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Abstract

This report focuses on the definition of the instruction set for a tagged-token data flow

machine. This definition will serve to establish the interface between the compiler (in this

case, ID) and the machine itself.

The definition is broken down into three parts:

1. Tokens: A detailed description of the tokens is given wherein cases are
enumerated, and sub-fields are defined.

2 Instructions: A clear delineation is made between instructions and the
operations they denote. Rules for forming an instruction are given.

3. Operations: The set of operations is defined. For each operation, we define the
domain of valid inputs and describe the range of output values (including the
production of error tokens where appropriate).
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Instruction Set Definition for a Tagged-Token
Data Flow Machine

1. Introduction

This paper defines the instruction set for the tagged-token data flow machine being
constructed by the Functional Languages and Architectures group at MIT. This machine is
of the form suggested by Arvind and Kathail [3]. Management and scheduling of enabled
activities is a realization of the mechanism for the U-interpreter [2] and [1}. A simulation
study of a similar machine was done by Gostelow and Thomas [4]. Shimada [7] has also
designed a simulator and has done preliminary work toward defining the instruction set

presented herein.

it is assumed that the reader already has some familiarity with the machine described in
[3]. The block diagram of this machine is shown in Figure 1. The waiting-maiching section
receives tokens from the communication network, and attempts to pair them. Having
accomplished this, the instruction fetch section retrieves information from the program
memory and passes this (along with token data) to the service section. Arithmetic
operations are performed by the ALU (contained in the service section), while all I-
structure processing is handled by a separate section. Result tokens are generated and

propagated by the output section. In the following discussion, we will use these terms:

- Enabled Activity: Refers to the output of the waiting-matching section; a single
token (nt=0), or token pair that has been successfully matched.

- Instruction: Refers to that informatton in the implementation corresponding to

an actor in the data flow program graph. The instructions may be viewed as the
fundamental pieces of the "stored program™.

- Operation Packet: Refers to that information in the implementation that is

built from an enabled activity and the corresponding instruction. The
operation packet is the vehicle for communicating a complete activity (an

instance of an instruction) to the service section.

- Qperation: Informally referred to as the opcode. It is the part of the opcration
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packet which defines the action to be taken by the service section. The result
will be a new token to be distributed as per a destination instruction list, The
produced token will contain a valid result or a special datum indicating that an
error has occurred.

The next three sections describe tokens, instructions, and operations (respectively).

2. Tokens

Arvind and Kathail identify two token types in their definition of the processor’s
architecture {3]:

1. Tokens corresponding to values in data flow graphs: 'These are associated with

the conceptual notion of tokens (those that are viewed as moving about on the
arcs of the data flow graph). They are to be distinguished from

2. System-generated tokens: This class of tokens is closely tied to the specific

implementation under investigation and has no direct interpretation in terms of
the data flow graph. Tokens in this class do not "denote" instructions to be
enabled: rather, they carry with them the necessary operation codes.

We will describe each of these token classes in turn.

2.1. Tokens Corresponding to Values in Data Flow Graphs

The bit-patterns for tokens of this class can be broken down as follows:

{Token-type> (1)
{PE-number> {8)
{Tag>
{Color> (1)
<{Local-instruction-address> (16)
¢{Iteration-number> {(8)
(Number-of-tokens-to-enable-instruction> (1)
{Port-number> (1)
{Data>
{Data-type>
<(Data-tength> (4)
<{Data-class> (4)
<Data-value> (0-64)

The numbers to the right of the elemental entries indicate the number of bits reserved for

expressing the corresponding fictd. Let us examine each of these ficlds.
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1. Token-type: This bit (called d in [3]) is used to distinguish the tokens

corresponding to values in data flow graphs from the system-generated tokens.
This description pertains to d=0 type tokens.

2. PE-number: This field is used to uniquely identify the Processing Element
which is the target for any given token. The communications subsystem will

perform the token-switching function based on this fieldl. Note that once a
token has arrived at the selected PE, the PE-number is of no further use (save

for checking of proper delivery) and can thus be discarded.

3. Tag: When combined with the PE number, the rag constitutes a unique activity
name, and is derived from the U-interpreter token labeling rules, The tag is
further broken down;

a. Color; Each PE in the machine is capable of concurrently handling tokens

from a fixed number of disjoint procedure/loop invocations. To keep the
tokens separate, they are assigned identifiers that are common within the
procedure/loop but unique across procedures/loops. The field that
implements this is called the token's color.

Iy Local-instruction-address: Tokens ol the d==0 class denote instructions
corresponding to actors in the data flow program graph. This field serves
as a pointer to the instruction so denoted.

¢, lHention-unumber: This field is copied directly from the U-interpreter’s
<Cw.e.s.i> token fabel. Tt is a {[inite) implementation of the iteration

CUllI]t€[2‘3.

4. Number-ol-tokens-1o-enable-instruction: Each actor in the data flow graph will

1!-’urthcr encoding of this ficld may be necessary to convert it into a proper routing address.

2Howcvcr, this docs not imply that the J field in Cwe.s.i2 can not be larger than 28. A scheme described in
{3] essentially calls for allucating a new color when the Timit is reached,

3;- - , , .

For procedure activations, the ireration-number ficld does not change; and, hence, 8 tag bits are wasted, If

the same color and different iteration numbers are assigned to several activations of a proccdure, then it is
pussible o make very cfficiont use of tag bits in case of recursion.
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have at least one and at most two input tokens® . In the case that two tokens are
needed to enable an instruction, the waiting-matching section of the targeted
PE will have to perform the pairing function. However, when only one token is
expected (this is known at compile time), the waiting-matching section can be
bypassed. By carrying such information on the token itself, it is a simple matter
to conditionally bypass the waiting-matching hardware. This field performs
exactly that function.

5. Port-number: As mentioned, an actor (instruction) will have one or two inputs.
In the case that two inputs are expected, the token itself must know for which
of the two it is destined.

6. Data: This field is made up of the Data-type and the actual Data-value to be
used by the target instruction.

a. Data-type: Data objects may represent different items (e.g, booleans, I-
structure descriptors). The Data-type field describes the datum by
defining its Data-class which serves to make this distinction. Further, the
implementation makes use of the fact that not all data objects require the
same amount of storage space. As such, the type must also define the
length of the actual data field. We have chosen an implementation
architecture which supports addressing to the byte (8 bits) level;
furthermore, we wish to permit a maximum length of 16 bytes (one byte
for the <Data-type> and 15 bytes for the <Data-value>). Hence, four bits
are required to express the length ("0000" denotes a <Data> object with
no <Data-valued field; "0001" denotes a one byte <Data-value>; "1111"
denotes a 15 byte <Data-value>). This information is carried in the Data-
length field. Itis important to observe that the Data-length field describes
the number of implementation bytes that are used to store the object.
The length of the actual datum may be further restricted (i.e., some bits
may be ignored) by the Data-class field. This is seen most clearly in the
case of boolean data. The Daia-fength indicates "0001" (one byte); but
knowledge that this byte is used to represent a boolean value would cause
seven of these eight bits to be ignored. The Dara-type composite is
further discussed in section 4.1 on page 14.

4M()rc precisely, actors in the graph may have from one to three inputs; these inputs may come from a
maximum of two input tokens along with an optional constant. This is cxplained in greater detail in the
Instruction section.,
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b. Data-value: This field (whose length is defined as noted) contains the
actual data object.

2.2. System-Gencrated Tokens
System-generated tokens arc somewhat simpler in (generic) structure but tend to have

varied formats in specific contexts. The basic format is

{Token-type> ' (1)
{PE-number> {(8)
{Ack-expected> ‘ (1)
<Data> (*)

Again, we cxamine each field.

1. Token-type: System-generated tokens are of type d=1. Note that, unlike d=0

tokens, d =1 tokens never require pairing (i.e., each one stands alone). As such,
all d=1 tokens bypass the waiting-matching and instruction fetch sections of

the machine (refer to Figure 2).

2. PE-number: This field is identical to the corresponding field previously
described.

3. Ack-expected: The operation performed by this token may generate another
token (e.g., an acknowledgement). Such a situation is indicated by this bit. The
process of "generating another token" is described in section 3.3 on page 11,

4. Data: The meaning assigned to Data for a d=1 token varies as a function of the
operation code that it carries. In some cases, this field will contain a datum that
is similar to that for a d=0 token. In other cases, this field may actually contain
the encodings of several discrete items in a way that would defy some
“standardized” description. Since d=1 tokens are an implementation-level
device, we can see that the Data field contained therein is also implementation

related. The field may be as large as the remiander of the token (i.e., 128-total
of all other bits).

3. Instructions

Instances of "firings” of actors in the data flow program graph are referred to as
activiies. An activity is described in terms of the data which invokes it and the "skeleton”

that defines the actor. In this puper we have used the term instruction to describe that
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information in the machine’s storage that represents this "skeleton™. The exact form of an
instruction will be given in this section. It is important to differentiate the concept of an
instruction from that of an operation; an operation can be derived from several different
instructions containing the same generic operator (e.g., +). Input values may be from any

of the following:

- Tokens of the d=0 type, or
- Data from the activiation record, or

- Constants associated with the instruction itself,

Input values {(along with the instruction) are used to form an operation packet for the
service section. By this mechanism, we can define a single operator (again, the example +)
which takes exactly two inputs, and by correct construction of the instruction, create the
effect of single-input actors ({Data> + <constant> or <constant> + <{Data>) as well as the
more obvious double-input actors. 1t is even possible to build activity templates that will

ignore the {Data> field of an input token altogether (i.e., using it only as a trigger).

We can view an instruction as having at least one, and at most two, input “ports"
through which d =0 tokens may pass. Information must be contained in the instruction to

specify what, if anything, is to be done with the data contained therein.

To clarify this, consider the actions performed by the instruction fetch hardware
described in [3):

- Tokens corresponding to an activity which is ready for exccution (an enabled
activity) arc taken from the waiting-matching section’s output queue.

- The local instruction address (found in the token's <Tag> field) is used 1o fetch
the correct instruction from the program emory.  Building an operation
packet o be fed to the service section can begin at this point - the opcode and
the destination instructions (i.e., the "downstream” actors in the data flow
graph) arc now known,

- Compiction of the packet building process is performed by "filling in" the
operand values. While an instruction must have exactly one or two inputs, the
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denoted operation may have from one to three inputs. We make the
association as follows: the instruction contains information concerning the
handling of data carried on input tokens as well as information regarding an
optional "constant” field in the instruction itself. For each input token, two bits
in the instruction (called the disposition) specify one of the following actions:

* Disposition="00": The corresponding data value is to become activity
operand 1.

* Disposition="01": The corresponding data value is to become activity
operand 2.

* Disposition="10": The corresponding data value is to become activity
operand 3.

* Disposition="11": The corresponding data value is to be discarded. This

encoding will provide, for example, the capability of triggering any
dyadic operation in which one of the operands is constant,

For the (optional) constant field, one bit of the instruction specifies that the
data value contained in the template represents a program constant, or
represents an index into the activation record wherein will be found the actual
data. This determines the value of the constant. The disposition is then handled

exactly as for token data (i.e., two more bits).

Note that not all combinations of encodings are legal. Specifically, each
operand (1, 2, 3) may only be specified once in a valid instruction (i.e., it is
itlegal to code two disposition fields as 00" in one instruction).

3.1. Format .

With this in mind, we define the following format for instructions:

<{Header>
<Opcode> {(8)
<Token-1~-disposition> ' (2)
{Token-2-disposition> (2)
{Constant-disposition> (2)
{Constant-source> (1)
<{Destination-1ist-flag> (1)

{Constant-specification>
<Data-type>
<Data-length> {4)
{Data-class> (4)
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<{Data-value> {0-64)
<Destination>

{Number-of-tokens> (1)

<{Destinaticn-instruction-port-number> (1)

{Destination-relative-address> {16)

{Destination-list-flag> (1)

Note that the <Constant-specification> is optional and will not be included whenever
{Constant-disposition>="11" (unused). Further, the destination list is of arbitrary length

(i.e., the <Destination> item may be repeated ad infinitum).

The SWITCH instruction deserves special treatment. Due to its very nature, two
possible destination lists must be kept (one for the TRUE branch, and one for the FALSE
branch). The scheme used here will encode the optional <Constant-specification> field
with a pointer to the FALSE destination list; the TRUE destination list will be part of the
~ Instruction. In the case of a SWITCH with no FALSE destinations, the pointer will not
appear at all. This fact will be reflected through correct coding (i.e., "11") of the
{Constant-disposition> field.

3.2. Examples
Below are shown some sample instruction codings; the important fields for each example

are given,

- Addition of two token-carried numbers:

expect 2 tokens
{Opcode>="+"
{Token-1-disposition>="00"
{Token-2-disposition>="01"
{Constant-disposition>="11"

- Addition of a constant to a token-carried number:

expect 1 token

<Opcoded>="+"
{Token-1-disposition>="00"
{Token-2-disposition>="11"
{Constant-disposition>="01"
{Constant-source>=0/1

- Addition using a trigger token:
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expect 2 tokens

{Opcode>="+"
<Token-i-disposition>="00" (value)
<Token-2-disposition>="11" (trigger)

<Constant-disposition>="01"
<Constant-source>=0/1
- A three-input operation (Form-address-l-store(s,i,v)):

expect 2 tokens

<0pcode>="Append"
<Token-1-disposition>="01" (index)
¢Token-2-disposition>="10" (value)
<Constant-disposition>="00" (struct.)
{Constant-source>=0/1

- The SWITCH operation:

expect 2 tokens

<Opcode>="Switch"

<Token-1-disposition>="00"

<Token-2-disposition>=“01"

<Constant-disposition>="10"

<Data-value>=ptr. to FALSE dest. 1list
- Tliegal use of disposition (non-disjoint):

<Token-1-disposition>="00"
<Token-2-disposition>="00"

3.3. Instruction Processing Paradigms

Four distinct cases of instruction processing can be enumerated. Each is intended for
one or more specific situations. All instruction sequences begin with a d=0 token. Some
sequences result in further d =0 tokens (self perpetuating sequences); others do not ("dead

end" sequences). This section will attempt to describe the cases in detail.

3.3.1. Paradigm 1: <d=0> to <d=0>

This case may be thought of as the default” situation; it represents the passing of tokens
directly across the arcs in a data flow graph. We examine the production of the output
token as a function of the input token. Below are listed all the fields in the d=0 token type

along with a description of how each is transformed during the processing of the token.

- Token-type: The output token will be d=0.
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- PE-number: See below.

- Tag: Color remains unchanged. Local instruction address and iteration

number are described below (note that the iteration number field will only
change due to D or D! operators in this paradigm).

- Number-of-tokens-to-enable-instruction: Taken directly from the <Destination>
field.

- Port-number: Taken directly from the {Destination> field.

- Data: Semantics for each operation are given in the Operations section (4 on
page 14).

Computation of the output token’s PE number, local instruction address, and iteration
number is done using the following algorithm. We are assuming that the necessary
information (e.g., for any one code block, the physical domain size, number of PEs in a
physical subdomain, and associated destination relative addesses) are resolved prior to run
time. This reduces the overhead of destination determination and eliminates the need to
modify any pointers during loading of the code block. - Further, physical domains may only

be constructed from a number of processors which is a power of 2 (i.e,, 1, 2,4, 8, ...).

Four variables are associated with each code block; the number of PEs in a physical
subdomain (# PE/PSD), the base PE number (PE,__), the mapping constant (k), and a
code bluck base address. Further, a status bit must be provided in each color register which
is asserted only in the last physical subdomain (this information is used by the D opcrator

which implements a different algorithm; see séction 4.8.9 on page 31).

The normal tag algorithm takes, as arguments, the input tag, the destination relative
address (from the instruction), #PE/PSD, PE___, code block base address, and physical
subdomain number. The algorithm is as follows:

1. Examine the first LOGZ(# PE/PSD) bits in the relative address. This will

specify the PE offset within the current physical subdomain, thus uniquely
determining the PE number. '
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2. The remainder of the bits in the relative address are to be added to the code
block base address to form the local instruction address. :

We abbrevite the format of the output token as follows:

- <d =0,PE,tag,nt,port,data>

3.3.2. Paradigm 2: <d=0> to<d= D

This is the most straightforward use of d=1 tokens. It corresponds to the case where an
operation is to be performed on a PE that is not necessan'ly' the one on which the d=0
operation (which generated the d=1 token) was performed, yet no response  Of
acknowledgement is needed. An example of such a situation would be the *I-store
operations {(acknowledgement, if required, is handled by a separate mechanism). The

output d=1 token is of the format
- <d=1,PE,ack = 0, opcode,data= Caddress,value>>>

The PE number, opcode, address, and value are derived from the {d =0 activity.

3.3.3. Paradigm 3: <d=0> to (<d= 1> to <d=0>)

This situation represents the return of some data object from a "remotely executed”
d=1 operation to some arbitrary activity. The PE/tag information in the imbedded d=0
token is derived using the normal tag algorithm. The two tokens produced in this sequence

may execute on different PEs; their format is as follows:
-<d=1PE ack= 14d= O,PEz,tag,nt,port),(opcode,datal»
-dd= O,PEz,tag,nt,port,data,l>

3.3.4. Paradigm 4: <d=0> to (<d=1> 1o <d=1*Entry>)

The final case may be characterized as the execution of a d=1 operation whose explicit
result is to be returned to a manager which acts as a transaction processor. Below are
shown the two d=1 tokens (in sequence). In the sccond token, PE; and opcodel1 are

automaticatly included to help the manager identify the origin of the token received.

-<d=1,PE l,ack =14d=1MOBl = (PEZ,addrz»,(opcode l,data l»
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-d= 1,PE2,ack =0, opcode=*Entry,data= <addr2,PE1,opcodel,...»)

4. Operations

We begin this section by describing the basic data types. This is followed by a
description of the operations themselves (logically grouped). Operations are described on -
the basis of opcode, input and output types, error checking, and error propagation. It isto

be understood that the following definition is incomplete with respect to streams,

managers, and input/output.

Note that in the definiton of the operation codes, several conventions will be used.

Operations are represented as functions, and follow this basic format:
OP1 {x OP2 {x OP3}} = RSLT {+ ERR}

OP1, OP2, and OP3 represent the data-types for operands 1, 2, and 3. RSLT represents
the type of the result. Items enclosed in braces {...} are optional and may be omitted from

some definitions. The + nontation should be read as "or".

It should be understood that the equations given represent the only valid semantic

forms. A Type—mismatch error token will be generated for any application of an operation

that does not match one of the given equations,

The reader is to assume that the token processing follows paradigm 1 (from 3.3 on page

11) unless otherwise indicated.

4.1. Data Types
All data typing considerations in this machine are deferred until run time. As such, each
datum has associated with it a dara-1ype identifier. The following is a list of the legal types

(the data-type mnemonic is shown in boldface) with a description of each.
- BITS: Bit string {1 to 8 bytes in length),

- BOOL: Boolean value (i.e., cither TRUE or FALSE). Represented as a 1 bit
binary number. Padding of the representation with dunmimy bits will be done as
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necessary to maintain boundary alignment,
- CHAR: ASCII character (7 bits).

- ERR: Error. Signifies that a processing error has occurred. Error handling is

discussed at length in [6]. The machine being described here can generate the
following types of error tokens:

1. Type— mismatch: An application of an operator has been attempted that
does not match one of the valid semantic forms.

9. Positive— overflow: The result of an arithmetic computation is more
positive than the largest possible positive number that can be expressed in
the target type’s format.

3, Negative —-overflow: The result of an arithmetic computation is more
negative than the largest possible negative number that can be expressed
in the target type's format.

4. Positive—underflow: The result of a floating-point computation is
smaller than the smallest possible positive number that can be expressed
in the target type’s format.

5. Negative—underflow: The result of a floating-point computation is
smaller than the smallest possible negative number that can be expressed
in the target type’s format.

6. Division — by — zero: An attempt has been made to divide by zero.

7. lllegal —address: An attempt has been made to create or use an address
which exceeds the limits of the object being manipulated (e.g., an I-
structure).

8. Result—size: The result of an operation is too large to fit in the target
type (used by the COMPRESS operation).

- FP-32: Short floating point. Defined in accordance with the JEEE floating
point standard; 32 bits in fength [5]. This format is referred to as basic single.
<Sign> (1)

¢(Biased-exponent-of-2> ' (8)
(Fraction> (23)
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- FP-64: Long floating point. Defined in accordance with the IEEE floating
point standard; 64 bits in length [5). This format is referred to as basic double.

<Sign> (1)
{Biased-exponent-of-2> {11)
<Fraction> (52)

- INT-8: Signed, two's complement integer (8 bits in length).

- INT-16: Signed, two's complement integer (16 bits in length).
- INT-24: Signed, two’s complement integer (24 bits in length).
- INT-32: Signed, two's complement integer (32 bits in length).

-ISA-ME: Address of an element in an [-structure of mixed elements. The
address is made up of

{Structure-element-address>
<PE-number> (8)
{Local-address> {16)

- ISA-UE: Address of an element in an I-structure of uniform elements. The
address is made up of

{Structure-element-address>

{PE-number> {(8)

{Local-address> {16)
<Element-type> :

<{Pata-length> (4)

{Data-class> (4)

- ISD-ME: Descriptor for an I-structure which contains elements of mixed
length and class (i.e., totally different types). The descriptor is made up of

{Structure-base-address>

<PE-base> (8)
{Base-address> (18)
{Total-structure-bytes> (24)

- ISD-UE: Descriptor for an I-structure which contains uniform elements (all of
the same type). The descriptor is made up of ‘

{Structure-base-address>

<PE-base> {8)
<Base-address> (16)
{lotat-structure-elements> (16)

{Physical-domain-size> (8)
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(Mapping-constant> (16)
{Element-type>
(Data-Tength> (4)
<Data-class> (4)

-1SD-UL: Descriptor for an I-structure which contains elements of uniform
length (but not necessarily of the same class). The descriptor is made up of

{Structure-base-address>

{PE-base> (8)
<(Base-address> (16)
(Total-structure-elements> (16)
<{Physical-domain-size> (8)
{Mapping-constani> (18)
<{Element-lengthd (4)

- MDEF:; Manager definition (24 bits).
- MOBJ: Manager object (24 bits).
- PROC: Procedure definition (24 bits).

- SMASH: A special type made up of the bit-by-bit concatenation of two to eight

<Datad fields (i.e., including <{Data-type>). SMASH types are constructed by
the COMPRESS operator. Base types arc re-extracted by the EXPAND
operation. The SMASH type is of variable length.

The pseudo type COMP is used to destibe a situation where any one of the following types
may appear: BOOL, CHAR, ERR, EP-32, FP-64, INT-8, INT-16, INT-24, INT-32, ISD-
ME, ISD-UE, ISD-UL, MDEF, MOBJ, PDT, PROC, or SMASH. The ARITH pseudo
type combines FP-32, FP-64, INT-8, INT-16, INT-24, and INT-32. ANY permits any valid
data type. Where ambiguous, pseudo types will be subscripted to indicate where the base
types must be the same (¢.g., COMP, X COMP, = COMPl-speciﬁes that two different

types are accepted as input, and the output will be of the same type as the first operand).

The notation for d=1 tokens and operations is slightly different; <...> will be used where

appropriate.
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4.2. The Arithmetic Operations

Arithemetic operations are further broken down (primarily for the purpose of error
checking). Automatic coercion of operands takes place during operation application for
operators with a "c” subscript (all arithmetic operations come in two varieties; those which

allow coercions and those which allow no coercions). Where coercion applies, the process

is as follows:

1. Examine both operands. If either is non-arithmetic, generate an error.

2. Make the two input operands the same type. Where appropriate, convert
integers to floating point; convert short forms to long forms.

3. Apply the operator.

4, Attempt to convert this internal representation of the result into the most
compact arithmetic form without sacrificing precision. In any event, a longer
format is considered preferable to an overflow error.

5. Distribute the result (ARITH type or ERR type depending on the success of
the operator application and the compaction).

For the "n¢" operators, both input operands must be of the same type (class and length);

the result is guaranteed to be of this type (or ERROR).

4.2.1. Addition and Subtraction (+ ,+ —.—)

One form, three possible errors:

- ARITH; X ARITH, = ARITH; + ERR
- Errors: xoverflow, type

'4.2.2, Multiplication and Division (XX _,+ % )
Four forms, six possible errors:

- ARITH| X ARITH, = ARITH; + ERR

- Errors: toverflow, underflow, division by zcro, type
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4.2.3. Explicit Coercions

It is sometimes necessary to explicitly convert one ARITH operand to another ARITH
format. Also, for input/output, it is desirable to be able to convert between INT format
and CHAR format. The operations described here implement "coercion by example”.
The first operand is always the datum to be converted. The second operand is an
"example" of the target type (recall that any operand can be constant; to construct a
CONVERT TO INT-8 instruction, one only need include a constant INT-8 in the
instruction). Any attempt to convert an object into a format which cannot confain it will

result in an arithmetic error. Three forms, five possible errors:

- ARITH, x ARITH, = ARITH, + ERR
- CHAR x INT-8 = INT-8 + ERR
- INT-8 x CHAR = CHAR + ERR

- Errors: +overflow, zunderflow, type

4.3. The Boolean Operations

Booleans are broken into the monadic and dyadic varieties.

4.3.1. Monadic (7)

One form, one possible error.

- BOOL = BOOL

- Errors: type

4.3.2. Dyadic (A,V,0D)

One form, one possible error:

- BOOL x BOOL = BOOL

- Errors: type
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4.4. The Bit String Operations

Bit string operations are also broken down into monadic and dyadic forms.

4.4.1. Monadic (— 1,—l2)
These operations produce the ones- and twos-complement of the input bit string. One

form; one possible error:
- BITS = BITS

- Errors: type

4.4.2. Dyadic (A,V,D)
These operations accept two bit strings of equal length and perform the indicated

function, One form; one possible error:

- BITS x BITS = BITS
- Errors: type

4.4.3. Shift

The SHIFT {unction is slightly different than the other dyadic operations in that one of
the operands is not a BITS type. SHIFT is implemented with eight different opcodes.
These specify shift direction (right/left) and padding function (zero, one, sign, wrap). The

second operand specifies the shift amount (in bits). One form, one possible error;

- BITS x INT-8 = BITS
- Errors: type

4.4.4. Concatenate

This operation takes two BITS operands (which may be of different lengths) and
concatenates them such that, in the result, the most significant bit is the most significant bit
of operand 1. The resulting BITS string must be eight bytes or less in length. One form,

two possible errors:

- BITS x BITS == BITS



Instruction Set Definition _ -21- Operations

- Errors: size, type

4.4.5. Adjust-length

This operation accepts two BITS operands and produces a result string constructed from
the first, but having a length equal to that of the second. The operation is implemented
with four opcodes which allow the specification of a fill value (zero, one) for expansion as
well as the specification of the side on which the padding/truncation is to be done (left,

right). One form, one possible error:

- BITS, x BITS, = BITS,

- Errors: type

'4.5. The Extract/Construct Operations

The operations described in this section allow direct access to the representations of data

objects. They are to be used with care.

4.5.1. Extract-type, Extract-value

These monadic operations accept an ANY type token, and produce a BITS type token.
The EXTRACT-TYPE operation returns a one byte string which is the <Data-type> field of
the input operand. The EXTRACT-VALUE operation retusns a string containing the bit
representation of the <Data-value> field (which is of variable length). Normal BITS

operations may then be used on the extracted information. One form, one possible error.

- ANY =» BITS

- Errors: type

4.5.2. Construct-data

To complement the EXTRACT operations, the CONSTRUCT-DATA operation allows
two bit strings (operand one denoting a type, the other denoting a value) to be combined to
produce an arbitrary <Data> vaiue of arbitrary type. Note that, depending on the target
type, certain consistency checks will be performed to assure that the result is indced legal.

One form, one possible error:



CrL s T

Instruction Set Definition -22- Operations

- BITS x BITS = <Data>

- Errors: type

4.6. The Relational Operations
Relationals are broken down into two categories: Arithmetic and Non-arithmetic. The
sole difference is that Arithmetic relationals will perform coercions (previously described)

prior to performing the comparison; Non-arithmetic relationals perform no coercions.

4.6.1. Arithmetic (<,(,=,#,>)
Equalization of the types of the two operands is done in accordance with the rules

previously given (convert INT to FP, convert shoit to long). One form, one possible error:
- ARITH; X ARITH, = BOOL
- Errors: type
4.6.2. Non-arithmetic (<,{,=,#,>,>)
One form (both COMPs must be of the same type), one possible error:

- COMPl X COMP1 = BOOL
- Errors: type

4.6.3. Non-Arithmetic (:tlax)
This special case of # permits the two operands to be of different type; To generate a

boolean TRUE, the operands must be of the same type (class and length), and must have

identical value fields. All other cases return FALSE independent of type inequality. One

form, no possible errors:

- COMP, x COMP, = BOOL

- Errors: none
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4.7. The I-Structure Operations
We describe briefly the implementation strategy for [-structures. Then, the actual

operations are defined.

4.7.1. I-structure Implementation
This implementation supports three basic I-structure classes:

1. Uniform-elements: All elements in the I-structure are of the same type (class

~and length). Hence, no type information is stored on a per-element basis.
Rather, the I-structure descriptor carries the definition of the element type.
Element address calculation and checking are done at run time.

7. Uniform-length: All elements in the I-structure are of the same length, but may

be of different classes. Type information is stored along with each element in
the I-structure. This approach is slightly more flexible than the uniform
elements case in that some mixing of classes is permitted while still retaining
the dynamic nature of element address computation.

3. Mixed-elements: Flements may be of any class or length. For this reason,
offsets from the base of the I-structure (element addressing) must be known at
compile time.

4.7.2. Form-Address

Three forms, two possible errors:

_ISD-ME x INT-24 = ISA-ME + ERR
- ISD-UE X INT-24 = ISA-UE + ERR
-ISD-UL % INT-24 = ISA-ME + ERR

- Errors; address, type

4,7.3. I-Fetch
This operation initiates a paradigm 3 process. The PE address for the token is derived
from the I-structure base address and the mapping scheme used. The token also contains

the destination to which the result should be forwarded. Two forms, one possible error:
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- ISA-ME =
d= l,PEl,ack =14d= O,PEz,tag,nt,port}A*I~fetch-ME,Addr>)

- ISA-UE =
<d=1,PE ack=1<d :O,PEz,tag,nt,port),‘(*I-fetch-UE,Addr,Type))

- Errors: type

4.7.4. *I-Fetch-ME; a d=1 Operation
The input address field for this operation denotes a location in the I-structure memory

containing length, class, and value. One form, no possible errors:

- CAddr> =» {Data>
where <Data> contains length, class, and value fields.

- Errors: none

4.7.5. *I-Fetch-UE; a d=1 Operation
The input address field for this operation denotes a location in the I-structure memory
containing only the data value. The type information (length and class) is provided in the

input d=1 token. One form, no possible errors:

- {Addr,Type> = <Data>
where <Data> contains length, class, and value fields.

- Errors: none

4.7.6. Form-Address-I-Fetch

This operation initiates a paradigm 3 process. Three forms, two possible errors;

-ISD-ME X INT-24 =
<d=1,PE;ack=1,{d=0,PE,tag,nt,port> <*1-fetch-ME,Addr>>

-ISD-UE X INT-24 =
<d=1PE ack=1Ld= O,PEz.lag,m,pomx*I-fetch-UE,A ddr,Type>>

-ISD-UL X INT-24 =
<d=1LPE ack =1,<d = 0.PE, tag,nt,port>,<*-fetch-ME,Addr>>
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- Errors: address, type

4.7.7. I-store
This operation initiates at least one paradigm 2 process. The [-store operation may
specify at most one destination; if one is specified, an *I-store-ack d=1 token will be
generated (thus initiating another paradigm 2 process). Two forms, one possible error:
- ISA-ME X COMP =

<d=1,PE ack= 0,<*I-store-ME,<Addr, COMP>>>
<d=1,PE l,ack =14d= O,PEn,tag,nt,port),(*l-store-ack,Addr))

- ISA-UE x COMP =
d=1P El,ack =0,¢*I-store-UE.<Addr,COMP>>>
<d=1,PE l,ack =1<d= O,PEn,tag,nt,port),<*I-st0re-ack,Addr>>

- Errors; type

4.7.8. ¥I-Store-ME; a d=1 Operation

The type of the datum is writtcn along with the value. One form, no possible errors:

- <Addr,Type> X COMP = BITS + @
where BITS is a trigger and "@" indicates no explicit result.

- Frrors: none

| 4.71.9. *I-Store-UE; a d=1 Operation

Only the value of the datum is written; no type information is preserved. One form, no

possible errors:

- <Addr> x COMP = BITS + & ’
where BITS is a trigger and "@" indicates no explicit result.

- Errors: none
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4.7.10. *I-Store-Ack; a d=1 Operation

The intent of this operation is to acknowledge to some activity that a selected element of
an I-structure has been written. As such, its behavior is characterized as a type of *I-fetch,
except that the value returned {once the corresponding location has been written) is only a

trigger token (a valueless BOOL). One form, no possible errors:

-<Addr> = BOOL

- Errors: none

4.7.11. Form-Address-1-Store
This operation takes advantage of the three operand mechanism and the fact that many
1-store operations may be done using a constant [ structure descriptor. The behavior is
exactly the same as the combination of FORM-ADDRESS and I-STORE. Three forms,
one possible error:
- ISD-ME X INT-24 x COMP =

{d= l,PEl,ack =0,{*I-store-ME <Addi,COMP>>>
<d=1PE, ack=1<d= O,PEn,tag,nt,port),<*[-store-ack,Addr))

- ISD-UE X INT-24 X COMP =
<d=1PE,ack=0< *[-store-UE,<Addr,COMP>>>
d= 1,PE1,uck =1<d=0,PE n,tag,nt,port),(*1—store-ack,Addr>>

- [SD-UL x INT-24 x COMP =
{d=1pP El,ack =0,{*[-store-ME,<Addr,COMP>>>
<d=1PE  ack=1d= 0.PE_tag,nt,port> *I-store-ack,Addr>>

- Errors: type
AR, Control Operations

This scetion contains those operatins which don't relly fit any of the previous categories,

but also do not merit a section of their own.
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4.8.1. Compress ‘

This operation accepts two operands, and produces an output token containing the
concatenation of the <Data> values of .the two input tokens. Note that this implies the
inclusion of <Data-type> fields for each of the inputs. The sum of the lengths of the two
input operands (including type fields) must be less than or equal to eight bytes. This will
guarantee that the values can be faithfully reconstructed by an EXPAND operation. A
Result— size error token is generated if the result length would be greater than eight. The
SMASH type carries with it the correct (variable) length. Tt is possible to use a SMASH
d*s.

type as input, providing the length restriction is observe One form, two possible

CITOrS:

- COMP, X COMP, = SMASH + ERR
- Errors: size, type

4.8.2. Expand

This operation logically un-does the action of a series of COMPRESS operations. In
that the <Data-value> field of a token is eight bytes wide, and that the smallest datum is a
valueless BITS (one byte wide), it would be possible to have a SMASH type contairiing as
many as eight discrete values, The EXPAND operation can, therefore, have as many as
eight distinct destinations (each destination would receive one piece of the SMASH data).
The <Destination list is interpreted as follows: the first datum in the SMASH type is sent
to the first <Destination>, the second to the second, etc. Note that if there are more data
values than <Destination> entries, they will be discarded. <Destination>s with no

corresponding data will also be ignored.

5Using a SMASH type as input to a COMPRESS operation preserves only the base information in the
original SMASH.  To illustrate this, if COMPRESS is given <lN'I‘}>.<]NT2>, it will produce

((lNT1>,(lNT2>>. If COMPRESS is then given ((]N'I‘l),<lN'i'2>>,<lN'l'3) (i.c., re-COMPRESSing a
SMASH), it will produce ((IN'l'l),(INTz),<INT3>> and not <<<1N'l'1>,<INT2>).<INT3>>.

6Although it has not been analyzed in detail, it should also be possible to use an I-structure of SMASH
types to implement lists (each SMASH item is like a "CONS" cell and can contain paintets to other abjects or
atoinic values).
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Further, to allow selective discarding of data (other than those at the "end"), we
introduce a second operand for EXPAND; this operand will be a BITS (bit string) type,
and the most significant byte will be interpreted as a mask. The most significant bit, if zero,
will cause the first data value in the SMASH to be ignored (no token will be generated for
the first {Destination>). Subsequent bits perform the same function with subsequent
objects in the SMASH type. Note that this mask may be token carried or constant by

appropriate construction of the instruction. One form, no possible errors:

- SMASH x BITS = <Data>1 + &, <Data>2 + @, ..
- Errors: none

4.8.3. *Entry; a d=1 Operation
This operator is used to nondeterministically merge tokens at the input to a manager, It
operates as the combination of ENTRY and E (described in [2]) due to the fact that its

output is a sequence of individual tokens rather than a stream. The algorithm is

1. Each manager object has associated with it a counter that can be read and
incremented atomically. This is done for each activation of *Entry for a
manager object. Whenever the counter overflows, a USE operation is
substituted (just as in the case of a D operator).

2. The value read (call it ;) is hashed (a simple modulo-n technique, where
n=maximum number of concurrent uses of the manager).

3. This hashed value is used to index a table containing a flag which indicates
whether or not the value of j (modulo n) is in use as a tag or not. This table also

contains space for storing the input token’s optional return activity name.

4. If the sclected table entry indicates that it is "in use”, the d=1 token is
recircutated through the communications network.

5. f the sclected table entry is not in use, the return activity name (if present)
from the token is written”. An activity name for the manager object activation
is constructed using j as the <lteration-numbcer>. The remainder of the activity

Ihe activity name would be imbedded in the input token if ack = 1.
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name is predefined (see Figure 3), and is retrieved and used as is.
One form, no possible errors:

- <COMP> = COMP

- Errors: none

4.8.4. Exit _

This operation undoes the action of *Entry. The <Iteration-number> field is hashedr
(modulo n) to tead the manager object entry table (and to mark the table entry as "not in
use”). If a return activity name was saved, the token is forwarded. One form, one possible
error;

- COMP, = COMP, + &
where "@" indicates no explicit result.

- Errors: type

4.8.5. Reset-1-Structure-Memory

This operation will generate n d =1 tokens (n=number of PFs that contain pieces of the
I-structure). The SMASH operand will specify the bounds (byte offsets for start and end)
for the rteset action. The third operand specifies the manager object that is to receive
acknowledgement. Paradigm 4 processing is initiated. Three forms, one possible error:

- ISD-ME x SMASH x MOBJ =
{d= 1,PE1,ack =14d=1MOBI (*I-reset (Addr,SMASHD>>

- ISD-UE x SMASH x MOBJ =
<d=1PE ack=1£d= 1,MOBI> <*1-reset,(Addr,SMASH>>>

- 1ISD-UL x SMASH x MOBJ =
<d=1,PE ack=1<d= 1,MOBI> <*}-reset <Addr,SMASH>>>

- Errors: type



MOBJ
Address E

j used to compute i

{PE,Color,Address>,nt,port> manager activity name

1 Return activity name

use

;v

Figure 3: Manager ObjectEntry Table
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4.8.6. *I-reset, a d=1 Operation
Certain information from the input SMASH operand is returned in the output d=1

token. One form, no possible errors:

- <Addr,SMASHD =
<d=LPE,ack= 0,(*Entry <addr ,PE, l-reset,..>>>

- Errors: none

4.8.7. Write-Color-Register

Initiates a paradigm 4 sequence. The integer operand specifies a PE number; the
SMASH operand contains the data to be written: MOBIJ is the manager object which will
receive the acknowledgement once the color register has been written. One form, one
possible error:

- INT-8 x SMASH x MOBJ =
d= l,PEl,ack =1<4d=1,MOBIJ ),(*Write-color-register,SM ASH>»

- Errors: type

4.8.8. *Write-color-register; a d=1 Operation

This operation actually writes the values from the input token to the selected color
register. An acknowledgement d=1 token is generated. As in the case of *I-reset, certain
informatoin from the input SMASH is also returned. One form; no possible errors:

- SMASH =
{d= l,PEz,ack = 0,<*Entry,(addrl,PEl,Write-color- register,...>>>

- Errors: none

4.8.9. Iteration - D and pl

The D operators implement a different PE/Local instruction address mapping algorithm
by virtue of the meaning of D (as described in [1]). Alteration of the <Iteration-number>
field in the input token requires recomputation of physical subdomain using the mapping

parameters defined in section 331
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- The intent of the mapping constant (k) is to confine k "adjacent™ passes through the loop
to one physical subdomain. The value of k may be one (irﬁplying no confinement - each
pass through the loop represents a change of physical subdomain). As k becomes large, the
effect will be to restrict operation to a single physical subdomain. The algorithm is

1. Calculate the PE offset within some physical subdomain and the local
instruction address as before.

2. Add 1 to the iteration number, If (iteration number) modulo k = 0, the new PE
number is computed as for the normal case.

3. If (iteration number) modilo k = 0 and this is not the last physical subdomain,

the new PE number will be computed by adding the offset from step 1 to the
number of the first PE of the next physical subdomain {current PSD number +

#PE/PSD + offset within PSD). The value of k is subtracted from the
iteration number in the result token.

4. If (iteration number) modulo k = 0 and this is the last physical subdomain, the
new PE number will be computed by adding the offset (from step 1) to PEhase'

No adjustment of the iteration number is necessary.

5. In any case, if the iteration number should overflow (in the result token), a
USE operation will be substituted.

One form, one possible error:
- COMP; = COMP,
- Errors: type
4.8.10. Identity
This operation passes, unmodified, its input. Note that it can be packaged in various

instroction formats to perform the function of a constant-generating actor, a "pass-1-when-

2" actor, or the basic identity actor. One form, no possible errors;
- ANYI = ANY,

- Errors: none
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4.8.11. Switch

The SWITCH operation has been discussed already. Note that the only constraint on its
application is that the second operand must be a BOOL. If there is no destination list
corresponding to the output to which the data token is directed, the token will be absorbed.

Four forms, one possible error:

- ANY, X BOOL = ANY, + @

- Errors: type

4.9. The USE Operation

[Due to the fact that the complete implemetaﬁon of managers relies on streams, and that
the definition of streams is unsettled, this section should be considered as preliminary. We
recognize, however, the need to define an interface to managers. The following should be

interpreted in that light.]

The USE operation is implemented to facilitate communication with managers. Many
manager types may exist. They can be categorized as centralized, semi-centralized, or
decentralized. A centralized manager is the only one of its genetic type in the machine. It
exists to serve all users; such a manager might be used to coordinate the creation and
destruction of physical domains in the system. A semi-centralized manager performs
functions associated with a single physical domain. A manager of this type could be used
to allocate and deallocate I-structure storage space within the physical domain. A

decentralized manager is not associated with any particular boundaries.

It is desirable to have as much flexibility in the creation and use of managers as possible
while relying as little as possible on a wide variety of machine operations to perform the

necessary functions. This is the intent of the USE operation. Let us explore the desired

features.

First and foremost, managers are central to many research questions related to data flow
machines: and, as such, should be as changeable as possible. It would be ideal to provide a

mechanism whereby all (or nearly all) managers are written and maintaincd as 1D
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programs. We can envision a kind of hierarchy of managers in the physical machine:

- Hypervisors are the centralized managers. These will be used to coordinate
global system resources. One of their primary functions would be the creation
of subordinate managers called

- Supervisors. These are the semi-centralized managers that are associated with a
physical domain. These managers might in turn be used to create other
subordinate managers.

There is probably a useful limit to this scheme (perhaps as few as two levels), but the point

to be made is that all such creation and destruction of managers can be derived from
- The existence at the “beginning of time" of the hypervisors, and

- A fundamental operation to communicate with a manager of any type (e.g.,
USE).
We can then argue by induction that all subordinate managers can be created, used, and

destroyed (where destruction is possible) by appropriate application of USE.

Such an "appropriate application" requires the establishment of a methodology for USE.
One possibility is to assume the existence of a "bootstrap"” hypervisor that can perform only

two functions:

1. Allocation of an I-structure of fixed size, and
2, Initiation of another manager.

I-structure allocation (in some simple form) must be a fundaniental operation of any
proposed bootstrapping manager since all other uses of managers will requre an [-structure

for paramcter passing,

USE tnitiates paradigm 2 or 3 processing. The choice depends on the absence (paradigm
2) or presence (paradigm 3) of a <Destinution> for the USE. While no explicit
acknowledgement occurs from the *Entry operation, the manapger itself can generate a
"result” token. The manager object which is 1o receive the token has associated with it a

Lable as shown in Figure 3 (and described under *Entry). Two forms, one possible error:
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- MOBJ X COMP =
<d=1,PE,,ack=0,(*Entry XMOBJ ,COMP>>>

- MOBJ x COMP =
{d= 1,PE1,ack =1<4d= O,PEz,tag,nt,porD,@Entry,(MOBJ LCOMP>>>

- Errors: type

5. Conclusion

We have attempted to address the important details of the compiler-emulator interface.
This included a definition of tokens, a description of the instruction format, and an

enumeration of the supported operations.

This document should be used as a basis for refinement of the subject topics, and will
undoubtedly undergo changes as the project moves closer to a realization. Comments and -

recommendations should be directed to the authors.
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