| MASSACHUSETTS
LABORATORY FOR INSTIUTE OF
COMPUTER SCIENCE TECHNOLOGY

4)

Scenarios: A Model of Non-determinate Computation

Computation Structures Group Memo 206
February 1981

J. Dean Brock
William B. Ackerman

This research was supported by the National Scicnce Foundation under contract no.
7915255-MCS.

_ y

545 THCHNOLOGY SQUARE, CAMBRIDGI:. MASSACHUSETTS 02139

Scenarios: A Model of Non-determinate Computation*

J. Dean Brock
William B. Ackerman

Laboratory for Computer Science
Massachusells Institute of Technology
Cambridge, Massachusetts 02139
U.S A,

Recently, much attention has been given to distributed computation by communicating processes
interconnected by networks. Data flow is a well suited model of this form of computation. The schema of this
mode! is the data flow graph, a network of autonomous operators which communicate solely by the
asynchronous transmission of messages through input and output ports. By the choice of appropriate sets of
operators, data flow graphs can represent many forms of parallel computation; by choosing processes as
operators, programs of Kahn and MacQueen's {71 paraliet programming language are representable; by
choosing hardware elements. computer architectures are representab'a {10}, and by choosing elementary
programming operations, such as + and *, programs of applicative languages are representable [1, 11}, Data
flow graphs may themselves be the operators of larger graphs. This rather elegant interconnection property
permits the modular construction of very large networks. The naturai problem of semantics for such networks
is to characterize the behavior of an entire network in terms of the behavior of itg components, whether these

components be subnetworks or elementary operators.

It is known that networks of determinate processes can be adequately characterized by history functions
' which map each input history tuple to its output history tuple response. Many semantic theories for
non-determinate processes have been described, but in none have processes been represented as abstractly
as the naturai extension of history functions to history relations which map each input history tuple into the set
of possible output history tuple responses. Using the data flow model of computation, we demonstrate that
history relations are an inadequately detailed characterization of non-determinate behavior. An alternative

characterization, incorporating more causality information into history relations, is presented.

1. History Relations

During a network computation, each operator input port receives and each operator output port transmits
a history (sequence) of values. An operator is determinate if, for each input history tuple, it has only one
possible output history tuple.response. The function mapping its input history tuples into its output history
tuple responses is the operator's history function. Note that, due to the asynchronous nature of the
communication, nothing is said about absolute timing or relative timing of events at different operator ports,
though the order of values passing through a single port is, of course, signiicant. Kahn [6] has shown that a
network composed of determinate processes interconnected by channels with unbounded buflering is itself
determinate, and he has described a fixpoint theory for deriving its histary function from the histpry functions

of its components.

* This research was supported by the Naticnal Science Foundation under contract 7815255-MCS.

However, networks for real-time applications, such as operating systems, often require non-determinate
processes. One very important, and very basic, non-determinate operator is the merge operator used by
Dennis [4] in an airline reservation system and by Arvind, Gostelow, and Plouffe (2] in an operating system

resource allocator.

The merge operator receives two input histories and non-determinately merges them into one output
history. The intended implementation of merge is a process which waits for a value to appear on either of its
input ports and then produces the received value at its output port before returning to its wailing state. If the
merge were characterized by the obvious extension of history functions to history refations mapping each
input history tuple into the set of possible resulting output history tuples, it would be defined for finite input
histories as:

merge(X, g) = {X}
merge(e, Y) = {¥}
merge(i«X,je ¥} = {i«Z|Z € merge(X,j+Y)} U {i+Z]|2 € mergeli« X,)}

where ¢ is the empty history, / and j are single values, X and Y are histories, and + is the history concatenation
operalor. For now, we decline to define merge for infinite input histories, because only finite input histories are

required for the examples of this paper and because we thus avoid the controversy of the fair versus the unfair

merge [13).

2. Semantic Theories for Non-Determinate Networks

A few semantic theories have been given for networks of non-determinate parallel processes. Kosinski 9]
has defined a denotational semanticé in which values are "tagged” with the sequence of non-determinate
merge "decisions” which caused their generation. Networks are then defined as functions mapping tagged
input histary tuples into sets of tagged output history tuples. The derivation of a network's semantic
characlerization krom those of its components invalves the matching of value tags tb determine consistent
input histories for processes with multiple input ports. This functional characterization contains many details
of internal network communication together with the information concerning external communication
contained in history relations. For large systems these internal details, most of them irrelevant, could easily

averwhelm the useful informatiaon,

Milne and Milner [12] have constructed a flow algebra of networks in which processes are roughly
characterized as a set of possible actions. Each action consists of an instance of process communication
foliowed by process "renewal,” that is, assumption of a new set of possible actions. This semantic theory is
based on a modet of computation which differs fundamentally from that of Kahn's theory. Here, an instance of
communication is an wnbuffered simultanecus exchange of values. Communication through unbounded
butfers can be modeled, but processes which are determinate in Kahn's theory are often non-determinate in
this one. Furthermore, because networks are formally characterized as elements of an elaborate
powerdomain, some networks with significantly different behaviors are represented by the same element. For
example, all networks with even the possibility of deadiock, that is, the production of no output, are

indistinguishable,

By comparison, history relations are a simple specification of non-determinate computation, but,
unfortunately, they lack sufficient detail 1o describe the behavior of interconnected networks. In the remainder

of this paper, we will show this incompleteness and will describe a natural extension of history relations that we
believe to be adequate for non-determinate computation. This incompleteness will be demonstrated by
exhibiting two data flow graphs S, and S, with the same history relation, but which cannot be substituted for
each other as components of a larger network without changing that network’s history reiation, Conseguently,
there can be no "correct" interconnection rules for networks represented by history relations. Formally
interpreted within the algebraic terminology employed by Milne and Milner {12], the incompleteness result
shows that the function mapping each data flow graph into its history relation cannot be extended to a

morphism of the algebra of data flow graphs,

It should be noted that our demonstration of the incompleteness of history relations differs fundamentally
fram Keller's [8]. His demonstration uses a graph similar that of Figure 1, where first is a determinate graph
operator that passes only its first input value. Beside each graph arc is written all its possible histories with
graph input history 5. When computation begins, the value 5 passes through the leftmast input port of the
merge and causes 6 to appear on the rightmost input port. Eventually, the merge will produce the output
history 5« 6. However, Keller, "pursting the incremental approach” to semantics, assumes that the output of
the merge operator could be any element of merge(s, 6), including the clearly impossible 6 » 5; given that if
"these inputs were presented externally, this would certainly be the case.” From this "merge anomaly" he
concludes that the history relations must be extended to include causality relations between individual
elements of different hi§tories. We accept only that this anomaly demonstrates that history relation
interconnection rules which ignore causality fait. T 1t does not show that the necessary causality relations
cannot be inferred from history relations by, for example, requiring that later output of a merge does not
“rewrite" earlier output.2 Keller shows there are no easy interconneclion rules for networks characterized by

history refations. We show there are no interconnection rufes.

Figure 1.
{5}

{6}
Crerse)
=T @

{8}

Keller's Example (with slight modification)

1. Or, as Pratt[14] states: "The merge anomaly illustrates nothing beyond the fact that an incorrect
denotational semantics may well not agree with & correct operational one.”

2. There are several subalgebras of data flow graphs which exhibit the “"merge anomaiy” but which are
amenable o analysis by history relations. One consists of the graphs constructed with determinate data flow
operators and Park’s [13] non-determinate fairmerge operator, which diffcrs from our merge on finite input
histories. Another may be construcied with one generator, plus 1ofirstemerge, and one interconnection rule.

3. The Incompleteness of History Relations

Let §, and 3, be the graphs shown in Figure 2. Syntactically, S, and S, may be written:
5, (X, Y} = P, [merge(D{(X), D{Y})) ‘
D.P,. and P, are all determinate processes which produce at most two output values. Process D produces two
copies of its first input value. Both P, and P, pass through their first two input values, but P, will produce its
first output as soon as it receives its first input, while P, will not produce any output until it has received two

input values. The history functions for these processes are;

D(e) = ¢ Pfe}=¢ Pyle) = €
DlisX} =ini Py =i Poli) = ¢
PlisjoX)y=iej PylivjeX)=isj

Despile the difference between P, and P, networks §, and S, are represented by the same history
relation. Neither netwark produces any output unless it receives input. If 5, receives one or more input values
on either input port, its internal P, process is guaranteed to receive two or more input values, thus "avoiding"
the difference between pracesses P, and P,,. Consequently, 5, and 82 have the same history relation:

S (e €) = {e}

Seli=X, &) = {i+i}

SilejeY) = {if} 7

Selie X jo¥) = {iviisjjeijoj}
However, there is a subtle difference in their behaviors: S, will nat produce its first output until its second
output has been determined. These networks can be placed within a larger network which uncovers this

difference.

Now fet T, and T, be the networks of Figure 3. T, is a cyclic network with non-determinate process &, and
delerminate process pfus!. Inputs to T, are routed to the leftmost input port of S, The outputs of S, are
routed to two sources: to the output port of T, and, through the pius1 Operator, to the rightmost input port of
S, A possible equatienal specification of T, is:

T {X) = Ysuch thaty = Sk(X,pIusr(Y))

Suppose T, receives the single input value 5. The value § passes through the leftmost D, through merge,
and through P.. The value 5 then becomes the first cutput of T,. The value 5 is also input to the plust

Figure 2,

merge

Py

!

S1 and 32

Figure 3.

that
is,

merge

i"1 and T2

operator, causing the value & to be presented to the rightmost port of T,, where it passes through the rightmost
D. Note that merge has a "choice” of producing as its second output either its second leftmost input, which is
5, or it first rightmost input, which is 6. Consequently, the second output of T, could be either 5 or 6.
Therefore:

T,(5) = {5+5,5+6}

-Now suppose T, receives the input sequence 5. The value 5 passes through the leftmost D, through
merge, and enters P,. However, P, will produce no output until it has received a second input. Eventually, a
second value 5 must be produced by the leftmost D and pass through the merge to P, Then P,, and -
consequently S, and T, will produce the output sequence 5 + 5. Therefore:

7,(5) = {5+ 5}
By taking two networks with the same history refation and showing that they are not substitutable as
components of a larger network, we have demonstrated that history refations incompletely specily the behavior
of non-determinate networks. Although we have derived the history relations of our example networks

somewhat intuitively, more formal derivations could be made.

4. Scenarios

The shortcoming of history relations can be overcome by using a different model of non-determinate
computation -- scenario sets. A history refation is a set of pairs of input and output history tuples. Each pair
represents one possible, potentially eternal, computation of a modeled process. A single scenario is one of
these pairs augmented with a partiat ordering on the individual data items of the history tuples showing the
causalily constraints. Two data items are causally ordered under this relation, if the event of producing one
must precede the event of producing the other. ltems of the history of a single port are totally related by this
ordering, since the production of early items must precede the production of later ones. An output item is

causally related to those input items which contributed, through a non-indivisible primitive event or through a

series of internal process events, to its production. Due to the time-independent nature of data flow
computation, the are no causality relations between items of different input ports, between items of different
output ports, and from output ilems to input items. In some ways lhe ordering of the scenario resembles the

"combined order” of Hewitt and Baker [5).

A scenario can be drawn graphically with each input or output history shown as a column of values with
arrows drawn down each column and from an input value to an output value wherever a causality constraint
exists between the two. The requirement that the scenario represent a partial order is just the requirement that
it contain no directed cycles of arrows, that is, that no value "causes” itself. The three possible scenarios for

the merge operatar receiving the input history tuple {5 « 6, 7) are shown below:

(56,7) 5647 (5+6,7) =5+7+6 (5:6,7)=7+5+6
57 N 577 a5 5 7—>7
: [~ P

~N€— O €—(n

X

Every network may be characterized by the set of all its possible scenarios.

g e

6

The composition rule for two netwarks, in terms of their sets of scenarios, is:
First, "enumerate” the Cartesian product of the scenario sets for the two networks.

Second, discard al! scenario pairs whose data values do not agree on ports that are linked to
each other, and merge each pair into one scenario, identifying the columns of tinked ports.
The remaining pairs are cailed port-consistent.

Third, if a directed cycle exists within a merged port-consistent pair, discard the pair. The
remaining pairs are called causally-consistent,

Fourth, remove the columns for ports that are linked {since they do not appear externally in
the final system), preserving the partial order. The resulting set of scenarios characterizes
the joined networks. :

The reader may have noticed the similarilies between port-consistent pairs and fixpoints and between

causally-consistent pairs and least fixpoints,

We will now apply the scenario analysis to systems S, and T, By application of the preceding composition
rule, the scenario sets of S, may be derived using the scenario sets for D, merge, and P, Systems 5, and S,
have the foltowing scenarios in common:

(e, €)= ¢ (ie)—riei (e,f)—jej (i jy—iei Gy —isf
e e e Kaﬁj € j—>j fT\i i j—sj
i) i i
However, owing to the differences between Pyand P, S, also has the scenarios:

) (i) = G+)
O i

whereas 5, has the corresponding scenarios:

()= (e]) () =G0
I i

; ¢.

!
Note how these scenarios indicate the subtie difference batween S, and Sy in 8, one input vaiue causes the

first output: in S, two input values cause the first output.

Application of the scenario composition rule to the joining of S, and plus7 to form T, shows that T,

caontains these scenarios;

T,:5—+5+56 T':S—rS-G
5,:(6,68+6) 2545 S5, (5,6°7)—5+86
plust: 55 46+6 Pust:5+6—16+7
T iy

65 7e—£

indicating that either 5+ 5 or 5+ 6 is a possible response to input history 5. Before scenarios with cycles are

discarded, T, has the following port-consistant pairs of scenarios:

T,,6—5+5 7,556
82:(5,6-6)—r5-5 82:(5,6-7)-—&5-6
plust:5+¢5 4686 plust: 586 o 6+7
5 6«=5 5

6€—5 7«—6

However, the rightinost pair contains a directed cycle and must be discarded since it not causally-consistent.

Therefore, 5 « 5 is the only possible response of T, to input history 5.

Flease note that this paper is an introduction to the scenario modet of computation. By appealing to
"common-sense” notions of the role of causality in network communication, we have argued that scenrarios
are a correct representation of network computation. There is other evidence, perhaps much more satisfying
to the theoreticaily inclined, that could have been presented here. For example, we could have proved that
scenario theory agrees with Kahn's[6] theory when restricted to determinate systems. This proof is

straightforward, though somewhat tedious.

There are several difficult questions, not addressed here, that can only be answered through a thorough
examination of the theory of scenarios. One question is whether or not the scenario set derived for a network
is total, that is, contains a scenario for every possible input tuple. insuring totality requires the imposition of
conditions, similar to monotonicity and continuity, on scenario sets. Another question is whether or not the
theory of scenarios could or should be related to existing fixpoint theories[9, 12] tor non-determinate

computation. These issues are being addressed in tha thesis research of one of the authors [3].

5. Conclusion

Many researchers have sought a semantic theory that extends the history function model of delerminate
networks to a history relation model of non-determinate networks. By demohstrating that history relations are
a fundamentally incomplete characterization of non-determinate computation, we have shown that no such
extension exists. This demonstration was accomplished by constructing two networks which, though

indistinguishable by history relations, cannot be substituted for each other in a larger network without
changing the histary relation of the larger network.

A few alernative theories for non-determinate networks have been proposed. Unfortunately, these
thearies offer complicated semantic models revealing many details of network computation, far more than is
often relevant for an interface specitication. We have introduced a relatively simple network model, the set of
scenarios. This model is a straightforward extension of history relations, for a scenaria is merely an element of
a history relation whose constituent values are partially ordered by a retation representing causality; but it can

reveal subtle, though important, distinctions unseen in history reiations.

6. References

1] Ackerman, w. B., "Data Flow Languages", Proceedings of the 1979 National Computer Conterence, AFIPS Conference Proceedings
48, June 1979, 1087-1095.

[2] Arvind, K. P. Gostelow, and W. Floutte, "Indeterminacy. Monitors and Dataflow™, Proceedings of the Sixth ACM Sympasium on
Operating Systems Principlas, Operating Systems Review 11, S(November 1977), 159-169,

[8] Brock. d. D., Farmal Proparties of a Non-Determinale Data Flow Language, Ph. D. thesis, Department of Electrical Engineering and
Computer Science, Massachusetls Institute of Technology, Cambridge, Massachusetts, expected September 1981,

{4] Dennis. J. 8., "A Language Design for Structured Concurrency”, Design and Implementation of Programming tanguages:
Proceedings of a Do) Sponsored Workshop (J.H. Williams and D. A, Fisher, Eds.}, Lecture Notes in Computer Scignce 54,

QOctober 1976, 221.242.

[5]1 Hewitt, C.E.. and H, Baker, “Acters and Conlinuous Functionals,” Formal Description of Programming Concepts, (E. J. Neuhold,
Ed.), August 1977, 367-350.

[6] Kahn, G., "The Semantics of a Simple Language for Parallel Programming”, information FProcessing 74: Proceeding of the IFIP
Congress 74 (J. L. Rosenfeld, Ed.), 1974, 471.475.

[7] Kahn, G, and D. MacQueen, "Coroulines and Nelworks of Parallel Processes”, Information Processing 77: Proceedings of IFIP
Congress 77 (B. Gilchrist, Ed.), August 1977, 593-008.

[B] Keller,R. M., "Denotational Models for Paraliel Programs with Indeterminate Operators”, Formal Description of Programming
Concepts (E. J. Neuhold, Ed.}, August 1977, North-Holland Publishing Company, New York, New York, 337-366.

[8] Kosinski, P.R., "A Straightiorward Denatational Semantics for Non-Determinate Data Flow Programs”, Conference Record of the
Fifth ACM Symposium on Principles of Programming Languages, January 1978, 214-221,

{10) Leung,C.K.C., "ADL: An Architecture Description Language for Packet Communication Systems™, Proceedings of the 4th
International Symposium on Computer Hardware Description Languages, Oclober 1979, 6-13.

[11] MeGraw, J. R, "Data Flow Computing -- Software Development”, IEEE Transaclions on Computers C-29, 12(December 1980),
1095-1103.
[12] Mitne, G., and R. Milner, "Concurrent Processes and Their Syntax", Journal of the ACM 26. 2(Aprit 1979), 302-321.

[13} Park.D., "On the Semantics of Fair Parallelism", Abstract Software Specifications: 1979 Copenhagen Winter School Proceedings
(D. Bidrner, Ed.), Leciure Notes in Computer Science 86, February 1979, 504-526,

[14] Pratt, V.R., comment in published discussion on "Denotational Models with Indeterminate Operatars” by R.M.Kelier, Formaf
Description of Programming Concepts (E. J. Neuhold, Ed), August 1977, North-Heolland Publishing Company, New York, New York,

366.

