 MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Laboratory for Computer Science

Computation Structures Group Memo 181

Translation and Optimization of Data Flow Programs

by

J. Dean Brock
Lynn B. Montz

This paper will appear in the Proceedings of the 1979 International
Conference on Parallel Procesaing.

July 1979

TRANSLATION AND OPTIMIZATION OF DATA FLOW PROGRAMS(*

J. Dean Brock
Lynn B. Montz
Laboratory for Computer Science
Massachusetts institute of Technology
Cambridge, Massachusetts 02138

Abstract -- We present ADFL, an Applicative Data Flow
Language with an iterative control abstraction based on tall
recursion and an errot-handling scheme appropriate 1o the
concurrency of data fiow. An algorithm for transtating ADFL
programs Into data flow graphs is described. These grephs
may be executad without possibility of deadiock, but with
putential loss of some concurrency, on packet
communication sysiems with bounded huftering, such as the
Dennis-Misunas data flow computer. Two technlquea for
optimizing graphs are given and thoir effact on performance
and correctnass Is analyzed. One is the insertion of identily
operators (buffers) into grephs to Increase pipelining. The
other Is the ellmination of unneaded acknowladge signals,

Introduction

in a data flow computer, an operetion Is performed as
sgon ns its oporands havo been computed. The maching
languangn Is an axpliicl reprasentation of the data
depandancles of program operations. 15 programa are
dirocted data flow graphs whose nodes are called
operators. The role of operators In a dala flow machine s
similar to the role of instructions In & von Neumann machine.
The executlon of an Instruction cotresponds to the firing of
an operator. Each oparator has sevaral Input and output

ports. Whenever an operator flres, it absorbs tokens

{values) at its input ports and produces tokens at Its output
ports. Operators have firing rules which determine when
they are enabled for firing. These firing rules are based on
the presence or absence of tokens on the operator's ports.

When operators are Joined to form data flow graphs,
the links of the graph are directed from operator output
ports to operator input ports. A link tronsports the results
produced at an operator outpul port to an operator input
port, Thus, links form tha pathways upon which data flows
as tokens are absorbed and prtoduced by tha firing of
oparators during the exacution of a graph.

{a) This roaearch was supported In part by the Lawrence
Livermora Laboratory of the University of Californla under
contract 8645403, In part by the National Sclence
foundation under rasearch grant MCS76-04000 AO1, and in
part by the Advanced Research Projects Agency of the
Dapartment of Defensa under Office of MNaval Ressarch
contract NOOO14-76-C-06681. Part of the rossarch was
conducted while Mr. Brock was supported by a National
Sclance Foundation graduate fallowship,

The data fiow graph of an elementary expreasion
resembles its parse tree. The graph for computing the
distance functlon:

sqri{(x1-x2)2 + (y1-y2)2)

Is iHustrated In Flgure 1. The solid black dot in the fiure
represents the copy oparator which Is used to distribute
the results of one oulput port 1o several nput ports, Note
how this graph represents the operation dependencies and
Independenclas of the distance function,

Preliminary data flow machine designs have been made
by Arvind and Gostelow [2), Davis (5], and Dennis and
Misunas [7]. Within these machines, a data fiow graph ia
distributed over a network of procesaing elements. These
olements operate concurrently, constrained only by the
operational dependencies of the qgraph. Thus, a very
effictent utliization of the machine's raosources sppears
poasible.

ADFL - An Applicative Data Flow Language

Data flow programming languages resemble
conventional languages restricted to thase foatures whosa
ease of tranalation does not depend on the state of a
computation being a single, sequentially manlpuiated entity.
Because the "state® of a data flow graph is distributed for
concurrency, gofo's, expressions with side effacts, and
multiple assignments to the same varlable are difficuit to
represent. ADFL, Applicative Data Flow Language, Is &
simplification of VAL, the value-orlented data flow language
being developad by Ackerman and Dennia[1]. A BNF

Figure 1. sgrt({x1-x2)2 + (yt-y2)?)

”Y"Z yi

sqrt((x1-x2)? + (y1-y2)2)

e e e —

apacification of the syntax of ADFL follows:

exp ::= id | const | exp , exp | opar(exp) §
lot idlist = exp in exp end |
tt exp then exp etse exp end |
for idiist = exp do lterbody end

Hoarbody ::= exp | Wer exp |
fet /dilst = axp In iterbody end |
It axp then iterbody else larhody end

id ::= “programming language ldentiflers”
igtist = la {,id)

const ;= “programming Innguage constants®
oper i.= "programming lsnguage operators®

The most elementsry nxpressions of ADIL are
Idomtitiors and conatants. Tuplos of expressions are alsc
exprossions: Oni such expreasion Is "x, 5", The applcation
of an operator to an axpression Is an expression, Although,
the BNF specification only provides for operstor applicationa
In prefix form, such as *+(x, §)"; applications in infix form,
such as "x + 5" are considered acceplable equivajents
{sugerings) and will be used in example ADFL programs. In
sequential programming Iamjunges execution exceptions are
generally handled by progrem interrupts (signals). This
solittion is inappropriate for data flow since there Is no
control flow to interrupt. Applied to "exceptional® inputs,
data ilow operators yleld spacial error values, such as
zero divide or pos over. Tho documentation of VAL [1]
conteins a detailed spectfication of this method of
orror-handling. For simplicity, only one error value undef Is
usnd throughout this papaer.

Sinco ADIL is applicative, it provides for the blndlng,
rathor than the assignment, of identifiers. Fvaluation of the
bingling nxprossion:

lety. 7=x+H,BIny*zend

Implics 1he evalvation of "y * 2" with y equal to "x + 65" and
Z equal to 6. The result of binding Is local: \ha values of y
and z outside the binding exprassion are unchanged.

AUFL contains a convenlional conditional expresaion,
hut has an unusual iteration expression. Evaluation of the
Heration exprasaion:

for idlist e exp do iterbody end

is accomplishcd by first binding the Hteration Identifiers, the
alemonts of /diist, 1o the valuas of axp. Note from tho BNF
spaclitcation of Mterbody, thot tho ovaluation of tho iter ation
body will ullimatuly rosult In elther an axprassion or the
“"application® of a spocial operaler Wer to an axpreasion,
Thia application of iter s aciyally a tall rocursive calf of thy
Horation body with \he fteration idontiiors bound o the
"argumnnta” of Her. Yho Noration Is \orminated when the

evaluation of the Iteration body resuits in an ordinary, non
iter, expression. The value of this expression is returned
as the value of the Heration expression. The fofiowing
Iteration expression computes the factorial of n:

fori,y=1,1do
iti<ntheniteri+ 1,y " eise y and
end

Syntactic restrictions which ensure that expressions
are used only when appropriate In arity and type have been
omitted from this discussion. [Clsewhere In {his volumse,
Dannis and Weng [8] define arity and type restrictiona for a
data flow language similor to VAl and, consequontly, ADFL.
Their languago diffars from ours in emphasis: They prosent
an abstract Interpretar with a dynomic allocnation schome for
executing graphs and, accordingly, emphasize procedural
conirol abstractions. We Investigate the axecution of
statically allocated graphs (data flow machine language
programs) and, accordingly, emphasize Harative control
abatractions.

Transiation of ADFL

The transiation algorithm of ADFL consists of two
functions ﬂ. mapping ADFL expressions intc thelt data flow
graph implementations, and ,7,. mapping ADFL Iteration
bodies into their implemantations. The graph implementing
an expression or ltaration body has an Input port for each
froe varlable of the expression or Heration body. For an
exprassion exp which returns n values when evalusted,
Tlexp] has n output ports. Recall that evaluation of an
ltaration body will yleld either resiits to be re-lterated or
results to be returned by the containing |toration
axprassion, The graph _7.{[Hmmdy]| has &n oditput port
iter? which slgnals which puossibiity has occurrad and sots
of output ports for each passibility: | output ports for salues
to he /tarated and R output ports for values to ba returncd

The translation algorithm for ADFL resembles previous
translation schemes of Dennis [8] and Weng [t1) A
detalled recursive dotinltlon of the algorithm over the
eleven ceses of the BNF specification of the syntax of ADFL
has bean glven by Brock [3]. For brevity, only the cascs of
the conditiona! expression, the condlitional Haralion body,
and the |teration expression will be examined In datail. It ia
assumed that most readers, informed that the gteph of
Figure 1 may be re-labeled:

Tilret dx,dy = x1-x2,y1-y2 in sqre(dx*dx+dy*dy) ena]}
wHl discover the fransiation of the elght *trivial® cases.

The graph [exp, then exp, sise exp, ond]] Is
shawn In Figuro 7. The graph contains three subpraphs,
Tloxe,B _"-]IInxpz]], and Foxp,]. and several gates The
T gate has a controt input port {oloring (ta tolt stde), a
data Input port, and an oulput port. When the T flate firea,
It ahsorha & lokan from pach inpat prort. 1t tho controd token
ia true, the dals lokan (a pansoit (o the output porl, If the

Figure 2. it expy then oxp, sise exp, end]]
Ju

(Mewnd)

contral token ts false, the data token is simply absorbed.
No output token is produced. FThe F gate is defined
analogously. It posses its data token only if i1s control
token is false. By passing inpuls {0 _7[[nxp?]]. respectively

ﬂl[nxp i]}. throuqh T qatns, respectively F patlas, controlied

by he outpul of “'7[[0}([)!“, the proper subexpression is
"anabled" during <ate flow evaluation of the conditional
exprossion. The resolts of _:7|Iexp2]} and _7[[exp3]] are
meraed by M gntes. The M gate has one control input port,
two data input ports, and one oulput porl. s control token
selnels the dala token 1o ba passad. If the control value is
the nrror volue undef; each T or F gato absorbs a dala
tokep and produces ne output tokens, and aach M gate
produces undef and absorbs no input tokens. Thus, data
Now evalualion of a conditional cxprassion yields a tuple of
unde!'s if the condition is undef.

F1Tit exp then iterbody, else iterbody, end]], the
condlitional fteration body graph illustrated i Flgure 3, is
similar to the condilional expression graph. With T and F
gates, the ouipuit of the cxpression subgraph, ﬂl[axp]l.
enables one of the iteration body suburaphs, ‘7|[[iterbodyl]]

and _‘7|[[ilerbody2]l. The solectad subgraph will produce
attput at elther its { or R output porls, according to its iter?
oulput: true, {or | oulputs to be iterated: faise, for R
oulputs to be returmed, Using the output of the expression
subgraph and the iter? outputs of the iteration body
subgraphs, the IC gate calculales three /teration control
oipitts: the graph iter? output and the control tokens for
the: M gatos producing the graph 1 and B oulpils. The table
at the bottom of Flgire 3 gives the tong ralas of the
IC gate. Nolo Yhat, H 1he outpid of the exprossion sebgraph
is undef, the conditional itoration brly draph witt produce
false nal its Her? port, thus announcing tormination of
Herntion, and will pradurce undef at 115 R output ports.

The uyeaph J[for idiist = axp do itorbody end]] s
shown n Flgure 4. This cyelic graph Is formed by using
M gates to merge the omputs of ,:7|Inx_||1| and the | oulpuls
of _‘—Ill[rmn'!ody]] and by routing the merged mutputs into the
Input ports ol _ql[[nmhody]] Iabeled by identiflers of fdiist.
Tha control input port of cach M gate Is connacted to the

(D... @.u

! R T
(,'7||Iitnrbodv,]]_)(_7,[[imrbody2]

1IC pate firing rules

fnmuits ot puts
true true - true frue -
true false - false - trus
false - true true false -
falze - false false - false
undef - - false - undef

Figure 4, “Jl[tor idist & axp ch} (‘ferbody end}

=

¥

“TiLitervoay]

Iter? output ol ,7'[[Mnn‘-ody]}. Tha connacting arc conlains
an initial fatse Lokon (o onsura that the tirsl data velue i
sotected tiom Thovpll thareatter, data tokens are
selected according to {ter?. A true [er? token, slunalling
continuod iteration, solects the data tokens of tha | output
ports. A false iter? token, signaling termination,
re-Initinlizas thr M aaates for subsoguent Horalion
sxprassion evaluations. identifiors which ara froe In
fterbody bul arc not contained In idlfst are routed through
S qgotes. For false control tokens, tho S gate absorbs,
stores, and outputs its data tokens. For true ocontrot
tokens, It produces its storod vahic and absorbs no data
tokens. Thus, the $S gate atores new values when

avaluation of the iteration expression begins and produces
them at mach subsequent Iteration step. Like the M gate, It
I8 Initlalizad with a talse control valys.

Prock {4} has verified this trensiation algorithm by
Rroving It to be consistent with a denotational [10]
specification of AOFL. in the proof, data flow arcs are
assumed to be implemented by Infinite (uwbounded) queuss.
The transformations described subssquently will relax thia

requitement without affecting ths comectness of
transiation.
Trmfomntl«uofolurbwarm ‘

in proposed date fiow machinas of the
Dennis-Misunas [7] design, operations are held in natruction
calls which contain a reglister for each input arc. These
registers are effectively an Implamentation of data flow
arce as queues of capacity one. The implication of the
bounded arcs is that operatora must be prevented from
producing new fokens unt their outpul’ srca are empty.
This behavior Is ensured by modifying tha firing rules 50 that
" RO operator Is enabled if a token Is present on any of its
output arcs.

) By performing a transformation, lustrated In Figure 5,

which replaceas each arc of the graph by an appropriate
date/acknowledge arc pair (d/s src pair), the effect of the
modifiad flring ride oan be explicitly bultt into the graph:
The presence of a token Indicates that the corresponding
data arc Is ampty. As a consequence, operator firing rules
revert to the original format of depending only on the
presence of tokens on input (including acknowlaedge} arcs,
where the pravious enabilng raquirement that output arcs
be empty has been replsced with the requirement that
scknowladge Inputs be prasent.

Montz [9] and Dennis and Misunas £7] have shown
that grapha of data flow programs may be executed without
deadiock when arcs are implementad es data/acknowiedge

Flgure 5. Replacement of one-place buffers with d/a
arc pairs

eimpty data nic

KEY

>

™

]
l
i
1 — data arc
1

--= ack. arc
® dala toker
full tlatie o o ark. token

pairs. Consequently, the correctness of the tranalation
algorithm is not atfected by this transformation. Howsver,
the Implemantation Is not without cost. Aside from the
obvious overhead involved In incorporating acknowledge
arca and tokens, the constraints which they impose on the
token tiow through the graphs may causs bottienecks. In
response ta these Issues, Montz [8] has developed
optimization techniques specifically aimed at either
increasing the throughput by balencing the foken flow or
dacreasing the overhead by removel of unnecessary
acknowledge arcs.

Balancing Token Flow

The gosl of the optimization to balance tcken flow
through the graph Is to increase throughput by modifying the
graph to display maximum pipelining. The bottlenack
problem, and theretore application of the optimization, arlses
In acyclic segments of a data flow graph. A clear Bustration
of the problem and sclution is shown In the Figure & graph,
the imptementation of the ADFL expression: J{if fa1 then
I1 else 12 end]]. Although successive sets of inpute shoutd
be processed simultaneocusty, the control atructure of the
graph dictates that the overlap be very minimal. In order for
& second sel of values to entar the branches of the
conditional, both « and § (Figure 8) must fire a second time
presenting the sets of T and F gates with new control
Inputs. However, a cannot fira a second time until the
M gate to which it also sends a control input has tired, to
Produce an acknowledge. Thus the d/a arc pair conhecting
a and the M gate (shown with slashes in Figure B) creates a
bottleneck whose severity depends on the depth of the
computations parformed within the branches of the
conditional,

Eliminating this behavior so that successive sats of
values may plpeling theough the graph can be acconplished
by inserting identity operators (buffers) along the atashed
arc, breaking It Into d/a arc segments which conasquently

Figurs o, insertion of buffers for a conditional
sxpreassion
fz=q ! i
¢
’f
4)
! {
~3

allow @ to fire several times befora forcing the M gate to
fire. For the Figure 6 graph, this is accomplished by
replacing the slashed arc with the arc segment shown to its
immediate left. To generalize this optimization tachnique, a
determination of the Ideal number and tocation of inserted
buffers must be made. This requires an analysis of data
flow graph execution.

Though the data tlow computar is asynchronous, it can
he mada to model a synchronous machine by assuming that
twring any given unit of timo all enabled operators must fice
and produce a result. This approxinates optimal program
axacution by pravaenting an vnabled oporator from romaining
anabled and tharaby slowing up processing for any length of
time.

Referring to Figure 6, we nots that each Input set to
the graph will resuft in the production of & token on the
control (stashed) arc and tokens that will be processed by
either f1 or f2. While under the "synchronous machine®
assumption the tokens being processed by the functional
operators can move one step through the graph during
every time unit, the control token on the slashed arc cannot,
restricting throughput to an output every {ifth time unit.
Adding identity operators to eoqualize buffer capacities
achloves maximum pipelining, or equivalently, the optimal
throughput of an output avery second time unit. Tha
algorithm presented below pqualizes buffering.

Algorithm to Maximize Pipelining

Starting trom aach graph Input, descend through the
graph assigning consecutive numbers. to tha arce
joining successive sets of operators unth a
multi-input operator is encountered. Compare the
arc numbers on the Input arcs of the operator and:

{a) It aquel, continue the arc numbering process

{b) i not equal, balance the arcs by inserting -
identity operators into the lower numbered
arcs. Renumber the modified arca and
continue the arc numbering process.

Note that it the operator Is an M gate, the comparlson and
balancing process described abova must involve all three
Inputl arcs, using the highest numbered arc as tha goal.
Figure 7 shows the result of applying this algorithm to the
graph translation of the following program sagmant:

i =1 then if 3=1 then x*(y+1) eiva x*{(y-1)} end
slse x*y end

For raference purposes, the added Identities have bean
nuttherad. identities t1 and 12 have been sdded In
rasponse to the imbalances which ocowr when comparing arc
numbers on the input arce to the multiplication operators.
13 through I5 are addad In response to the comparison of
Input arcs to the inner M gato, Note that as specified In the
algorithm, arc number comparisons involve all three M gate
input arcs. Finally, operators 16 through (16 are ntroduced
as a result of comparing input arcs to the cutar M gate.

In applying the algorithm to this example, there are
agveral Interesting observations to make. Racall from the
algorithm, thal M gate comparisons must involve the two
data arcs and the control arc. The algorithm wmoditisy the
graph to achleve maximum pipetining by making buftering
capacities of the patha through the graph to the control arc
and two data arcs the same. However, whila each hranch
of tha conditional operates In conjunction wih the control
arc, the branches themselves are indepandent. Yhus, whiia
each branch must pipeline with the control path, they need
not necessarily plpeline with each other, If the two
conditional patha are of different tengths, tha pipelining
choices available are to equalize the control path with
either the shorter or the longer conditiona! branch, or to
equaiize alt thres. Tha fatter of these, implemented by the
algorithm above, achieves bast throughput, but has the
disadvantage of causing the Insertion of sdditional identity
oporstors in the shorter conditional branch. The other two
cholces recognize the Independence of the two conditional
paths and avold axceas buffering, but posstbly at the cost
of reduced throughput.

A factor not yet conaiderad which interacts with this
pipelining cholce i3 the frequency with which graph patha
are taken. In Figurs 7 sach input set can take any of thren
paths corresponding to the threa possible atates of f and .
If, for example, the pattern of input sata Js such that no one
of the three paths ls taken twice In a row, idontity
operatars |1 and 12 would be unnecessary and could be
remaved without decreasing the throughput. (lustrations of
this point can be found In Montz [0].

The discussion of {rado-ofls and options to conalder In
maximally pipelining data flow graphs, indicates that the
advaminge of smatler shze tasulting from a imss than
maximally pipelinnd graph may be worth a decrease In
throughput. Some key Isauss influencing the cholce might
Include cost of idantity operations, processor utMization,
teikrnr flow patterns, and width and dnpth of program. By
mordifying tho pipslining algorithm, we can produce dats flow
traphs which display fimited pipalining, meaning that the
delay betwesn an operator's fiing and recelving
appenpriale acknnwledge signals may be several time units.
For example, It is possible to specify that the delsy In
sending acknowiodge signals be no greater than two time
units. The change to the algorithm, which involves balencing
arce to within 8 specified bound, silows a graph to be sashy
reconfipurad to diaplay different degress of plpelining, and
thereby provides a feasible and practical control method of
studying varying levels of pipelining in & graph. Though the
details of the modified sigorithm wit not be piven, we
proceed by briefly compating the Figure 7 graph with that of
Figure B which can be produced using » Hmeited pipelining
slgorithm, .

The most striking contrast batweon the fulty pipelined
Graph and this partially pipelined version Is the large
raduction In insertad identity operstors, from 15 to 7. The
queation which arises is whather the cost of this reduction
Ix & decroase in performance, where the Figure 7 graph
displays thn optimum performance by producing an output
avery socond time unit. An analysia of several token flow
pattarna using different successions of input sets shows
that the Hmited pipsiining schems does not necessarily
degrade the throughput. This can bs aeen by pipsiining

Figure 8. Exampls of imited Pipalining
X

three sets of inputs through the Figure 8 graph assuming
that they respectively follow the paths indicated by the f-s
values: truae-true, false, and true-faise.

Once an actual data flow machine is avalable, a study
of the number of inaerted identity oporators vs. throughput
trade-off shoidd provide Insight Into the direction to take
concarning optimization, This information in combination with
a parlicular epplication should indicate other optimization
possibilities; for instance, concentrating on only the main
source ol bottleneck within a graph. For the conditional
construct this point appoars to ba the control ar¢ to the
M gate. Moditications of the pipeiining slgorithm could also
be welghad more roalistically as siternative approachas.

A final point to note in the consideration of this
plpelining optimization atrategy Is that conditional constructs
and general compositions of oparators turn oul to be falrty
representiative of the typa of graphs for which this
optimization Is applicable. In fact, this optimization approach
Is baasically inappropriata for an iterative process whosa
function s 10 modify and recycle a single set of inputs at a
time (although subgraphs within an iteration may be
plpelined). Thus an alternative optimization which sima to
minimize the number of acknowledges in » greph by
uliminating those which are unnecesssery has been
developad.

Eliminating Acknowledges

This optimization technlque aims at decreasing
overhead by removing ecknowledge arca which are not
necessary to malntaining safe operation. This safely
requirement s eguivalent to guarantesing that at most one
token will reside on any arc of a data flow greph at any
time. An examination of various ADFL conatructs leads to
the identification of arc pairs which are candidates for
acknowledge arc removal. The strategy wil be to develop a
rule specifying the requirements for scknowledge arc
removal for each candidate arc pair Identiflead in the
construct, By recursively applying the resulting aet of rules
to the data tiow graph transiation of an ADFL program,
acknowledge arc removal for all cendidate arc pakrs can be
detarmined.

To Mustrate the analysls and formulate the desired
res, we begin by censidering the data fiow graph
translation of the general conditional construct shown in
Figure 8. Az In the praeceding saction, the discussion
centers on the arc palr connacting a and the W gete.
Howaver, while overcoming the rasiricting behavior of this
arc pair was the focus of that optimization almed a1
Incraasing pipslining, the restriction lv an advantags to the
Procese of eliminating acknowledgos. Specitloally, a, which
cannot fire m second time untll It recolves an acknowledge
from the M gate, guarantaes that a second input set will not
ba within the branches of the conditional until processing of
the preceding set has completed. Each input set (which wit
be processed by -either f7 or 12) placas » token on the
controlling arc of the M gate and a data token on each of

the arcs labeled either a snd b, or ¢ and d, deponding

respectively on whather the control token was true or faise.
Assuming that 71 and 2 are well-formed, an output shouid
appear on arc g (assuming the control token was true)
within finite time, with the impossibility of a second token
appraring on arc g, or ol any token appearing on arc h until
the M gate has tired. This firlng simuitaneously processes
tha token on arc g amndd sends an acknowladge token to a,
congoguent 10 which a successive Input set may enter a
branch of tha conditional. This behavior guarantees that the
acknawledga are of the arc pair denoted by g can be safely
ramoved. By an analogous argument we can remove the
acknowladqge arc of the arc palr labeted h.

Using similar reasoning one might ba tempted to

removo the acknowledge arcs from arc palrs a; b, ¢, and d -

undar the assumption that once a sot of tokens has enterad
a branch of the conditional, the tokens must be used by the
approprlate function to produce the corresponding output.
However, a consideration of the Figure 9 data flow graph
will show that removal of acknowledge arcs for these arc
palrs Is dependent on the subgraphs representad by f1 and
f2. :

The Figure 0 data fiow graph is a transiation of tha

following ADFL program segment:

it 1=1 then if 821 then x*{y+1) eise x end

elss x*y and
Assume that the outer decislon operator evaluates to irve
and that of the inner conditional construct praviously
represented by 77, evaluvates to false. The Important point
to note is that an output can be produced using only the
tokens on arcs a and b. The token on arc ¢ heed nol

Figure 9. Unsafe token configuration resuiting from
ramoval of c's acknowlsdge arc :

_appropriate subgraph (/! or f2).

- propagate through the graph, and may in fact atill be on tha

arc when a successive set of values arrives. Removal of
c's acknowladge arc would make it possible to reach tha
unsafe token configuration shown in Figure 9. This example
shows that the necessity of acknowledge arcs for arc paira
a through e Is dependant on whethar or not thair values are
guarantesd to ba wsad in producing the outputs of thel
An analysits of the
subgraphs in Figura O raveals that tokens arrlving on arcs a,
b, d, and a must be wsed to produce thelr corrasponding
output, white the nead of a token arriving on arc c s
dependent on the outcome of the innar decision operator.
Therefore, we must ieave c's acknowledge arc, but can
remove those of arc palis a, b, d, and o,

This analysis, specific to the conditionst construct,
rasults in designating all input src palrs to tha) or 12
subgraphs subject to rule C1 with regard to acknowiadge
arc removal:

C1: The acknowledge arc of an Input arc pair to a
subgraph may be removed it any token arriving on
the arc must ba used In producing the output of the
aubgraph.

This form of oanalysis must be recursively applied to
subgraphs in determining acknowledge arc removal for both
innar constructs and outer arc pairs. It is interesting to
note that this rule could be apphed at the source level by
taking the Intersection of variables appearing In the than
and eise clauses. Variables found In the intersection' woyld
be guaranteed to be used in producing the gutput, and in
graph form would not require acknowiedge arcs.

Refarring to Figure 8, the arc pairs presenting inputs
to the T and F gates have not yel heen discussed with
regard to acknowledge arc removal. Since the only way to
guarantes tha absence of a token on any of these data
arcs is via the presence of a token on the corresponding
acknowladge arc, these acknowledge arcs must remain. A
final point concerns the iInltially discussed control are
connecting a with tha M gate which may not need an
acknowledge arc. The controt arc of the Inner conditionel
construct of Figure O Is an example of such an occurrence
which can be characterized by rule C2:

C2: The acknowledge arc of the control arc
connhacting a and the M gate of a conditionat
construct can be ramoved If the acknowledge arc of
the output arc paiwr of the M gate has been
ramoved. : Coe

Developing a complote recursive algorithm to determine
acknowledge arc removat In data flow graphe reguirss this
type of analysis for aach ADFL construct,

As a ascond oxampla, wa bilufly examine the Heration
conatrucl shown in Figurs 10 to identity candidate aro peirs
for scknowlodge arc removal. The arc labuted 7, .. the
control oulput of the lteration, provides the conlrolling velue
far the sequence of M gatea handiing the pressntation of

Figure 10. JUtor idiist = exp do Herbody end])

(Jtend

I &

]

successlve ssts of inputs 10 the Haration body. Since the
ez volue la dependent on atl least soms of the M gate
Inputs, & number of them must fire before a second Ther?
value is produced. This necessarily implies the firing of the
copy operator, "L", to present the M gates with new control
Inputs needed to re-enable them, shauring that the Tn.,,
output arc from the iteration body to L must be ampty for a
successive 7., value to be produced. Consequently, the
Ters 81C ivads no acknowledge. No such guarantee can be
made for the arca between the copy oparator and M gates,
acknowledges for which can be conditionally removed
subjoct te rule T1:

T1: The acknowledge erc for an arc palv betwesn
operetor L and the ssquence of M gatea cen be
removed If its data value must be used in producing
the 7., velue.

The output arc of the iterstion body labeled 1
repzasenis the arc palrs for the iteration varsbles: The
analysis for these arca Is more complex and is governsd by
the Tollowing rute: '

T2: The acknowledge arc of an | (Iteration) arc pair
can be removed If alther ‘

(1) Tha iteration body cannot emit & value on
that output arc untl It has absorbed the
torresponding input valie on the
corresponding input arc,

(2) The 7,.. vele dopends on the
corresponding input arc.

Cxamples involving the Iiteration construct, as well as an
#xpanded discussion of thase ndes end an analysls of the
remaining arcs can be found in Montz [9].

Conclusions

We have described a data flow ianguage, an algorithm
for translating its programs into data flow graphs, and two
techniquas for optimizing thess graphs for execution with
data flow machines of the Dennis-Misunas {7] deaign. While
the two optimization methods have been presonted as
isolated techniques, they must be Infegrated Into 2 single
procedure for application to a given program.

We have not compared the costa of operation of the
Dennis-Misunas [7] computer design with that of tho
Arvind-Gostelow [2] design, which avolda conflicts through
tha use of tagged values rather than acknowlodge tokens.

Acknowlsdgments

We wish to thank Jack Dennis for suparviaing the
theses [3, 0] on which this paper is based and B Ackerman
for reeding and criticizing drafts of ihis paper.

References

[1] W.B Ackerman, and J.8, Dannls, val - A
Value-Orianted Algorithmic language: Preliminery
Reference Manual, Laboratory for Computer Sclance,
Massachuselts Institute of Technology, TR-218,
{July, 1870, 80 pp.

[2] Arvind, and K. P. Gostelow, *A Cowputer Capable of
Exchanging Proceasors for Time", information
Processing 77: Proceodings of IFIP Congress 77
{August, 1977), pp. 849-B53.

[3] . D.Brock, Opaerationst Somantics of a Data Flow
Languaga, Laboratory for Computer Sclence,
Massachusetts inatitule of Technology, TM-120,
(December, 1978), 55 pp.

[4] U D.Brock, Consistent Semantics for a Data Flow
lLanguage, Computation Structures Group, Lahoratory
for Computer Science, Massachusetts Institute of
Technology, Memo 172, (January, 1978), 30 Pp.

[6] A L Davis, "The Architacture and System Mathod of
DDM1: A Recursively Structured Data Driven
Machine," Proceadings of the Fifth Annusi Symposivm
on Computer Architecture, Computer Architecture
News @ (Aprll, 1878), pp. 210-218.

[8) 4 B. Dannls, "First Version of & Data Flow Procedure
Languege,” Programming Symposium: Proceedings.
Collaque sur la Frogrammation, leciure Notes in
Computer Sclence 19 (October, 19786}, pp, 382-3786.

(7] 4.8.Dennis, and D.P. Misunas, *A Praliminary
Architecture for a Basic Data-Flow Processar,” The
Second Annusl Symposium on Computer Architectura:
Conference Proceedings (January, 1075),
Pp. 120-132.

(8]

191

J.B.Dennis, and K.-S5.Weng, "An Abstract
Implementation for Concurrent Computation with
Straams,” Proceedings of the 1979 International
Conference on Paraliel Processing, (August, 1979).

I.. B. Montz, Safety and Optimization Transformations
for Data Fiow Programs, Department of Electrical
taginearing and Cumpuler Sclence, Maasachusetts
Inatitute of Tachnnlogy, 5. M. Thasia in proparation.

[10]

(RRD

A. D. Tennent, "The Denotational Semantica of
Programming Languages,” Communications of the
ACM 19 {August, 1078), pp. 437-453.

K.-5. Weng, Stream-Orlemted Computation In
Recursive Data Flow Schemas, lLaboratory for
Computer Sclence, Massachusetts Institute of
Technology, TM-88, (October, 1875), 03 pp.

