen der Meteorologie Vol.
11, 1976, 25-31.

Weng, Kung-Song. "Stream-Oriented Computation in Recursive Data Flow

Schemas.” M.LT., Lsboratory for Computer Science, LCS/TM-68. Cambridge, Ma.,
1975,

Miranker, Glen §. “Implementation Issues in Data Flow Architectures.”
unpublished $.M. Thesis, M.LT, Department of Electrical Engineering and
Compuler Science, 1977,

Laboratory for Computer Scisnce Progress Report Xl M.LT., Laboratory for

Computer Science, 1976.

Scolt, Dana, and Strachey, Christopher. “Toward a Mathematical Semantics for
Computer Languages.” Oxford University, Computing Laboratory, Technical
Moanagraph PRG-6. Oxford, England, 1971. .

Kosinski, Paul R. "Mathematical Semantics and Data Flow Programming.”

Proceedings ACM Symposium on Principlas of Programming Languages. New
York: Associalion for Computing Machinery, 1978.

12 Plotkin, G. D. "A Powerdomain Construction” SIAM Journal of Computing Vol. §

No. 3 (September 1976}, 452-487.

COMPUTATION STRUCTURES GROUP 40 COMPUTATION STRUCTURES GROUP

13. Lehmann, D. J. ’Cntegorie_s for Fixpoint Semantics.” Proceedings of the
Seventeenth Annual Symposium on Foundations of Computer Science. New York:
Associslion for Compuling Machinery, 1978.

