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Abstract -- The simulation of a discrete event system
naturally decomposes into & set of concurrent processes
with each process simulating the bshavior of one system
element. A distributed system could best exploit this
concurrency H  the processes Interact only by
message-passing, and (he control of the simuation Is
dacentralized. In this paper a simulation method [s
doveloped In which the processes simultate the intsractions
of Lhe system elaments ty sending stimulus messages to
ohe gunther  ond  coordinata  ther  actlvities  with
decentralized controi,  inlo the process programs. Yhe
control does not place any real-time speed constraints on
the computation or communication and does not require any
further communication lnks between processes. Some of
the concepts developed hera couid be applied to other
types of distributed systems as well.

tntroduction

Traditionally, diacrete event systems have been
simulated on a sing's, sequential computer evan though
these systems often consist of a number of concurrent,
interacting elemeants. Mich effort has beoen expended In
developing techniques of tnterleaving the simulations of the
individual elements tn achleves apparent concurrency on a
single machine. Simulation lsnpusages such as Simula®12
allow the programiner to specify the systam In tarms of &
number of concurrent, synchronizad processes, leaving the
task of correctly Intarieaving the process executions to the
compiler and the run-time system. This approach muat slow
down as the number of avents to be skmiated grows,
because a single procassor must simulate the behavior of
avery elomant as well a3 control the  sequencing of
oparations.

{a) This research wsaa conducted under a graduate
fellowshlp from the Natlonal Sclance Foundation, Additional
funding was supplied by the Neationai Science Foundation
under grant DCR75-04G60, and by the Advanced Rasearch
Projecta Agancy of the Department of Defense, monitored
by the Office of Navel Research undar contract no.
NOOO14-765-C-0681.

The advent of distributed systems consisting of a
number of autonomous, communicaling processors provides
an opportunity to increase the speed of simulation by
exploiting the inherent concurrency of discteta event
simulations.  Rather than being constrained to a minimum
space -- maximum time implementation on a single
processor, the number of - processors in the simulation
facility can be traded-off againat the time raquirad for thr
simulation. The natural modularity and concurrency of
simulaiion provides an Ideal application tor distributed
systems,

This paper dascribes one possible approach to detining
and implementing discrate avent aslmwlations on o
distributed computer system. In this approach the
simdation is carried out by a set of autonomous,
message-pessing processes. The proper sequencing of
event simdations is maintained by two decsntrabzed,
speed-independent control methods. The first, calied t/me
incrementation, requires only smafl additions 1o the procoss
programs and guerantees that each process wiil simulate
its evenls in the proper ordet. The second, caked time
acceleration, requires a static analysis of the aysiem's
Interconnection structure and more additions to the process
programs. Time acceleration speeds uvp the passage of
simulation time In idle sections of the simulation and, when
all events have besn simulated, causes the simulation time
to be accelerated to infinity thus aliowing the simulation to
torminate. in the foliowing presentation only the basic
concepls are describad with few assumptions about the
types of systems to be simulated. Many reflnements could
be added to improve the aefficlency for particular
applicationa.

Sevaral groups have developed mathods for performing
simulations on distributed systems. The author prasented
tha basic model and contrel mathods deacribed hers in tha
context of simulating concurrent, modidar computer
systams.1 Chandy and Misra independently developed n
similar simuiation model and the time Incrementation method
of control.Z3 Peacock, Wong, and Manning present an
overview of the subject along with several centralized and
decentralized control methods,!? Othgra have developad
methods based on a more centralzed control, 10




In  addition, & method for terminating general
distributed systems has been cllvelopod5 based on Hoare's
*'cwmwihiceting Sequential Process model.” This technique
hoars many simHaritias tc the method presanted here for
tatminating the simulation by accelerating the simiation
lima to infinity. Thelr method, however, requires a freezing
of system activity white the termination condition is being
toated, wheraas the method presented hars alows normal
system activity during a teat.

Computational Model

As an abstract view of the operation of a distributed
system we shall assume the computer aystem supports a
wet of sequentlal processes which commumnicate only by
sending massages to ona another, Processes cannot exert
direct control over one another, nor can they directly
nicaas hvormatlion outslde of thelr own local states.
V'rocena pragrama will he preasnted n I‘ASCAL.8 axtonded
with tha oonatruala send and recelve.

Whoen a procoss executes the procedure sendid,m), It
wili cauzs the message m to aventuely be placed in the
input bufter of process d. The sonding process can procead
without waiting for the message to be recelved. When a
process executes the function receive, It suspends
oparation untll a message Is present in the inpiH buffer.
Then the Hirst message in the buffer I removed and
returned as the function valuve. If a process sends two
messages to another process, they will be recelved in the
ordar sent. Massages sent from two ditferent processes,
howsver, can In genera! arrive In any order.

The computational mods! abztracts away the times at
which statements are actually executed. The relalive order
of  siatement axecutions Is conztrained only by the
s“egirenttal natuwre of the processes; the loct that a
'massage cannot be recelved before It Is sent; and the
fwsti-in, Hrst-out property of the communication links from
e procass 1o another,

Other computationel modals basaed on message-passing
rrocesses have been proposed.°'7'9 aithough they differ in
thelr timing assumptions and control structures.

The computational model permits a wide varioty of
1rhysieal realizationa, ranging from a single processor that
Ports mesaaga-passing processes fo a distributed
~vatem with mach process mapped onto & asparate
rrocassor.  Furlharmore, the spend-independence of the
mirdet simplifies the Incorporation of  fault detection and
traavary mechanisms In the physicsl realization.

Simutation Model
Description
The means by which the computer system models the
behavior of & physical system 15 called the simulation

madeal. in the (ollowing presemtation the phystcal system is
modeled with a 3ot of pfocasses, where each process

simulates both the funotiunal and time behavior of a system
aloment. The time behavior in simulated axplicitly by
computing snd recording the timos at which events woumt
occir, rather than Impifaitly by running the simuiation at a
speed proportional to the speed of the physicel system.
This computed time measure will be callad simulation time.

Processes simulate the interactions of the physical
system elements by sending stimulus messages to one
another, where a stimulus has three characterizing featuras:

- the identity of the receiving process,

- the nature of the stimulua, and

- the simulation time at which the stimius
would. be recelved by the corraspanding
physicst alement.

The banic activity similated by & prooeas is celled an
avent and consists of thrae atleps:

1. A stimuilus mosaago la rocebod,

2. a now state of the process is computed
based on the old state nnd the naturs and
simulation time of the stimulus; and

3. some. number (pussibly rero) of stimulus
messages are sent to other processes and
possibly ta the sending process itself.

The simulation time of an event equais the simulation time of
the input stimulus and takes pince in zero simulation time.
Events must be simulated in chronulogical order, i.e. in order
of their simulation times. If two stimulgs mossages for a
process have the same simulation time, a cholce function
arbitretes lha order In which the avents are simdatod. Tha
simulation time of a stimutus message musi be a real number
greater than or nqual to the aimulation time of its creating
event,

Wea shall further resirct the simulation model to
closod, stlatically-structured systems. In a ciosed systam
procasaes can interact only with other procusses. Input to
the system ts provided by source processes which generate
sequences of slimulus messages white recalving no input
messages. In a statically-structured system, all processes
conceptually exist for all time. Practically speaking,
however, a process cuan he taininated once the system
reaches a condition whare the procass will racaive no mora
atimius messages, and all events for which It ban rnceived
slimulus messages have been simulatud. Nonathelnas, the
numbar and structure of Procossss must be Nixed in
advance.

The simutation model resembles the nodel provided by
the Simula programming language, cacept that Infaraction
between procezses occurs by messuge-passing rather than
through shared accesses to globai variables and calis to &
centralized scheduler. Thiz change m onentation will sllow
the simulation to exphoit the power ot distrit,ated systems.




Example

The system shown in Figure 1 will serve as en example
for the remainder of the presentation. The system contains
two source processes: customer source C and object
source 0. € generates two customers a and b with
simutation times & and 8. 0 generates three objects ol , o2,
and o3 with simulation times 0, 20, and 1000. Customers
are sent via a delay process [} to a server process 5. The
delay procass atways dafays customer a by 10 time unita

Figure 1. Structure of Simuiation Exampls
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C: Customer Sourca . Server
0: Object Source k: Exdt
0: Delay

Flgure 2. Events in Simataticr Exampie

Input Stimulus Messeges  Oulput Stimitus Measages

process €

- <« a3, 5.»

3, b, 8.»
process 0:

- <5, of, B>
<5, o7, 28.>
=4, o3, 1009.>

process [:
<0, a, G.» 5 a, 15.>
<0, b, 8.> <G ob, 12
<0, b, I3.> <5, h, 18,>
<), a, 20.> <H, a, 30.>
process §:
<5, ol, @,» -
=5, b, 13.» D b, 13.»
<5, a, 15.» -
<5, b, 18.> -
<5, o2, 20, .- <. a, 20.:-
<5, a, 30.» -
<5, o3, 1000.> <t. b, 1008,
process E:
<€, b, 1800,

Stimulus massages are Histed as <raceiver, natura, time>

and by b by 6. The objects are sent directly to the server.
The server services a customer with an object and sends
the customer first back to the delay process for one more
cycle and then to an exit process E. The Input and output
stimulus messages for each event simutation ara shown In
Figure 2.

implementation
Baslc Activities

Each process must both simulate the behavior of a
phyalcal system sloment and perform the neceasery control
oparations to preserve a proper sequencing of evom
simutations.

We will assume each process program containg a
subprogram

function gimutateis: stimulus) : stimliast
which Implemenls the tasic event simulations of the

process.  This functlon takes a stimulus measage as the
input argument, computes tha new state (which Is stored as
alobal variables. of the process program,) and returns o
finked list of output stimulus messages. A akeletal program
for a process ts shown in Figure 3. Phrases enclosed in
brackets € » ;epresent informally spocifiad sections of tho
ptogram to be expanded as the dovelopment procesds.

Figure 3. Process Program Showing Basic Activities

program simprocess;
begin

while not € termination condition ¥ do
begin
while eventlist > nil
and € event can be safely simustated » do
begin
6 := & naxt stimuius messege on sventlist ¥
oullist 1= aimulate(s);
while outlist <» nli do
begin
mo := € next message on outtist »;
11 mo.process = gunprocess
then scheduleleventlist, mo)
else sendimo.process, mo)

end
end;
end: ibasic simulationl
mi t= recelve;
if mi.typs » "stim’
then schedulel(eventiist, mi}
else € perform control operations )
gnd imain loopl

end. [aimprocess)




In the program the Input stimuius measages are storgd
i a Hinked list eventiint ordered by simulation time. Thia
event kst shouid not be confused with the global evant list
of & sttyential simuletor. it contains only the events for a
single process. In the main ioop of the program, the mput
stimulus messages for all avents which can be safaly
simulated are removed and shmdsted. After an avent
stmulation the newly genersted stimwius messages are sent
to t!lalr destinatlon processes elther by executing the
command send or, If the destination is the process itself, by
inserting #t directly Into the event Hst with the procedure
~chedule.  This procedure inserts messages by simdation
time and arbitrates the order of stimulus messages with the
same simulation time. Once no more events can be
simulated, a new Input messege is accepted. If the new
message contains a stimulus, it is Inserted into the svent
list. Otherwise the message contains control information
and requires control operations. In either case the new
inossage may enable more ovent simulstions; hence the
main loop Is repeated unti a termination condition Ia
raached,

Control Operations

The aketetal program shows only the basic simuistion
activities  and the ™ocal® controt whaere the incoming
stmulus messages are kept In a chronologicai list. We must
now fill out the program with "interprocess® control to allow
the process to determine which events cen be salely
simulated and when the tarmination condition is satisfied.
Without this control a process may first simulate one event
and then receive the stimulus massage for an evuent with an
cariler simuilation time, because stimulus massages need not
arrive at a process ordered by simulstion time. The
combination of tocal and intarprocess controf will ensure that
each process simulates its evants in chroncloglcal order.

The simpliclty of the computational model limita the
vorlety of tachniques which can be employed. In particular,
Ihe control operations must operate indapendantly of the
actual times at which svents are simviated. Instead, we
must  axploit the saquencing constrainta of the
r-omputationel model and the timing characterlstios of tha
simulation model to achleve a proper sequancing of event
shmulations.  Furthermore, the control operations will bhe
ducentralized and Incorporated directly Into the process
pragrams to prevent & tight synchromization of the
"rocoesses,

The deal contiot method would be simple and general,
would require limited amounts of communication and Hmited
tonnectivity between processes {i.s. which processes may
send messages to which), yat would only prevent an event
from being simulated when absolutely necessery. These
“oals, however, conflict with one another. Ona can at best
achiave a balance batween tham,

Time Incrementation

The first control method, called fime increamentation,
provides great simpficlty snd generality, st the cost of
potentially high amounts of communication (although with
limited connactivity requirements) and potentially poor
efficiency. Nonetheless, #t does fulfil the basic
requirements of the control operations.

With this method, avery process malntains an
asynchronous “clock" indicating the earllest pessible
simulation time of any unrecelvad stimus messages for the
process. Any events with simulation times less than the
clock can be simylated. Every process sends liformation
about its clock to those processes to which it may
potantially send stimulus mossages. As a resull, the
process clocks keep edvancing untB all avents are
simulaled. The detalls of the method are describad balow.

Each process P; can potenlially recelve aslimulus
messages from some subset Inprocese; of procasses (not
Including itseif) and send stimuius messages {o some subsat
ouiprocess; of precosses (not Including itaglf,}) We wili nay
there Is & link from P to Pj it Prisin inproceesl {or
equivatently it Pl is in cutprocess;) Before the process
tan simulate en evant wih simulation time 4§ it must
determine that no further stimulys massages with simulation
time less than or equal to ¢ will be received from & process
n inprocess,.

Each process £; malntains & tima counter intinel-, for
each process Pl in inprocess;. This time counter Indicates
the aarliest possible simulation time of any stimuivs
messages from Pj which have not yct been recaived, Tha
pracess tises these time counters to malntain its clock:

clock, = m}n(inl imnﬂ)‘

Processes communicate thair aslimales of the time
countars In the form of incremant messages.  When
process P, recelves an incroment message from PI' it
updatas Intimu“ with tha new estimale and rocomputns
clock, i cinck; has advanced, any evants with simulation
times less ihan clock; are simwlated and any newly
genarated stimulus messages are santl. Then an Incroment
message contalning the valpe Clorck, + delay, is sent to
eVery process in outprozeas;, wiwre delay; Is the minimum
"delay" of the piocess, Le. the smallest possible differen;e
between tha simuiation time of a stimuius sent by Py and the
simulation lime of the event which creates this stimidus.
We rely on the firsi-in, first-out property of communication

(a) Note that unllke other spplicaiions  of (e

Incramentuticn"'z-a-” the simulution times of the sHmulus
messages canno! be usied fur updaling the thne countersy,
because a process in our simplified modeil may nol send
stimutus messages in chtonAngicel order. Tnols occurs with
process 0 of the example systom,



from one process to another to prevent an increment
message from overtaking an eatlier stimulus message,
During the simulation, processes keep sending increasing
time estimates to one another and keep advancing their
clocks until all events are simutated.

A process program including time incrementation
operations Is shown In Figwe 4. For the sake of brevity,
some sections of the program are given InformaMy. This
program utiizes a procedure sendai! to send a message to
alt processes in a set and a function submin to compute the
minlmum of some subset of valuas In an arcay.

The additional factor delay; Is added to increase the
asyhchrony of procass clocks for processes connected In a
Cycle. A "cycle" can be doflned as follows. ‘Let the
fnterconnection graph G be defined as the directed graph
With o node for each procass In the system and an adge
from node / to node / If there is & link tfrom £, to P,. That
is, 2; may potentially send a message contalning a atimulus
to P!. Then we say that two processes are contained in a
cycle If the corresponding nodes In G are contained in [ ]
cycle. H two processes are contained In a cycle, their

Figure 4, Process Program with Time incrementation

program simprocess:
begin
clock = 0.8; oldclock := -1.8;
for € all processes i In inprocess » do
Intimeljl :» 8.0

uwhile

hegin

uhite eventiist <> nif and
€ time of first event on eventliat ¥ < clock do
€ remove and simulate first event »
€ send output stimuls massages »

end;

clock < infinity gdo

lif ctock uas inrremented send increment maspagesl
If elock » olaciock
then vegin
uith mo do
benin tupe :+= inecry
SouUrce := DUNProcess;
time :» clock + delay snd;
sendal | loutpr scess, mo)
oldclock = ciock;
end;

mi 1= receive;
case mi.type ot
stimi scheduleiavantiial, mily
tner
hegin
intimelmi,sourcel e k. time;
clock 1a
maxiciock, subminlinprocess, intims))
and
end Icaasl
end Imain loop!
end. isimprocesst

taccept a new input mapsage!}

cfocks cannot difter by more than the sum of the dolay
times of the processes In the cycle. Hence, to maximize the
asynchrony of the process clocks one should make the
strongest estimates of the delay timea possible.
Furthermore, to avoid deadlocks, the sum of tha delay Umes
around every cycle must be greater than zero. That is, if &
set of processes o P WP form a cycie:

delayy +. . . +delay, » 0.
Otherwise, the clocks would bacome frozen at a aingle valu:
with none of them allowed to advance. Hence, the delay
times play a key role In advancing the clocks,

The simutation of a source process requires a diffarent
program, because these processes raceive no message:
but in one event create a set of slimulus messages for
othar processes.  Following the sanding of the etimuiua
massafes, the process sends increment messages with
simulation time “infinity” (a apecial value greater than any
reprasantable real number) to all processes to which It has
Iinks, Indicating that no more stimulus measagea will e sent.
The- program Is shown In Figure 5. For efficlency reasons,
the source process could send Incramant messages with
Intermediate time values within the stream of stimulus
messages, enabling the receiving processes to atart their
simulations befora the final infinlty messages are receivad.

During the simulation of the exampie system,
processes C and 0 would send stimulus messages followe:
by increment messages with time Infinity to D and S,
respectively. Suppose that deltay for process D is set to &
and for all others to 0. Then a sequence of crement
messages would be sent around the cycle containing D and
5. causing their clocka to be Incremented by & each timu.
Alter 3 such increment messages 5 would simulate ia Hrst
sarvicing of customer b, After 2 more it would stmulate the
first servicing of a, and after 198 more it would almudate b
sacond servicing of b. Meanwhile process £ would racelve
& sequanca of Incrament messages from S5 and theh a
slimlus massage containing customer b. E could almulatc
the axit event for b after receiving one more incroment
message. At this point sll events have boen simulated, bu!
increment messages would stiil ba sapt around the cycice
indaflnitely, bacesuse the ciocks in D and S would nevor
reach Infinity. This would also pravent E from ever reaching
a termination condition.

Several characteristics of the time incrementation
mathod are demonstrated by this example. When a process
Is contsined i a cycle ita clock Is advanced in Increments

Figure 8. Program for a Source Procass

Program sourceprocess
beyin
outtisl 1« simulate;
€ send output stimulus messages ¥
uith mo do
begin type ;1= incry
sendal | {outprocess, mo)
and

time 3o Infinity end;




no greatar than the sum of the delay times around the
cycle. Hence, many increment messages may be sent
astound a cycle before an event can be simwiated.
Furthermore, the process can never reach the termination
condition even after all event simulations have besn
completed. With time incrementation, processes send such
Umited control Information to one another that thay must
make vary waak astimates of thair next event times.

Despite Its limitations, the tme incrementation control
method fulfiils its basic requirements. It has been shown
that methods simbar to the one deacribed hare guarantes
that all events will eventualy be simulated {as jong as the
sums of the delay times around every cycle are greater
than zero} and that the aevents wil be simulated in the

1roper order.1:2
Time Acceleration

We can overcoma the shortcomings of time
incramantation by Incorporating an additional form of control
oparations Into the procesass. This control periodically
determines the earllest possible simulation time of the next
event for a group of processes connected in cycles and
causes the clocks of aM these processes to be
“accelaratad" ahead. When possible It will eccelerate the
simulation time to Infinity and cause the processes fo
terminate. As with time incrementation, time acceleration is
decentratized, speed-independent, and does not require
new communication links between processes.

Time acceleration requires a atatic analysis of the
interconnection structure of the processes. The
interconnection graph G for tha system dafinas & partition
of the processes into a set of squivalonce classes
Cyove o €y corresponding to  the strongly-connected
tomponants of 4. Each clasa is elther s/ngieton or cyclic, A
singlaten class containa only one process which is not
contained in any cyctic path, A cyclic class containa at
Inast two processes (because G conteins no self-loops)
such that for any P Pl' in the class, there Is & path from Py
to Py and from P, to P). Hence, the aclivities of process Py
«an potentiaily affect PI and vice-verss, in the exampis,
rrocessas C, N, and £ each form aingleton classes, while
vrocosaes ) and 5 fonn a cyclic class.

The ditficuities of the lime ingremantation method He In
the cyelic classes, With time acceleration additional control
operstions are added to the process programs for each
tyclie class.  Those oparations remain intornal to the class.
Hatween processaes in different classes, only stimulus and
increment messages are swent. Hence, we need only
tancriba the operations for a single cychic class,

8y the assumptions of the simuialion nodel, no event
can create a stimulvs message with simulation time less
than tha simulation time of the event. I we could
detarmine the simulation time of the next event {in
simulation time) of all processes in a class, their clocks
tould ba accelerated to this time. Thus the clocks of the
processes In a cyclic class can be accelarated to the

minimum of tha following:

- The simdation times for a¥  stimulus
messages on the event liata of procesaes in
the class,

- the simulation times of all stimulus

messages being sent between procasses in
the class, and

- intime I for any process P; In the class and
process P‘; not in the class.

We want determine this aimilation time, however, without
freezing the process activities and without a centralized
obaearver.

Instead, some process Is chosan to perlodically inltiate
a test by sending test mossages to ol processes in  the
class o which It has a link. These test meszages are
propagated by other processes in the class along the normal
communication Hnks, thus craaling & "wave" of test
mes3ages  which  pass  through ovary link between
procesaes In the class and eventually return to the initlating
process. Each returning tast message containy the earfost
simulation time of any potential avert simulations It has
encounteted. The minimum of ah returning test message
Simulation times is then computed, and a wave of set
messages {s initlated contalning this value. The sat
messages pass through alf processes in the class, causing
thelr clocks to be advanced to the new valve. This
tachnique of sending test messages and set messeges via
the normal communication links exploits the first-in, first-out
property of these links to prevent any stimulus messages in
transit from one procesas to another trom being overicokad.

To implement the timo accelaration operations for a
clasa, onn of the processas in the class fa arbitrarily choasn
as the lest control process P.. This process controls only
tha initlation of the test and the analysis of the results, and
not the activities of other processas. Flgura 6 shows the
program for the control process Po. Note that In PASCAL, »
danotes set interseclion, and - denotes aat difference.
Those secllons partaining to the simulation and tima
incrementation activitios are abbreviated by infurmes
duacriptions.

tn the programn the process decides whether to inltiets
a teat hoforo accepting the next input mossane. It can
safoly do so any time a test is not glraady in progress,
although  other Hmitations on the frequency may be
desirable. The process inftiales the test by sending test
messages containing an astimale of the maximum allbwable
clock time to all processes in outprocess, N cirss, where
class is the set of procesaes in the class.

Once the test has hoen initiated, the program
continues Its normal simulation mnd time incremertation
operations. Each time a stimulus or test message is
raceived, the time estimate is updated. A fixed number,
expected, of lest messages will return 1o the controf
procesa during a test, as will be discussed Iater, Once they
have all been recaived, the final acalimate is used to update



Figure 8. Program for Time Accelsration Control Process

program controlprocess
begin
€ inltlalize valies ¥
testing := false;
white clock < infinity do
eqin
€ perform alt enablad event simulations »;
€ send stimulus messages »;
if not testing
then begin linitiate teat)
t 1= subminlinprocess - class, intimedy
if eventlist <> pil then t 1« minl(t,
€ time of first event on eventiist 3,
uith mo do
hegin type i~ teat; time 1= t end;
sendail toutprocess » claes, moly
count 1= @
testing 1= true
end;

T

€ If clock has been incremented,
send Increment messages »;
mi := receive; laccept a new wessagel
case mi.type of
stim: begin
schedulefeventlist, mi);
if testing then tt= min{t,mi.times)
end;
incr; € perform incrementation operationa »;
test: begin
count :e count + 1
t i= mintt, »i.timel;
if count « expected
then begin ftest is completed]
with mo do begin type 1=~ sets
time 1« t pndy
sendall loutprocess x class, mols
clock := max{clock, ti;
tenting ;= faise;
€. if clock = Infinity,
send Increment messegas »
end
end;
set: lignore aet messages)
end {case)
end Imain loop!
end.

the clock and is sent In set messages to processes in
outprocess, M class. Tha program takes the maximum of
the old clock and the message contents, because the clock
may have been incremented beyond the estimated value
while the test was underway, Any returning set messagos
are Ignored. Once the clock Is accelerated to Infinity the
process sends increment messages with simulation time
infinity to afl processes In outprocess, - class.

Betore developing the pragram for the other processes
In the clasa, some further definitions are required. Let 7 be
a subgraph of the system interconnection graph @ which
forms a directad spanning tres from the processes in the
class to process Po. T defines a unique path from every
process in the class to P.. Let returnprocess; danots the
{unigue) process P; suoh that (1./) is an edge In T. That ls,

Figure 7. Program for Other Processes in a Cyclic Class

program otherprocess
tegin
€ Initialize variables »;
testing := faise;
white clock < infinity do
begin
€ perform all enabled avent simuations »;
< send stimulus messages »
€ # clock has been incremented,
send Increment messages >
mi = receive; flaccept a new wmessagei
case mi.type of
stim begin
schedulelaventlist, mi);
Lf testing then ti= minlt, wi.time}
endh
incr: € perform incrementation operations »;
tast: begin
t 1« submin(inprocess - claess, Intimel;
t 1o min(t, mi.tina)yg
if aventilst <> nii then t 1w winlt,
€ time of first event on sventiist ¥);
uith mo do bagin type 1= test;

time 1+ t ondi
if not testing
then begin I(first message of test!
testing 1= true;
sendal | {outprocese % clave, mo)
end -
alse send(returnprocess, mo)

ond;
aat:  if testing
then begin {firet set messagel
clock t= max{clock, mi.time);
testing := falwag
sendal | (outprocess = clase, ull
€  ciock = Infinity, '
send incroment messages »

returnprocess; is tha first process in the sequende of Hnka
from P; to P.. Thia spanning tree will provide a means of
diracting the test messages back to the control process.
The program for the remsining processes in & oyaiio olass le

: shown in Figure 7.

In this program, when a process P; teceives the first
message for a test, it makes its own eatimate of the
maximum allowable clock time and sende test messages 1o
all processes in the class to which it has links, Dwing the
test it continues with the normal simulation and time
incrementation activities. When any further test messages
are racelved they are passad on toward the contrel proces:
via returnprocess,. If, however, soms stimulus Pedsan
has bean receivad since the start of tha tast, this massag.
may have an earlier simulation time than the process'
original clock estimate. Hence, tha process nay eert Hs
own, more conservative estimate into the teat message.




When the process receives Its first set message after
a teat it updates its clock and passes the message to al
Procsssns in the class 1o which It has lnka. Any further set
messugas are lgnored until after the next test.

During a test P initially croates
fritprocess, N class| test messages, where || denotes
sot size.  Every other process P;in the class sends
{mstprocens; N claes| teat messages upon receiving the
first test message, and one test meassage for each test
maessage  racelved theteafter, Thus P; “creates”
[nutprocess, Nclase) - 1 new test messages. AN test
messages eventuatly return to the controf process, hence
Pc will recelve exactly

expected u 1 + Z[ loutprocess; N class) - 1 ]

returning test messages during a test, where the aum is
taken over all processes in the class.

The time Incrementation and acceleration activities of
the processes in our axample cannot be predicted exactly,
hecause thoy depend on the telative order of message
arrivals. Supposs, however, that D is chosen as the control
process for the class. [ will first initiate & test with tims O
(due to a lack of sophistication in the program.) Indeed a
series of tests may be performed with & reauiting time of 0
il 0 and S rocelve Increment messages with simiation
time Infinity from C and 0. Then a serles of incrementations
ond acceterations will cause the clocks In 0 and S to
advance much mors rapidly than befors, Finally, once 5
simulates its second servicing of b, the next test will cause
tha clocks In D and S 1o advance to infinity. S5 will send an
increment mossage with tiwe Infinty to E, and E wii
lerminate.

The axemple simuiation terminates, even though the
system baing simuiated fails to terminate propearly (l.e. with
all customers passing to the exit procesas.) SimHarly, the
processes could simulate deadlock without themselves
deadlocking. Uniike physical time, simulation tme Is a pwrely
synthetic quantity and can Jump to infinity. The simulation
has a "clatrvoyance® which the phyaical system tacks.

It has been shown that a method simiar to tha one
rlescribed here will ceause & correct termination of a
simutation.!  That s, the simulation wit ot be terminated
while there are atil events 1o be simulated, but once svery
»vnnt has been nimulated al processes will reach their
terminstion conditlon. A ganaralization of this correctneas
ool to the time acceleralion method would also require
showing that the simulation time of a process will never be
nceeferatad beyond the time of & posasible stimulus,

Conclusion

The Implementation of the  simuation model
demonstratas how a set of of cooparating process
Processcs can through their actions and interactions
rerform the basic computations required to solve a problem

© condition of the processes,

and maintain a proper seqguencing of these activities, They
do not require Intervention from a cantra? controfler,
communication links between processes beyond those vaed
to transmit normel data, nor any real-time apeed of the
computation or communication. Instead we exploit the
characteristics of the problem to be solved and the
saquencing constraints provided by the computational modet
to coordinate rather than to synchronize the process
activities. These (eatures aliow the actua! process
executions to proceed with maximum asynchrony and with a
minimum of Interprocess communication, thus taking best
advantage of the characteriatics of distributed systems.

The three step implementation ahown here provides a
methodology for the desigh of concurrent systems. In the
first step, the basic activities required to solve the problem
are defined and mapped onto a set of processes. Next, a
simple but adequate set of control operations is added.
Finally, mechanisms to improve tha sfficlency of the controf
are added. This methodology reauits in a wel-structured,
efflclent system and fackitates the wverification of the
system's correctness by dacomposing the proof into a
serles of simpler steps.

With & simple decentralized control method such as
time incrementation, the processes are typically provided
with only minimal mformation about the states of other
processes. As a result, they must act very cauticusly with
a consequent fack of efficlency. Howaver, this minimal
sofution allows the designer to concentrate on the
efficlency, rather than the adequacy of more sophisticated
methods.

A mora sophisticated control method, such as time
acceleration, typically Involves detetmining & more global
thereby alowing them 1o act
more inteligantly and afficlently. The time acceleration
control method shows how such plobat condition can be
determined without freezing the other proceas activities
and without a centralized observer which communicates
directly with the processes. The design of this type of
control method involves many subtieties, becesuse many
activities are proceeding concurrently. One could easly
overlook an activity as it moves from one process to
another while the test of the global condition is underway.

While the control methods dascribed here have baen
presented entkely in the context of simulation, they could
potentially be applled to other lypes of distributed systems,
Many of the prohiems oncounterod in diatributod Systnms,
auch as dondiock, inconsistont stalos, and nontarnination,
could be avoldod by ropincing real-timo clocks with somg
purely synthetic Uma measure analogous to simiiation tima,
The computation can then be viewed as the simtialion of
some virtual machine. For example, suppose we wish to halt
the processes in a distributed system once all activity has
ceased except for the "background” control opetations. In
most current systems ad hoc mechanisms are employed to
do this (e.g. “pulling the plug,”) but as distributed systems
grow larger and more complex, more reliable methods will be
required. The time scceieration method could serve this



purpose by causing the synthetic time to accelerate to
infinity.
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