MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Laboratory for Cofaputer Science

Computation Structures Group Memo 171

Semantics of Distributed Computing
Progress Report of the Distributed Systems Group
1977 - 1978

by

D. G. Clark
I. Greif
B. Liskov

L. Svobodova

This research was supported by the Advanced

Agency of the Department of Defense and was
Office of Naval

Research Projects

monitored by the
Research under contract N00014-75-C-0661.

Octcber 1978

SEMANTICS OF DISTRIBUTED COMPUTING
PROGRESS REPORT OF THE DISTRIBUTED SYSTEMS GROUP
September 20, 1978

D.D. Clark, I. Greif, B. Liskov, L. Svobodova

1. Introduction

Computer systems should reflect the structure and needs of the problem to
which they are being applied. For many applications, a distributed computer
system represents a natural realization. For both technical and economic
reasons, it is likely that for many existing applications, distributed
computer systems will replace conventicnal computer systems built around a-
large central processor, and that new applications will emerge based on
distributed information processing. However, before such systems ire feasible
a better understanding of how to construct them is needed. Our project 1is
aimed at providing this understanding.

The move towards distributed processing has become feasible mainly
because of the rapidly dropping cost of computer hardware and the increasing
power and flexibility of min{ and microcomputers. The move toward distributed
systems will be dictated, Qowever, by their "naturalness", and by the many
technical advantages they offer over centralized systems. These advantazes
include the following:

Availability. Availlability of i{nformation can be increased by

replicating it at several nodes. This arrangement not only lacreases the

access bandwidth to the information, but in case of a failure of one of

the nodes or some communication link, the information remains accessible.

appearance of a coherent system. The project discussed in this report is to
develop an integrated programming language and operating system to support

well-structured design and implementation of distributed applications.

l.1 Distributed Systems of Interest

The area of "distributed systems" has become a popular source of systems
research projects. It has also become an important term in marketing computer
equipment. Unfortunately, because of this popularity, :ﬁe terms "distributed
systems" and "distributed processing” are frequently misused, often referringy
to such conventional concepts as remote job entry, use of terminal
concentrators, or multiprocessor organizations.

The distributed systems comsidered in our project can be described
loosely as organizations of highly autonomous information processing modules,
called nodes, which cooperate in a manner that produces an image of a coherent
sSystem on a certain defined level. Autonomy is the key characteristic that
eliminates most multiprocessor organizations from this class of distributed
Systems. Certalnly, a distributed system has more than one processor, Since
it has at least one processor in each node. However, in a distributed system,
the nodes are highly independent, each having its own primary memory, possibly
even some secondary storage, and its own interface through which it
communicates with its environment (e.g. user terminals, sensors). The
individual nodes are connected by a communication.netWQrk; the communication
delay may be highly variable and unpredictable. The communication network
might be a long-haul network such as the ARPANET {15], a local area network
(2], or a suitable combination of these two types. Each node has access to
its own memory only; that is, inter-node communication is possible only by

explicitly exchanging messages, not through shared memory. Finally, physical

Distributed systems have only lately become a focus of programming
language research. In the past, programming languages have mostly not
addressed concurrent programse. 'ﬁore recent languages (e.g. Concurrent Pascal
{1]) Modula [22]) have had features for coacurrency, but within the context of
a single processor: these languages are based on the assumption that programs
fanteract through shared memory, which is not consistent with the concept of
autonomous nodes with private memory. There is related work at Oxford [9],
the University of Rochester [6] and at MIT [4,7)], but this work does not place
strong emphasis on integrating the language and operating system features.

Indeed, we feel that our emphasis on Integration of language and system
is a key factor in our work and distinguishes it from other related work.

Much of what distributed programs do falls into what is usually considered to
be the systems area, including such topics as synchronization of access to
shared info:mation. and protection. However, programs are written in a
programming language, and proper primitives in that language can greatly
rinfluence the structure of programs. By integrating the two areas we expect
to achieve a greater. impact on the construction of distributed systems than

could be accomplished in either area separately.

2. Study of Applications

It is essential that the mechanisms we develop to support construction of
distributed applications will cover the real distributed processing problems.
To this end, we have studied a number of applications, both by direct
observation [19,20] and by surveying related work as discussed earlier. This

study was hampered by the lack of existing distributed systems; for example,

banking systems are not yet distributed, although a distributed system is

not posgible to restrict in advance the modes of sharing among
users. It is necessary to communicate both data and programs, but
from the point of view of the mechanics of the actual axchange of
information this type of system could be included in the first
category.

The distribution can take place along two main lines, based on functlional
separability or on the non~uniform distribution of the use of databases.
Functional distribution means that differept nodes support different services.
Such systems seem natural for control of industrial processes, where different
nodes control different parts of a process, or in such systems as aircraft,
where different nodes process information from different sensors. However,
this approach seems to be also advantageous in service sectors such as banking
f19].

Another category of distributed systems is a system where an individual
pProcessor supports the same services but on a different part of a database. A
typical example is a bank with many branch offices. Each branch has its local
accounts, but it should be able to serve a bank’s customer whose account ts at
another branch. Since such remote requests are much less frequent than
manipulation of the local accounts, partitioning of the bank’s accounts
database (that {is, maintaining accounts on a computer at their local branch)
i3 a natural approach.

It must be said that the division between functional distribution and
database distribution is not clean; in most cases, a distributed system will
to some extent include both. The latter case, however, implies an integrated
database, while in the former cage (functional distribution) the databases
used by individual servers are much more independent. In Some ways, the

functional distribution is a more general case. A distributed database

is a large gap between the application and the low level communication
protocols. Usually, this gap results in a rather ad hoc implementation of the
application.

Our target {s an intermediate level, called the programming system, which
will support a well-structured design, implementation, maintenance and control
of distributed applications. This level is more than a programming language
in a traditional sense. Rather, this level is envisioned as a set of tools
that include primitives found in conventional higher level languages such as
Pascal or PL/1, but also primitives normally assumed to be a part of an
operating system, for example, long-term storage and cataloging of information
or control of protection safeguards. Thus, this programming level will
lategrate the programming language and the operating system. More strongly,
this level will integrate a programming language and a distributed operating
system.

.. The design goals for the programming system include:

= Alm for as high a level as pogsible, but application independent.
Our system 1s inteaded to be used to implement many diverse
applications, for example, both command and control systems and
administrative systems like inventory control systems. To
adequately support such a class of applications, the language should
be as high level as possible but general purpogse. One need that all
applications share is the ability to exchange potentially gquite
sophisticated messages.

- Support well-structured programming. Since our primary motivation
i1s to ease the task of the application programmer, we feel that the
embedded language should borrow from existing language work, in

particular building on languages such as CLU [11] and Alphard [23],

the processing that is needed to translate an object in memory into
4 message transportable by the communication network and vice versa:
the translation is accomplished using speclal operations of the
object’s type. Note that this translation ts always needed; a
language that requires messages to be composed of low level objects
simply obscures this fact.

Allow explicit control of the application distribution.
Conéeptually, the target level can be viewed as an abstract network
of processes where application-defined pProcesses communicate via
messages that contain high level commands, data and responses. In
an ideal situation, this ts all that would need to be seen by the
application programmer. However, underneath this abstract network
1s the set of physical nodes and the communication l{ines that
connect them. OQur study of applications has indicated that the
mapping of the objects used by an application into the physical set
of nodes has to be made visible to the application programmer. We
are also assuming that objects do not move dynamically from node to
node, depending on the degree of demand (such dynamic migration is
often assumed in the "distributed" Systems consisting of many,
relatively tightly coupled, mini or microprocessors). Rather, when
a specific node 1s chosen to be the (new) home of a particular
object, an installation of the object has to be explicitly requested
using commands provided by the programming system. This assumpt ion
i9 based on the belief, discussed earlier, that.such placement
decisions will often be based on non-technfical factors external to

the system [3].

11

although in some enviroanments (such as LCS) there is often little distinction
between the two classes of users. Also, it should not be necessary for all
nodes in the distributed system to support the full language; each node need

only support the appropriate (high level) internode communication protocol.

4, Entities

In this section we discuss the universe of entities {(e.g. programs, data)
that take part in a distributed computation. We are not concerned with all
aspects of the behavior of the entities, but rather limit our attention to
questions concerning the locations of entities within the network and cthe
possible relationships among the entities. We assume that each entity has an

identity that is permanent; an entity can be referred to by giving 1ts name.

4.1 Location of Entities

The universe of entitles is spread across the physical nodes that make up
the network. One question that arises concerns the location of entities: 1is
an entity permanently located at a particular node, or can it move from node
to node?

To make a decision here, we must consider several issues:

l. Earlier we discussed our conclusion, based on an analysis of
applications, that the application programmers must be able to
control the location of entities. Note that, at the least, this
conclusion precludes automatic relocation of entities by the systen,
although relocation under program control would still be possible.

2. We are assuming that nodes are autonomous and possibly
heterogeneous. Even under program control it is possible to move an
entity to an autonomous node only 1if that node is willing to accept

it. Purthermore, if that node is different from the current home

13

Objects have a state (value) that may change. If the state can change during
the object’s lifetime, then the object is mutable.

A process can communicate with another process by sending it a message.
We assume that the syntax and semantics of message passing is {ndependent of
the nodes of residence of the two communicating processes (although certain
optimizations can be performed by the system if both processés reside at the
same node). A process can use an object by performing (invoking) an operation
on it (or by invoking it 1f 1t 1s a procedure); again, the semantics of
lovocation is the same regardless of the nodes of residence.

We have just described a model in which there are two basic primicives:
invocation and message passing. We intend that the semantics of invocation ts
distinct from message passing: the primitives are really different. (We
expect that these two primitives will also be distinguished syntactically, but
that is a separate decision.)

- If an actor-like view is taken, there is only one basic primitive,
message passing, so our model seems more complicated. However, we believe
that it i1s more natural than the actor model and will therefore be easier for
programmers to understand. If programs built out of actors are examined, {t
is clear that there are "data-like" actors, "procedure-like" actors aad
"process-like" actors. We believe these differences are fundamental and

should be reflected in the language and its semantics.

4.3 Restrictions om Referring to Entities

Now we address the subject of entities referring to entities. An entfity

may refer to another entity by using or containing its name. For example, a
process will have local variables that may contain the names of other entitles

(both processes and objects); as the process executes, it can use these names.

15

Figure 1: Example of possible relationship
2gure 1
of processes and objects.

17

A guardian should not be assumed to know a priori about all processes
that may request operations on the guarded objects. Furthermore, if a process
requests an operation on data that are available ouly through the guardian,
such a request may fail, since the guardian may refuse to release requested
data, or in some cases may even destroy the data at its own discretion.

The abstract network model requires two extensions to be useful. Firset,
the requirement that local address spaces of processes are disjoint may need
to be relaxed. To obtain sufficient parallelism, it will probably be
hecessary to support complicated guardians consisting of several processes
that share objects. This could be accomplished by a special syntactic
construct, something like a serializer [8}, that defines the processes making
up the guardian and their intercommunication; all the processes in the
guardian would reside at the same node.

Second, in the case of a guardian that guards several objects, some
efficient mechanism is needed that permits a user process to specify to the
guardian the particular object of interest, and for the guardian to determine
that the object so specified is one it guards. The system provides no
guarantee, however, that such an object continues to exist as long as the user

can specify 1it.

5. Reliasbility Issues

Reliability 1{s and will be one of the major issues in information
processing systems. As discussed earlier, distributed systems provide a
potentlal for enhanced reliability; however, this potential needs to be
exploited through proper design. This section discusses the reliability
problems in distributed systems and the mechanisms needed to achieve relfable

operation of a distributed application.

19

left to the application level.* Thus, the system ought to provide gufficient
mechanisms for masking certain classes of failures arising from the operation
of the hardware and the software that supports the application programs.
However, the system also has to provide suitable language constructs for the
application programmer to facilitate handling of the application specific
failures and communication of the system detected failures to the application

programs.

5.1 Communication Protocols

The abstract network {s supported by a physical network of nodes and
communication lines. Figure 2 shows the abstract network mapped into the
physical network and the communication processes that control the physical
delivery of messages among the nodes. The application processes exchange
messages that, logically, contain values of high level (abstract) objects
meaningful at that level. The values of these objects have to be translated
(encoded) into a string of bits for delivery to another node and decoded to
the proper abstract objects at the receiving node. At the system level,
messages, now in the form of a string of bits, may have to be partitioned into
Packets. The messages are checksumed, so that transmission errors can be
detected. It is difficult éo correct transmission errors at the receiving
node, since transmission errors are bursty (affect not just a single bicr, but
several bits). Checksum facilitates detection of errors, where the number of
detectable simultaneous errors is determined by the size of the checksum
field. Correction is performed through retransmission. 1In general, once a

message has been translated into a string of bits, the communication protocols

* In the class of system level faflures, there is a gray area where a decision
has to be made as to whether these failures will be masked by the system level
or reported to the application level.

21

should take care of the correct transmission. However, the primary
responsibility for checking that a message has been acted oa, that is,
ensuring that a process that sent a message will not wait indefinitely, and
also that the message contains values acceptable from the application
standpoiat, must rest with the application.

The language constructs needed to permit an application process to deal
with failures of another application process with which it is communticat [ng or
attempting to communicate, to defend itself from improper use, and to deal
with the failures in the system level are discussed in Section 6. This
section concentrates on the system level.

A truly reliable system level should be prepared to deal not just witﬁ
communication errors that result in a loss or garbling of messages sent across
a physical communication link. A reliable system level should not lose
messages that have been presented to it by the application processes and
queued for delivery. That is, the message queues should be recoverable in
case of a physical failure of a node. This requirement becomes very important
if translation from an abstract data object to the corresponding bit
representation is a costly operation, or {if the input to such a translation
step 1{s not automatically répeated (e.g. message typed by a user). This
argument can be extended to the requirement that the system should guarantee
delivery of all messages it has accepted from the application processes. That
means that in addition to providing recoverable queues for messages that have
not been sent yet, the System must continue trying to send the queued messages
until ft eventually succeeds. At the receiving node, the messages have to be
storad again in recoverable queues, until they are picked up by the target

application process.

23

detected deadlock or because of a failure of some entity it uses). Redundant
coples make it possible to restore the current state or to backup some earlior
state of an object.

The issues regarding the reliability of individual objects are not
8pecific to a distributed system; any information processing system should
Support backup and tecovery of stored objects. Distributed systems, however,
can increase the avallability of informatfon and services. "Availability" can
be interpreted as the delay experienced when accessing a particular object.
This definition has two connotations: one is the efficiency of the system,
that is, the actual physical delay and queuing time in the abstract network
(case E); the other source of delays are the failures in the abstract network,
that is, the reliability aspects (case R). Redundancy 1s used for both of
these subcases:

Case R: If some particular node or communication with a particulaf node

) fails, it should be possible for the other nodes to continue their
work. Since the failed (or inaccessible) node may contain objects
needed by the other nodes, to increase availability means to
maintain several coples of shared (shareable) objects on different
nodes.

Cagse E: Even {f the System never failg, a single copy may not provide
sufficient availability. & single copy of information or service
may become a bottleneck; also, the communication delays, especially
in a long-haul network, may be substantial, and it thug may be
desirable to have a local copy (and, consequently, sypport multiple
coples).

The question that needs to be answered {s to what extent the individual

copies have to be mutually consistent. It is important to distinguish between

25

multiple versions of selected objects, where the most current version is

backed up on the system level.

6. Language Cons:rucgg for Sending and Receiving Messages

An important issue in designing a language for distributed systems is how
the language recognizes pairing of messages. The basic scenario in the
abstract network is one process sending a message to another process
requesting some action; later there should be another message, flowing in the
other direction, indicating the result of the action. It must be possible to
express in the language that the two messages are related. In addition, it is
aecessary to address the problem that the reply may never arrive, or that the
request message cannot be sent. Several approaches are possible that differ
in how long (for what event) the sending process must wait before it can
proceed. Closely related to this degree of waiting 1s what kind of failures

are detectable as part of the send command .

6.1 The Waiting Approach

In this approach, the sending process is forced to wait until the
response comes back from the recelver, or some timeout or failure results. A
possible syntax might be:

send C(args) to A timeout time:
Rl(formals) do S1;
R2(formals) do $2;
failure (formals) do Sfailure;
timeout do Stimeout;

end;

27

A different kind of "send" command is needed in the receiving process,
since the receiving process must be able to respond to the command without
waiting for the original sender process to respond back. To receive messages,
A might use a coastruct:

command case

C(formals) do...reply R(args);...;

end;
Here, A is waiting for one of a number of messages; if several are avallable,
one is selected in a fair way. The message is then decoded, the contained
data assigned to the formats, and the statements associated with the selected
message are executed. The reply command sends a message back to the process
that sent the message. Another form of reply:

reply R{args) to B
which explicitly names the process to reply to will probably also be needed.
(This would permit a third process to be the replier to the original sender.)

The approach sketched above has the obvious advantage of pairing seads
and receives. It also has some obvious disadvantages. For one thing, there
are two send commands. More important, however, is the loss of parallelism.
If the sending process had other tasks éo do while its request was being
processed, it must either not do them, thus reducing efficiency, or it must
spawn another process to do these tasks. Thus a language supporting this

approach must provide rich facilities for parallelism.*

* Note: this is not the only reason for which such facilities for paralleli;;
might be needed. See the discussion of guardians in Section 4.

29

communicates with geveral other processes. The pert scheme could be further
extended to allow the programmer to use a special port for replies indicating
a fallure:

send C(args) to A reply-to P failure-to F
The port F could be viewed as an eatry to the "complaint department" of the
respective application process.

The no-wait approach permits parallelism and 1s more flexible, especlally
in connection with ports. However, the linguistic mechanisms needed to enable
the programmer to do the matching introduce extra complexity; how much
flexibility is gained and how much complexity {s added requires further study.
The no-wait approach does not eliminate the need for supporting timeout, but
now the timeout is specified at the point where the process must wait for the

reply.

6.3 The In-Between Approach

B Tﬁis approach again makes the gender wait, but instead of waiting for the
reply from the target process, the sender myst wait only for some indication
about the progress in the delivery of the message. For example, in Hoare’s
language [9], the sender waits until the replier recaives the messaze.

The first question to ask is: does this approach offer the programmer
any advantages over the other two approaches? Since sends and replies are not
explicitely paired, from this point of view the in-between approach offers
similar advantages and disadvantages as the no-wait approach. What is gained
over the no-wait approach is that certain failures, for example, (c¢) and (d),
or possibly even (e) can be treated as exceptions of the sead command. More
importantly, the completion of the send command indicates that a mezningful

message (to some extent) has been received, and, 1f the buffer into which the

31

7. Protection Issues

In a distributed system, the protection problem can be simplified if we
distinguish between inter-node and intra-node protection mechanisms. In the
class of distributed systems considered in our project, a likely case {s that
a particular node is utilized by one user or at most by a set of cooperating
and mutually trusting users. In this case, fotra-node mechanisms are not
required to have power sufficient to protect against subversion and malice.
This i{s in strong contrast to a system such as Multics [17], and many other
time-shared and multiprogrammed systems that were designed to operate properly
with a set of mutually hostile users. The protection mechanism required in a
single node 18 that which protects adequately against error and forgetfulness.
This latter problem, while less severe than the problem that results from
fully suspicious cooperation, 1s still not trivial. Presumably, the
programmer must be provided a wmeans of partitiocing his computations, so that
eertain objects are accessible only in certain computations. This mechanism
will allow him to debug new versions of software without ruaning the risk of
destroying existing objects.

We propose that a capability mechanism be the mechanism to provide this
intra-node protection. By capability we mean an unforgable {deatifier for an
object, which identifies the type of the object.* It must be presented as part
of addressiag an object. By constraining a procedure to execute with a
limited collection of capabilities, it 1s easy to guarantee that the procedure

will not do arbitrary damage to stored information.

* "Capability" is often used to mean more than an unforgeable identifier: a4
capability may also include a specification of the access rights, that is, a
specification of which of the operations defined for the type of the object In
question are actually allowed on that specific object. However, access
control can also be achieved by making the object appear to be of the type
that imposes the desired restrictions.

33

model of protection generally turns out to be that based on access control
lists. While capabilities are often used in the real-world, the most obvious
example being keys, the drawbacks are well knowm. Keys are subject to
unauthorized duplication, loss, theft, etc. More relevantly, capabilities (or
keys) do not provide a means to support accountability.

Both inter-node and intra-node protection requires partitioning of
computations into non-overlaping access domains. The abstract network derived
in Section 4 already provides such partitioning: each "node" in this abstract
network has its own local address space inaccessible to other nodes. The
decisions about intra-node and inter-node protection mechanisms can be
extended to the abstract network: specifically, capability mechanisms will be
used inside an abstract node, while access control lists will be employed for
inter-node communication.

One of the basic goals of our project is to allow the application
prdhrammer to work with application-orieated entities. The same concern
applies in the area of protection. That is, protection constraints should be
expressible in application-oriented terms. Powerful abstraction mechanisms
and the concept of abstract nodes botﬁ contribute towards this goal.

Let us look now at the inter-nocde protection problem in the abstract
network from a slightly different viewpoint. It will be a rare case where a
request occurring between nodes consists of nothing more than the reading or
writing of a single primitive object. In most cases, we can expect the
request to be composed of an aggregate of reads and writes on various objects,
which the requesting node views as atomic. This i1s generally raferred to as
an atomic transaction. The thing that must be protected from outside is the
right to execute this atomic transaction. It is quite possible that the

isolated reads and writes that are required as part of this transaction are

35

to read certain records, others to read and write them. Each data model
implies the existence of an algorithm to translate between that data model and
the actually stored informatifon. It is these algorithms that must be provided
in advance, one set for each data model. The programming system must provide
facilities for creating such data models, mapping them into the actual stored
information, and synchronizing read and write operations originating from
different data models.

We have stated this paradigm in terms of the traditional vocabulary of
data management. Let us_state it again in a different vocabulary, that of
typed objects. An abstract type, which allows only certain well defined
operations on the objects of that type, while in reality it may perform
arbitrary computation on a possibly large number of objects that constitute
its represeatation, is'very close to the {dea as a data model. The
traditional view of data models permits a low-level information entity to be
shared by different users through a variety of data models. To support this
view via abstract types, it must be possible to manipulate a single low level
object as part of a number of different abstract data objects, depending on
the rights of the different users. The 1dea of data models is that different
users have different views of the world, but, fundamentally, they do turn out
to be views of the same world. Thus, in some sense, they must ultimately rest
on the same physical data.

The inter-node protection can be enforced as follows. Any outside user
(process) perceives the information in a particular (abstract) node as a
number of objects that he can manipulate independently, and a set of
permissible operations on those objects. These externally visible ijects are
arranged in such a way that there are no explicit protection constraints that

tie one object to another. A message arriving at a node to manipulate one of

37

N2

.\. ‘III’

\\\ guarded
objects

A, B, C:
G:

Figure 3:

protection agents
guardian

Inter-node protection mechanism in the abstract network:
the process P (abstract node N2) can reach the objects
guarded by G (abstract node N1) only through the
protection agent B.

39

object a notation describing the particular operations that this principal s

permitted to perform on that object.

41

L4.

15.

16-

17.

18.

19.

20.

21.

22.

23.

Reed, D.P., "Naming and Synchronization in a Decentralized Computer
System," M.I1.T. Department of Electrical Engineering and Computer
Science, PhD Thesis, September 1978.

Roberts, L.G., Wessler, B.D., "Computer Network Development to
Achieve Resource Sharing," Proc. AFIPS SJCC, (1970).

Rothnie, J.B., et al., "The Redundant Update Methodology of $SDD-1:
A System for Distributed Databases,” Computer Corporation of
America, Report CCA-77-02, (February 1977).

Saltzer, J.H., "Protection and the Control of Information Sharing in
Multics,"” Communications of the ACM, Vol. 17, No. 7, (July 1974),
pp. 388-402.

Stearns, R.E., et al., "Concurrency Control For Database Systems,"
Extended Abstract, LEEE Symposium on Foundations of Computer
Science, (October 1976), pp. 19-32.

Svobodova, L., "Distributed Computer System in a Bank: Notes on the
First National City Bank," M.I.T. Laboratory for Computer Science,
Computer Systems Research Division, Request for Comments No. 155,
(January 23, 1978).

Svobodova, L., "Distributed Computing in the Bank of America,"
M.1.T. Laboratory for Computer Science, Computer Systems Research
Division, Request for Comments No. 157, (February 17, 1978).

Thomas, R.H., "A Solution to the Update Problem for Multiple Copy
Data Bases which Use Distributed Control," Bolt Beranek & Newman,
Inc., Report No. 3340, (July 1976).

Wirch, N., "Modula: A Language for Modular Multiprogramming,"
Software Practice and Experience, Vol. 7, No. 1, (January 1977).

Wulf, W.A., et al., "An Introduction to the Construction and
Verification of Alphard Programs," IEEE Transactions on Software
Engineering, Vol. SE~2, No. 4, (December 1976), pp. 253-265.

43

