LABORATORY FOR mg%?&s)%m
COMPUTER SCIENCE TECHNOLOGY

r’

‘The work reported in this paper was performed with support from the National

j

A Data Flow Supercomputer

Computation Structurcs Group Memo 213
March 1982

Jack B. Dennis
Guang-Rong Gao
Kenneth W. Todd

Science Foundation and the ULS, Department of Energy.

_

545 TRECTHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS (ERARY)

A Data Flow Supercomputer!

Jack B. Dennis
Guang-Rong Gao
Kenneth W. Todd
MIT Laboratory for Coinputer Science
Cembridge, Massachusetts 02139

Computation Structures Group Memo 213
March 1982
Abstract

Tn data flow computers all instruction sequencing is controtled by the flow of data.
Data flow computers promise efficient parallel computation limited in speed only
by data dependencies in the calculation being performed. At the MIT Laboratory
for Computer Science, the Computation Structures Group is working to prove
feasibility of practical data flow supercomputers that can outperform conventional
Supercomputers.

Since data flow computers are very different in their structure and programming
from conventional sequential computers, it is impossible to project their
performance potential meaningfully except witl: reference to a specific
computation. To establish the performance improvement that -data flow
computers offer, we have chosen to analyze a NASA benchmark program that
implements a global weather model.

We discuss the structure of the weather code as expressed in VAL, a functional
programming language developed by the Computation Structures Group expressly
for high performance numerical computation, and discuss the corresponding
machine-level program structure for efficient execution on a data flow
supercomputer. On the basis of this analysis, we are able to calculate the number
and types of hardware units required to build a data flow machine that will achieve
a twenty-fold improvement in performance for the weather simulation application.

1']'11e work reported in this paper was performed with support from the National Science Foundation, and
the U. S. Department of Energy. :

{. Introduction

Supercomputers are the highest performance machines available for automatic
computation. They are used mainly in applications where physical phenomena are
modeled. They simulate natural processes such as weather, earthquakes, and ocean
currents for purposes of prediction. They are used to study human inventions that depend
on physical processes, but where experimental study is uneconomical, difficult, or
hazardous — such as the behavior of airfoils in a wind stream, the vibration of buildings

and other structures, and the detonation of nuclear weapons.

The most successful supercomputers of the present day are conventional stored
program computers based on sequential instruction execution. They are constructed using
ECL (emitted-coupled transistor logic) gates, the fastest logic within the state of the art. To
increase speed of computation beyond that attainable with the most straightforward
architecture of the central processing unit, a variety of innovative concepts have been
developed. The cache speeds up memory accesses; memory interleaving and instruction
overlap architectures make it possible to process several instructions concurrently; and
pipelined processing units provide efficient support for exploiting parallelism by means of

vector operations.

In spite of these advances, our appetite for computing has not been satisfied. Scientists
readily conceive of applications beyond the capacity of our most powerful computers.
Studies in two dimensions show that computational modeling in three dimensions will yield
new insights into the nature of physical processes such as turbulence in fluid flow or the

interactions that take place in a hot plasma of ionized particles.

The amount of parallelism available for exploitation has been shown to be enormous,
confounding earlier critics of parallel computation. Many applications take the form of
computing successive states of a physical system represented by physical quantities on an
Fuclidean grid in two or three dimensions. In many cases, the new values for each grid
point may be computed independently. Thus the degree of cdncurrency is often at least

equal to the number of grid points.

In signal processing, the computation is typically a discrete model of an

interconnection of modules each cf which is kept busy processing successive samples of
signal waveforms. The degree of concurrency is the number of modules multiplied by the
average concurrency within the modules and may easily exceed a hundred.

If future supercomputers are to achieve a significant gain in performance over current
designs, they will have to be able to process large numbers of basic operations (additions
and multiplications) simultaneously. Thus these machines will have many functional units,
many instruction decoders, and many independent memory units. To realize these high
levels of concurrency in practice is a major challenge to computer system architects. No
machine yet built has achieved close to one hundred-fold concurrency in operation. High
levels of concurrency are most likely to be achieved using LSI parts in a “medium
performance™ technology such as NMOS or CMOS because use of a lower level of
integration or a bipolar technology implies a larger physical complexity, size, and
dissipation.

A design using LSI parts will have to use a large number of parts to yield an attractive
gain in overall performance beyond existing supercomputers. Yet there must be only a few
distinct part types so that the investment in their design and tooling is not exorbitant.

A proposal frequently suggested is to assemble a thousand microprocessor chips into a
high performance machine. Unfortunately, there are many problems. First of all, memory
and interconnection arrangements must be provided by means of additional chips. Butan
even more difficult problem is devising a suitable scheme for programming the
communication of data between microprocessors without consuming nearly all execution
cycles in executing the protocol. The cost of coordinating activities forces the use of long
uninterrupted sequences of computation steps which will prove difficult for even a very
smart compiler to uncover in ordinary programs.

2. Data Flow Computer Architecture

Data flow computer architecture is a fundamentally different way of organizing a
computer system. There are some similarities with machines designed to execute
conventional sequential program:: a data flow computer is 2 stored program computer, and

a machine-level program consists of individual instructions whose execution constitutes the
activity of the machine. Instructions call for conventional operations to be performed: the
basic arithmetic operations on integers and floating point numbers and the usual
comparison and Boolean operatior.s. The difference is the manner in which instruction
execution is controlled: a data flow computer has no program counter. Rather, each
instruction is activated when it has received (as the results of other inst:uctions) the data on

which it is to operate,

In this article we consider a static concept of data flow architecture [9] in which the
instructions of a machine level program are loaded into specific memory locations in the
machine before computation begins, and only one instance of an instruction is active at a
time. We have chosen the static architecture as the basis for data flow supercomputers
because the hardware structures involved are relatively sim ple and suitable for exploiting
integrated circuit technology at the level of current art. Other concepts of data driven
instruction execution are being studied. [4, 13, 11, §).

The structure of the envisioned data flow supercomputer is shown in Figure 1.
Instructions of a data flow program are held in the local memory of the processing elements.
Each processing element is equipped to recognize which of the instructions it holds have
been enabled for execution by arrival of the operand values it needs. If an enabled
instruction calls for a scalar arithmetic operation (a floating point addition or
multiplication, for example), the instruction, including its operands, is sent to a JSunctional
unit capable of performing that operation. The array memory units are provided to hold
arrays of data making up the (possibly very large) data base of the computation and are
accessible through the distribution routing network from any of the processing elements. As
will be explained in detail later, instructions that build array values or access elements of
arrays are sent to the appropriate array memory unit through the memory routing network.
Instruction execution in a functional unit or array memory unit yields result packets each of
which consists of a data value and a destination field that specifies the target instruction for
the result packet. The result packets are sent to processing elements that hold the target
instructions through the distribution routing network. The way in which a data flow
processing element handles result packets, identifies enabled ins:ructions, and initiates

res?jtt
an
operation signail
packets paIets
— PE [» FU > EFCN
AN
[] » . L]
\/ AM \ P
MEMORY ¢ DISTRIBUTION
J . ROUTING . ROUTING D
/ NETWORK . NETWORK
N\
R N o AM { >
) v *
—> PE A . N ey
W) FU \/
e A y
Vv

PE Processing Eiement
FU Functional Unit
AM Array Memory

Figure 1. A Data Flow Supercomputer.

instruction execution has been described in several publications {7, 11,9]. The use of
packet routing networks in data flow computers is discussed in [9, 10] and analyses of
efficient structures for routing networks have been done by Boughton [5].

7 Other instructions such as those calling for duplicating data values, for Boolean
operations, and for simple tests, are performed within the processing element.

Because data flow computers are radically different from familiar sequential stored
program computers, it is impossible to predict the performance of a data flow computer
through a comparison of the speed and cost of its basic units with corresponding units of a
conventional machine. Rather, it is necessary to choose specific computations for making a
comparison. We have chosen a global weather model as the computational problem to be

studied. Our objective is to show the reader the size of data flow supcrcomputer required
to perform this computation a: a rate substantially faster than a conventional
supercomputer, and to argue that this performance can be achieved at considerably lower

cost.

Before considering the problem of structuring a data flow machine program for the
global weather model, we will start by considering simpler computations to illustrate the
concepts and issues involved in deriving data flow machine code from programs expressed
in a high-level programming language. In the examples we will use the programming

language VAL to specify the intended computation.

3. The Programming Language VAL

The programming language VAL (Value-Oriented Algorithmic Language, [1]) is a
functional language designed as a practical source language for writing programs for data
flow computation. In VAL there are no control transfer statements or global variables, and
in program modules arguments and results are clearly separated. The basic operations of
the language, including operations on data structure values — records and arrays — are

stinple functions mapping operand values to results.

Three unique features of VAL are the iteration (for) construct, the forall construct, and

the provisions for generating and propagating érror values,

The iteration construct in VAL is designed to correspond to tail recursive function
definitions. Only those recursive definitions that are expressible as tail recursions can be
written in VAL. This includes all programs expressible using the while . . . do . . . end
construct and program examples that seem to require a break or exit feature as well. Since
the iteration construct is unusual, we illustrate it using the traditional factorial example:

function Factorial (n: integer returns integer)
for 7 integer:= Q;
D integer : = 1;
do if /= nthenp
else
iter 7:=i+1;
P.=p*i
enditer
endif
endfor
endfun

The body of the for construct is a conditional expression with two types of arms, The
first arm, taken in the case where n = i, is simply an expression, giving the result returned
by the iteration. The second arm, taken when » = [, is an iter arm which binds new values
to the loop names i and p and indicates that the for body should be evaluated again using
the new bindings.

The forall construct is provided for situations that require a group of similar
independent computations to be performed where the computations may proceed
concurrently. The construct has two forms: in one, the results of the individual
computations are made components of an array which is the result value; in the other the
individual results are combined using a specified associative operation such as addition.

In each data type of VAL error values are provided to represent the results of
operations which cannot yield proper values of the result type. Such operations include
arithmetic overflow and underflow, division by zero, and accessing an element outside the
bounds of an array. The language definition includes rules that govern propagation of
error values through subsequent operations.

Our next example of a VAL program is one we shall return to later to illustrate efficient
machine code structure for a static data flow computer. The computation is the solution of
the LaPlace problem on a rectangular grid having elements numbered from 0 through m +
L in each row and numbered from 0 through n + 1 in each column. The program is given
an initial data array and computes successive data arrays in which cach interior element is

8

the average of the four near-by elements of the previous data array. Each data array retains
ihe initial values for the boundary elements. The VAL code for this computation is shown

in Figure 2,
function Solve (

A: data; % initial grid values
M, N:integer; % grid size
cnt; integer % number of steps
returns data) % solution matrix
type data = array[array]real]];
or X data:= A;

k: integer : = cnt;
do ifk =0then X

else
letY: data ;=
forall /in [0, m + 1), jin [0, n + 1]
construct ,
fi=0)li=m+1|j=0|j=n+ 1 then X[, /]
else 0.25 »
(XTj— N+ XGj+ 1+ Xli— L]+ Xli + L)
endif
endall;
in iter
X:=Y
=k -1
enditer
endlet
endif
end{or

endfun
Figure 2. The LaPlace solver in VAL,

4. Data Flow Machine Language

A machine level program for a static data flow computer is a collection of instruction
cells that are loaded into the processing elements of the machine. In illustration, Figure 3
shows a translation of the VAL definition

Averreal 1= 025+(4 + B+ C + D)
Each instruction cell is represented by a rectangular block divided into fields. The top field

ADDY
A—>
B——>
ADLY MUL
> ————> AVE
> 0.25
ADDY
C——m
D

Figure 3. Data flow machine code for an arithmetic expression.

contains the operation code, and beneath it are one or two fields that provide space for
operand values. At the right is space used for destination fields that specify the target
instruction or instructions to which the result value is to be sent. A destination field consists
of the address of the target instruction cell and an integer that specifies which operand of
the target instruction is being delivered. In the figures we indicate destinations by drawing
arcs from each instruction cell to its target cells, the arcs ending on the appropriate operand
field.

An instruction cell is ready for execution once its operand fields have been filled. If it
calls for a simple operation such as an identity or Boolean operation, it is processed by the
processing element in which it resides. Otherwise the entire instruction cell is sent in the
form of an operation packet to the appropriate functional unit (in the case of floating point
arithmetic operations, for example) or to one of the array memories (in the case of array
construction or access operations). In any case, instruction execution (the “firing” of an
instruction cell) generates result values that are placed in the operand fields of target
instruction cells.

When an instruction cell shows a value written in one of its operand fields, as in the
MUL instruction cell of Figure 3, the value is a constant operand of the instruction and is
unchanged from one execution of the instruction to the next.

The computation illustrated in Figure 3 shows a small degree of concurrency in that
the pair of ADD instruction cells on the left may be in execution simultaneously. This we
call spatial parallelism. A second form of concurrency is important in data flow
computation and plays an essential role in the exposition to follow: Dipelining. In
conventional computer architecture, pipelining refers to a hardware functional unit

10

designed so each operation passes through several stages of logic, and so several succeeding
operations may be initiated before the result of the first operation is produced. In data flow
computation, pipelining means arranging the machine code SO succassive computations
may follow each other through one copy of the code, thus achieving more intensive use of

instruction cells and supporting faster computation by the data flow machine.

In the static data flow architecture, an instruction cell must not fire again until all
copres of the result sent out by the previous firing have been consumed. Otherwise
operand values might be overwritten or, if this js prevented, deadlock could occur, To
ensure that this does not happen, we use two types of destination arcs: result arcs and
signal arcs. Result arcs specify transmission of the result value to target instruction cells,
Signal arcs specify transmission of a signal 1o an instruction cell from which an operand
value was received. The condition for firing an instruction cell now demands that afl
operand fields be filled and that one signal packet be received from each target instruction
indicating that the last result computed has been consumed. This augmented firing
condition is implemented by including two additional fields in each instruction cell: signals
needed and signal reset. The integer in the signals needed field, is reduced by one for each
receipt of a signal packet. The cell is ready for execution when this field becomes zero and
all operands are present. The signal reset field is constan. and provides the reset value for
the signals needed field whenever the cell fires, Thus, if a cell sends its result to five other
cells, its signal reset value should be five and each of the five cells should send a signal back

to that cell when they fire,

Figure 4 shows the program of F igure 3 modified to support pipelined operation, The
two new fields to implement signalling are shown Just below the opcode field: signals
needed on the left and signal reset on the right.

In most of our examples the machine code will be arranged to support pipelined
operation in the manner just described with a signal being returned for each result value
transmitted. To simplify the diagrams we will use an arc with a solid arrowhead as an
abbreviation for the combination of a result arc and its associated signal arc,

Implementing the conditional expression of VAL requires sc:ne means for routing

11

4]
s /
P 1 1vTs i S .
3 1] §] S
A N e,
B—> ~, v R N
© ;) . \
Seal LL? ADD) LA [VR i
=== o1 | < o1
=2 > e~ _ AVE
e ~ > -\ 5251 | <
s N]
S [Ey]- ;
3 of ¥ L.
: e
]
™ ’

‘‘‘‘‘

Figure 4. Pipelined form of data flow machine code,

values through alternative machine code paths, but this is not possible using the
mechanisms so far introduced. Therefore, a means of switching result packets between
alternative destinations is provided, as well as a special MERGE instruction. Any instruction
cell may also perform a switching function by including an extra control operand of
Boolean type, and tagging any of its result and signal arcs with either T for true or F for
false. When the cell fires, a result or signal packet is sent for a tagged arc only if the tag
matches the Boolean control operand. Since the number of result arcs tagged T and F are
not generally equal, two signal reset fields are needed, one for use when the control value is
true and one for use when it is false. An example of an instruction cell with this routing
feature is shown in Figure 5a, |

A MERGE instruction is used to select which one of two sources of values is to supply
the next value for transmission as a result packet. As shown in Figure 5b, a MERGE
instruction cell has two operand fields for data values and a third operand field for a
Boolean control value. If the control value is true then the first operand is consumed and
becomes the result value, leaving the second operand (if present) untouched. Similarly, if
the control value is false then the second operand is the one used, and the first one is left
alone. Because only one of the data operands is needed, the ready condition for a MERGE
instruction is unusual: the signals needed field must be zero, the control operand must have
arrived, and the first or second data operand must have arrived, according as the control
value is true or false,

12

s N
needed Gpcodes | ., Mo’
reset-T) r, [D11} 0>
Zepind 15 Lol <
reset-F Loprnd 2 | | > 3 Y
\ 2 A
; / ™ __ PR
Boolean gating value UL St L
(a) Instruction cell with gating capability. (b) Merge instruction cell.
)
ol TIo] T
X[i] ——————p
> MRG
TADD £Q X[i-1) —— 01
o o .
m N
1
oF D s
0] oJofi]F
EQ ADO MUL
. | {ola o1 o[
i > » result
] 0.5
D
olol1lF
Xfi + 1] —»

(c) Pipelined machine code.

Figure 5. Data flow machine code for a conditional expression.

As an example, consider the following VAL conditional expression:

ifi=0li=m+1

then X]/]

else (X[i - 1) + X[i + 1)) 7 2.0

endif
One possible translation for it is given in Figure 5c. After calculating the predicate, its
value is used to route either the value X[{] to the MERGE instruction cell or the values
Xli ~ Il and X[i + I} to the cells that calculate their average and send that value to the
MERGE cell. The predicate is also used by the MERGE instruction to specify which operand
is to be sent as the result packet. Note that we have extended our abbreviations for
destination arcs. A tag of T or F on an abbreviated arc means that the result arc it replaced

was similarly tagged. An abbreviated arc pointing to the first (second) operand field of a

13

MERGE cell means that the signal arc it represents must be tagged T (F).

5. Data Flow Computation with Arrays

Numerical computation usually involves operations on arrays of data — sequences of
values selected by integer index values

M), A2, ..., XI4
In conventional computers one thinks of transforming array values by making successive
replacements of element values in the array. In data flow computation, a differ~nt view is
required [2): a computation constructs an array value from other array values, scalar
quantities and constants.

(@) (b)

X[1]

x[2] Xm ° *° X2l x[1]
—— * * >

X[m]

Figure 6. Two data flow representations for an array value.

In the static data flow architecture we regard an array value as either the set of result
values conveyed at some moment by a certain group of destination arcs (as in Figure 6a), or
as the sequence of values carried by result packets on a single arc at successive moments (as
in Figure 6b). These two representations for array values show the basic space/time
tradeof in structuring machine code for efficient operation on a static data flow computer.

In VAL the basic means of array creation is the forall expression;

14

X: array[real] . =
forall iin [0, m + 1]
construct
ifi=0])i=m+ 1then A[/]
else 0.5+ (Ali — 1] + A[i + 1))

endif
endall
Aol \ ; x{m
EXPRESSION —» X[1]

A1) \ BOX

<
/

BOX

/
\’ EXPRESSION - Xl
/

* [
\
EXPRESSI
Alm] e N > X[m]
A[m+1]/ - X[m+1]
e ADD T | MUL
\ 01 041 - .
> 0.5
EXPRESSION BOX

Figure 7. Parallel computation of an array value.

Depending on which representation of the array X is chosen, one is led to two
different machine code structures for the above forall expression. The first choice consists

15

of a copy of the program body for each array element, as shown in Figure 7. Since the
value of the forall index / is fixed in each copy the conditional vanishes and each copy
reduces to one of the two arms of the conditional expression. Of course, this construction
can only be done if the dimension m is known when the machine code is loaded into
processing elements,

The second possibility is to generate the array elements by operating the body of the
forall construct in pipeline fashion. The code for this is shown in Figure 8. We su ppose the
given array A is represented by the sequence of result packets arriving over the arc labeled
A. The three 1D instruction cells each select a sequence of elements from A according to the
sequences of control values supplied:

T...TFF A[O],A[l],...,A[m—Z],A[m——1]
FT...TF AL A2, ..., Alm — 1], A[m)
FFT...T A2}, Al3L,. .., Alm], Alm + 1]

It is easily seen that these are exactly the night sequences of values that must be presented
to the two arms of the conditional expression that forms the body of the forall, so that the
resulting elements of X arrive at the MERGE cell in the right order. The two groups of
cascaded ID cells in the diagram are inserted to equalize path lengths through the code,
allowing pipeline oper-tion at the maximum rate,

D
AT cets
8 MULT
K o] 1
T..TFF ol >
> o5
D MRG
RNy foT . x
FFT..T
FT..TF
s
. ofol s F > 1D celis {2)

Figure 8. Pipelined computation of array values,

16

6. Machine Code for the LaPlace Solver

The LaPlace solver in VAL is an iteration in which each cycle calls for the construction
of a two-dimensional array Y as a new value for the loop name X. Let us rewrite the forall
expression, which is the heart of the program, to exhibit its nested structure:

Y =
forall iin [0, m + 1]
construct
ifi=0fi=m+ 1then X[
else

forafl jin [0, n + 1)

construct
ifj=0]j= n+ 1then X[i, j]
else 0.25 » .
AUj— YN+ Xaj+ 0+ XU — LA+ X[i + 1,)
endif
endall
endif

endall;
Several possibilities are available for structuring the corresponding data flow machine code,
according to how we choose to represent the array X, We could employ spatial parallelism
in either or both dimensions of the array. However, since we wish to prepare for our
analysis of the global weather model, it is most instructive to support pipelined
computation by using the serial packet form in both dimensions of the data array.

Our data flow machine code for the LaPlace solver is shown in Figures 9 through 11.
Let us explain it by proceeding outward from its kernel. The code in Figure 9 implements
the inner forall construct which computes rows of the new data array fori = 1,...,m, and

has the same structure as that shown in Figure 8.

Stepping out one level, the similar code structure shown in Figure 10 implements the
outer forall construct. The difference is that the buffering of array elements which could be
done by a few ID cells for the inner computation turns into a requirement for several long

. FIFO buffers, each able to hold a complete row of the data array. (We will discuss

17

- Yi]

D
o[1[0 .‘
X[i-1] T iD cells {2}
R
C2 (FT..TH) ol |
[
oo .
X[i+1] . T ID cells (2)
ADD MUL
C2(FT..TF) IRCIE CRER i 8
025
D MRG
ol1]ofT 0]1
. -
o] 1
C1 (FFT..T) -
C2(FT..TF)
B
o110 .
Xl = T ID ceils (4)
C3(T..TFF)
[
i D [£17 BN RN
C2 (FT..TF)
C1 (FFT..T)
.
n > GESERE%R —» C2(FT..TF)
—» ca(r.ten)

Figure 9. The kernel of the LaPlace Solver,

alternative implementations of FIFO buffers in the following section.) Also, generating the
necessary control sequences is somewhat more complicated.

Finally the code structure that implements the iteration construct is shown in Figure
11. This consists of the body and a switching arrangement to feed in the initial data array A,
to circulate the successive data arrays com puted by the body, and then send out the final
result. An important element in this figure is the FIFO buffer, which must have sufficient
capacity to hold the complete data array of (m + 2) x (n + 2) elements. This is the data
base of the problem and since it could be very large, should properly be stored in the array
memories of the data flow supercomputer. How this may be done is our next topic.

18

O
ot 3l ipcelisiam+8) » X[i-1]
c4 KERNEL
5 MAG
oLl o] iDcellsizm+4) » X(i] Vi Jela oy
Jos I
X = cs
[
0]1]0} T » X[i+1]
n
c6
)
OOl o ipcetts (2m+4)
cs
n—»
CONTROL ————p C4 (TMep2ay
GENERATOR |———» C5 (F*T™F% > a=n +2
M= |——» cg (FaTme)

Figure 10. The body of the LaPlace Solver.

7. FIFO Buffering

There are many ways of implementing a FIFO buffer on a data flow machine, two of
which we describe here. In the first, the FIFO buffer is built by cascading identity
instruction cells as shown in Figure 12a. Data packets enter at the left end and flow out
from the right end. Assuming each instruction sends an acknowledge packet to its
predecessor, the capacity of such a buffer is one half the number of ID cells. The advantage
of this scheme is in its simplicity, but the number of instruction cells, the number of cell
firings per packet passed through, and the time required for a packet to pass through, all
grow linearly with the capacity of the buffer. This implementation is appropriate in cases

where only a few values must be held.

19

MRG D 4
K o[t resuit
A ——) > F
c1o
co
» x
MEG D _1; .
0] oJo] 2 F "an
n =" >]
r LAPLACE
Y > iD cells
cs BODY
c7
MRG) R
K olof3 £ m
m = >
cs
c7
. C7 (TFe)
CONTROL ————» C8 (Fe7)
va=(n+2)*'im+2)
GENERATOR | — 4 cg (Tapents)
> ——— C10 (Fe'a T9)

Figure 11. Controller for the LaPlace Solver body.

A second way to implement a FIFO queues uses the array memories for storage.
Suppose a buffer is needed to hold p rows forming a two-dimensional array of data, We
allocate p blocks of storage in array memory modules, each block being large enough to
hold the elements of one row in contiguous locations. Two FIFOs are used to coordinate
queuing and dequeuing by the producer and consumer, as shown in Figure 12b. One
queue is initially empty; during computation it holds descriptors of those storage blocks
(rows of data) that have been produced but not consumed. The second FIFO is filled
initially with p descriptors of empty storage blocks, The producer fills successive locations
of an empty block with data values from its input stream and enters it in the busy block

20

——» PRODUCER 0] 1 0]1 oj1 CONSUMER |——»

!)

ARRAY MEMORY J

01‘

(b) Buffer implementation using storage blocks in array memories.

Figure 12, Two schemes for implementing FIFO buffers.

queue. The consumer reads values from a filled block, sends them in its output stream, and

returns the emptied block to the free block queue,

The advantage of this scheme is that very large buffers can be implemented using the
denser and more economical storage in the array memories while using only a few
instruction cells. In addition, the number of instruction cells fired per value buffered is
small and independent of the number of elements per row. The disadvantage is the
inclusion of array memories and a second routing network, making a more claborate

machine,

To store and retrieve data in blocks in the array memory modules as required in the
producer and consumer program modules, we introduce three instructions: INDEX, WRITE,
and READ. The index instruction takes as operands two values—a pointer to a block within

21

the array memory and an index within that block of an element. It preduces as a result the
absolute address in the array memory of that element which is used by both write and read
mstructions. The write takes both the address and a value and stores the value in the array
memory at that address; the read simply takes the address and returns the contents of that
memory location.

8. The Global Weather Model

Figure 13. Global grid for a numerical weather model.

The weather, the behavior of the earth’s atmosphere, is governed by physical laws
expressed as a set of partial differential equations in which the most important variables are
the wind (the motion of air parallel to the earth’s surface), air temperature, water content,
and atmospheric pressure [16, 14]. The objective of a numerical weather model is to project
the state of the global atmosphere at some future time on the basis of current and historic
observations of the weather, This is done by approximating the differential equations by a
- system of difference equations in which the physical quantities are described only at points
on a three-dimensional grid over the surface of the earth, as illustrated in Figure 13. In the
horizontal plane, the grid of points is defined by 144 meridian circles, equally spaced

22

around the equator, and 87 parallels of latitude (including the south and north poles). In
the vertical direction, the grid has nine layers. Thus the state of the atmosphere may be
described by a group of three-dimensional arrays, one for each physical variable. In VAL
this data base would be declared as follows:

type State = record [

U: Grid:; % Wind: longitudinal
V. Grid; % Wind: latitudinal
T: Grid; % Temperature

A Grig; % Water content

P: Plane % Surface pressure];

type Grid = array [Plane]; % index setis {1,. .., p}wherep =9
type Plane = array [Line); % index setis{1,..., n} where n = 87

type Line = array [real]; % index setis {1,..., m} where m = 144
A value of data type Plane is an array of 87 x 144 real numbers that represent some state
variable for one of the nine levels of the atmosphere; a value of data type Line is a
sequence of 144 real numbers corresponding to the grid points at one latitude at a
particular atmospheric level. Note that surface pressure is represented by just a two-

dimensional array.

For each time step, the data base describing the atmospheric state at time ¢ + Atis
computed from the data base for time £, The value of each physical quantity at each grid
point for time 1 + Aris computed using only values from the data base for time ¢. For the
most part, this information is associated with the same vertical cell in the atmosphere, or
with adjacent grid points in the horizontal plane. This implies a high degree of
concurrency is possible in performing the computation since the new state of each grid
point (all 9 x 87 x 144 = 112,752 of them!) may be computed independently without
indulging in any redundant computation,

Thus the weather model is a good problem with which to evaluate the potential of a
data flow supercomputer, In fact, the computation offers far more parallelism than js

reasonable to exploit.

23

As a basis for performance comparison with conventional supercomputers, we have
chosen the global weather model developed at the Goddard Institute of Space Studies
(GISS) [16]. This is a large Fortran program that extends earlier work by Arakawa and
Mintz [3]. The GISS model runs on conventional computers such as the 1BM 360/95 and
the CDC 7600. The Fortran program computes one time step, representing 20 minutes of
real weather, in about two minutes of computation,

9. Mapping the Weather Model onto the Static Architecture

Inttial . o Final
Data MAIN 7 Data

Data Base(t) DataBase {t + At)

Computation for one time step

r

DYNAMICS » PHYSICS BUFFER

Figure 14. Overall structure of computation for the global weather model.

We have reprogrammed the GISS weather model in VAL, and discuss here the
structure of corresponding machine code for execution by a static data flow supercomputer.
The computation performed for each time step consists of two major parts; the first part
models the dynamics of the atmosphere — the internal hydrodynamics and heat flow
processes; the second part models the physics — the absorption and release of thermal
energy by the atmosphere through processes including absorption of solar radiation,
radiation into space, condensation and precipitation. The overall form of the VAL program
is shown in Figure 14. The main function passes the data base through the dynamics and
physics computations once for each time step until the desired prediction is obtained. The
buffer holds the data base between com putations for successive time steps,

In view of the high potential parallelism in the weather model, it is very attractive to
process the data base by pipelined operation of the data flow machine code for the
dynamics and physics computation. Specifically we choose to use spatial parallelism over

24

the five physical quantities and over the nine layers of the grid, and to process the data for
each quantity in each layer using pipelining. Following this scheme the input to the time
step computation is 37 arrays of data type Plane: one array for the surface pressure and
nine each for the longitudinal wind, latitudinal wind, temperature, and water content. For
pipelined processing, each array is represented in the data flow machine as a single stream
of 87 x 144 = 12,528 values.

Our analysis has focused on the dynamics computation where most interdependence
among grid points is found. This portion of the program consists of about 1200 blocks of
code, each of which constructs a stream of 12,528 values from streams generated by other

code blocks or supplied as input to the dynamics computation.

Each code block computes an array of intermediate results associated with one layer of
the global grid. Pairs of code blocks communicate in producer/consumer fashion — the
producer generates a stream of values which are processed concurrently by the consumer as
soon as they become available. Thus each code block receives several streams of input
representing intermediate arrays of data, and generates an output stream. Fach block has
the same form as the body of the LaPlace solver (Figure 2). In fact, the machine code has
essentially the same structure as that in Figures 9 through 11.

In the LaPlace solver example, we saw two uses of FIFO buffers:

1. To align array elements for adjacent columns of the grid so they arrive together
at the body of the computation. These buffers were implemented as one or
more ID instructions.

2. To align adjacent rows of the data array for processing together. This required
the ability to buffer full rows of n + 2 elements apiece. These buffers could be
implemented using groups of instruction cells in processing elements, or using
blocks of storage allocated in array memory modules, as was discussed earlier in

Section 7.

A third requirement for buffering is illustrated in Figure 15, which shows a situation
that appears many places in the weather code. Here the state variable U/ is used by block 1
to compute UT which is used by block 2 to compute UT/. In block 3, U and UT? are
consumed to create /U, Since the two paths in the figure have different lengths, a FIFO

25

> FIFQ BUFFER Block(UU)

Block(UT) Block{UT1)

utT Ut

> 1 2

Figure 15.

buffer of appropriate size must be introduced between input U and block 3. For the
weather code, the number of pipeline stages in most code blocks is between three and ten,
so these buffers can be implemented by just a few 1D cells.

An example of one code block from the dynamics computation is shown as a VAL

program in Figure 16. In this form the block takes as inputs the arrays
ULA] PULK] PV UTIA]

associated with layer k& of the three-dimensional grid, and computes the array UTIk). The
data flow machine code for this code block has the same structure as that for the body of
the LaPlace solver. The differences are that block UT/ has many inputs instead of just one,
there is much more computation in the kernel, and the boundary conditions are somewhat
more complicated. In U77 the computation of each rtesult value in the principal case
requires 48 additions and 16 multiplications and has depth seven.

A complication absent in this example is interaction among layers. However, since the
computation for all layers of the grid is proceeding simultaneously and closely in step,
corresponding code blocks for different layers may readily exchange data pertaining to the
same or adjacent cells of the horizontal grid.

10. Analysis of Computation Rate

In this section we determine the size of data flow machine required to achieve some
specific performance level for the general circulation model using the machine level
program structures described above. The general form of the proposed data flow machine

26

UTY: [array[array[real]] : =
forall jin (1, n], iin 1, m]
im: integer 1= if i = 1 then melse i — 1 endif:
ip. integer := if i = mthen 1 else / + 1 endif;
Jm: integer ;= if j = 1 then 1 else j — 1 endif:
Jp: integer := if j = nthenn else j + 1 endif;

FluxA:real ;= CI
« (PULim,) + PUljim,im] + PVijm,i + PV
« (UL} + Uljm,im));

FluxB: real := C0
«(PULL + PULm, + PUjim) + PUljm,im))
« (Ui + Uljim]); |

FluxC:real := ClI
« (= PULjA — PULim] + PVI4) + PVijp.i])
s (Uljp.im] + ULjA);

FluxD: real := Co
« (PVjm,]] + PVijm,ip) + PV]j,{ + PHjip])
s (Ujm.q + UL,

FluxE: real := Cl
* (_PUUm!ip] - PUUM,I] + PVUm’Ip} + PVD!IPD
« (U] + Ulim,ip));

FluxF: real := C0
« (PULLipl + PULm,ip) + PULjA + PUm.)
« (Uliipl + ULLD;

FluxG: real := C0
« (PVI + PV0ip]l + PVip.] + PVjp.ip])
* (UU”] + Uljp.1]:;

FluxH: real : = C1
« (PULipl + PULA + PYipl + PVip,ip))
« (Ujp.ipl + UL,

construct

utlig +
if = 1 then 0.0
elseil j = n then FluxA + FluxB + FluxD + FluxE — FlyxF
else FluxA + FluxB — FluxC + FluxD

+ FluxE — FluxF — FluxG ~ FluxH
endif
endall

Figure 16. Example of a code block from the weather model.

27

(256_,256) (8.8)
» PE > » ADD -
| -
. » MUL
. » PE > (32,32)
J . RN2 » AM |———»
f . (8,8) P \
. » PE > * ADD »
~N——| -
. » MUL —
» PE » » AM —-—P)
1 »
RNt RN2 RN3

L { result packets} < J

signal packets

Figure 17. Data Flow Supercomputer.
is shown in Figure 17, The main units of the machine are:

- PE: Processing Zlements. These units hold instructions of the machine level
program. They receive result packets from other instructions and determine
which instructions are ready for execution.

- ADD, MUL: Functional Units. These units perform the basic scalar operations
for floating point numbers.

- AM: Array Memories. These memory units hold the array values that form the
structured data of the computation to be carried out.

- RN1: Routing Network. This network delivers resuit packets to the cell block
units that contain their target instructions.

- RN2: Routing Network. This network transmits ready instructions (with their
operands) to an appropriate functional unit, or to an array memory unit if an
operation on structured data is called for.

- RN3: Routing Network. This network routes instructions that operate on
structured data to the particular memory module that holds the relevant data,

28

Each of the routing networks is built of individual two-by-two router units, In general,
assuming n is an integral power of two, an (n, n) routing network wiil consist of log, (n)
stages, each stage having n /2 two-by-two router units,

In a static data flow computer instructions of the machine-level program are assigned
to processing elements by the compiler and program loader, and this allocation is fixed for
the duration of the computation. The operands of instructions are stored as part of the
instructions, so an instruction cannot be reused until the result of is previous execution is

consumed.

Our method of determining performance is to find the rate of transmission of
operation, result and signal packets that must be supported by hardware units to achieve a
target speed of computation. Then, using assumed speeds for the various types of
hardware units, we can find how many units of each type are required, and the needed
capacity of the routing networks. Finally, we must be convinced that sequencing
constraints in the machine code do not prevent achievement of this computation rate.

The parallelism supported by our machine code for the weather model lies in the
concurrency of computing the five physical quantities for all layers of the atmosphere
concurrently and in the pipelining of computation over the sequence of J, j pairs that define
the horizontal grid. It is this high degree of concurrency that makes fast computation
p0351b]e even though complete execution of an individual instruction may requ1rc several

microseconds.

We set as our speed objective completion of one time step in five seconds of
computing. This is roughly twenty times faster than the GISS weather model currently runs
on a CDC 7600 machine. We start by finding how many and what types of operation
packets must be processed for one time step of the computation.

Analysis of the weather code in VAL shows that for each time step the dynamics
computation requires 216 x 10° addition/subtraction operations and 144x 10°
multiplication operations. We know that arithmetic operations in the dynamics
computation account for about 40 percent of the total arithmetic operations per time step
for the dynamics and physics computations. Thus the total numbers of additions and

29

multiplications are about 540 x 10 and 360 x 108, respectively,

The number of operation packets sent to the array memories is more difficult to
determine. A lower bound may be found by assuming one read operation and one write
operation for each element of the data base per time step; this yields

2 x 37 x 144 x 87 = 927072

The actual number will be increased from several sources: FIFO buffers implemented in the
array memory; retrieval of auxiliary data stored in array memory. From our understanding
of the GISS code, we estimate that the number of array memory packets generated will be
of the order of 50x 10°. Even this is far less than the main memory accesses required in
running the GISS code on a conventional computer because almost all storage of
intermediate results in the data flow machine is in the local memories of the processing
elements.

In addition to operation packets for arithmetic operations and memory accesses, we
estimate that about 175x 10 miscellaneous operation packets will be generated. Note,
however, that execution of many ID and MERGE instructions, Boclean operations, and
other control instructions will take place entirely within processing elements without
generating packet traffic through the routing networks, functional units and array
memories.

Thus our estimate of the operation packet traffic required to complete one time step
every five seconds is:

Packet Type Packet Rate
Addition Packets 108 MHz.
Multiplication Packets 72 MHz,
Array Memory Packets 10 MHz.
Miscelianeous Packets 35 MHz.
Total 225MHz.

These numbers suggest using the following quantities of machine parts:

30

Type of Unit Number of Units
Processing Flement 256
Array Memory Module 32
Add Unit 128
Muitiply Unit 96

In this configuration, each processing element of the machine must transmit operation
packets at the rate of 0.88 MHz. The addition units must operate at 0.84 MHz and the
multiply units at 0.75 MHz. The 32 array memory units can run at an average speed of 0.31
MHz.

The three types of routing network are configured as follows:

Number of
Network Configuration two-by-two Routers
RN1 (256,256) 1024
RN2 (8,8) 12
RN3 (32,32) 80

The machine shown in Figure 17 includes two forms of memory: instruction memory
in the processing elements and array memory units to hold the data base for the
application. To estimate the amount of instruction memory required, let us suppose that
one instruction cell is needed for each add, multiply, miscellaneous, or memory operation
performed in processing one vertical cell of the grid. This yields

(540 + 360 + 175 + 50)x 10%)/(144 x 87) = 89,800
instruction cells. If each instruction uses four 32-bit words then an instruction memory of
4K words in each processing element, or one million words total, will fill the bill with lots
of room to spare for implementin 8 FIFO buffers and other functions. If the array memory
units each contain 64K words, then the total array memory is two million words compared
to the primary weather application data base of
37 x 144 x 87 = 463,536

words,
For the routing networks to support this computation rate they must be able to

transmit one operation packet each microsecond. It is attractive to suppose that each
operation packet is transmitted as a sequence of eight 16-bit bytes. In this case the links

k)|

connecting the various hardware units must transmit bytes at eight MHz, which is
reasonable.

To be sure that the processing rates discussed above are achievable with the machine
program structure we have outlined, we must check that data dependency constraints in the
code do not limit the speed of computation. By the instruction processing time we mean the
time interval from the instant an instruction cell becomes enabled to the instant all result
and acknowledge packets have been received by their target instruction cells. The
instruction processing time must be small enough that the required rate of pipalining can
be maintained. Since an instruction cell can be fired again only after its target instruction
cells have fired, it is sufficient that the instruction processing time is less than half the inter-
packet interval of pipeline operation.

For the program structure we have explained, the inter-packet time interval is the five
seconds allowed per time step divided by the number of points in the horizontal grid:
- 5.0/(144 x 87) = 400 microseconds.
There should be no difficulty in a~hieving an instruction processing time far below half of
this interval.

11. Conclusion

The analysis presented shows that, at least for one numerical computation of practical
interest, a data flow supercomputer should achieve performance beyond that of
conventional supercomputers. It seems likely that similar results Will be obtained for other
important large scale computations such as seismic modeling of the earth’s crust, numerical
wind tunnel experiments for the study of turbulence, finite element methods applied to
building structures, and calculations for nuclear reactor and weapons design.

Our analysis shows only that data flow computers of a given configuration can achieve
a specified level of performance. The cost of designing and fabricating the parts for
constructing these machines has not been determined. The construction of practical data
flow supercomputers depends on successful production of custom design LSI parts meeting
the postulated level of throughput.

32

Further work is needed in other areas as well. We believe it is possible to construct an
optimizing compiler that could generate the kind of machine level program structures
discussed in this paper from a VAL program for the global weather model with minimal
advise from the programmer. Yet the validity of this claim has not been demonstrated and

we do not know to how broad a class of programs our techniques will apply.

12. Acknowledgments

The work leading to the su percomputer design proposed in this paper was mostly done
by the Computation Structures Group of the MIT Laboratory for Computer Science. The
graduate students who have participated in the development of concepts and methodology
have been a continuing source of inspiration. They are:

William B. Ackerman Sheldon Borkin G. Andy Boughton
J. Dean Brock Randal E. Bryant Peter J. Denning
David Ellis John Fosseen Gao Guang-Rong
D. Austin Henderson Earl C. Van Horn Paul Kosinsky
Clement K. C. Leung John Linderman Fred Luconi

Suhas S, Patil Chander Ramchandani George Rodriguez
Joseph Qualitz Kenneth W. Todd Kung-Song Weng

We wish to acknowledge the efforts of Bill Ackerman, Dean Brock, Jim McGraw, and
Charles Wetherell for their collaboration in the development of the VAL language, and in
the design and programming of a translator and interpreter to run on the Decsystem 20 at
the MIT Laboratory for Computer Science. We also acknowledge with appreciation the
Data Flow Engineering Model, a test bed for evaluating proposed architectures, which has
been designed and constructed by Andy Boughton, Clement Leung, Willie Lim, and Ed
Shaw,

Professor Arvind, our colleague on the MIT faculty, is actively engaged in a
significantly distinct approach to the realization of practical computers using data flow
concepts. Yet our two projects have much in common and the free exchange of knowledge
and experience has reinforced our confidence in the directions of our work.

It has also been satisfying to see data flow ideas taken up by workers at other
institutions and to have the opportunity to meet occasionally for an exchange of notes on

33

progress, concepts and methodology. These include:

- Jean Syre and his colleagues at CERT, Toulouse, France, who have built an
operating machine based on the concepts of single assignment language.

- Al Davis, whose group at Burroughs built the first (to the best of our
knowledge) operating hardware using data driven instruction execution, and is
continuing his work at the University of Utah [6].

- The group led by Don Oxley and Merrill Cornish at the Texas Instruments
.Company, Austin, Texas, which constructed the first operating data flow
multiprocessor system and is continuing pursuit of feasible practical forms of
data flow computers.

- John Gurd, Tan Watson and their colleagues at the University of Manchester,
England, who have built an experimental multiprocessor data flow computer
using the tagged token principle [17].

- Robert Keller and his colleagues at the University of Utah, who are engaged in
basic research on concepts of data flow program execution using the Lisp
language as the cornerstone of their work [12].

- And others who have made worthwhile contributions: Arthur Oldehoeft and
Roy Zingg, Phillip Treleaven, and Bruce Shriver.

Our work on data flow concepts began with the graph model of Jorge Rodriguez
published in 1967 {15]. Since then we have enjoyed support from the Advanced Research
Projects Agency, the Nationat Science Foundation, the Lawrence Livermore Laboratory,
the Basic Sciences Program of the Department of Energy, and the NASA Ames Research
Center. Through this period the interest and support of the Director of the Laboratory for
Computer Science, especially Robert Fano and Michael Dertouzos, has been most helpful
and encouraging. We are also deeply indebted to George Michael of the Livermore
Laboratory for his recognition of the possible importance of data flow concepts and his
continuing interest and support of our work.

References

L. Ackerman, W. B. and Dennis, J. B. VAL - A Value - Oriented Algorithmic Language:
Preliminary Reference Manual, Technical Report TR-218, Laboratory for Computer
Science, MIT, Cambridge, MA 02139, June, 1979.

34

2, Ackerman, W. B, Data Flow Languages. In AFIPS Conference Proceedings, Volume
48: Proceedings of the 1979 Nationci Computer Conference, AF1PS, 1979, pp. 1087-1095.

3. Arakawa, A. Design of the UCLA GCM. Department of Meteorology, UCLA, 1972.

4. Arvind, Kathail, V., and Pingali, K. A Dataflow Architecture with Tagged Tokens.
Technical Memo TM-174, Laboratory for Computer Science, MIT, Cambridge, MA 02139,
September, 1980.

5. Boughton, G. A. Routing Networks in Packet Communication Architectures. Master
Th., Dept. of Electricat Engineering and Computer Science, MIT, Cambridge, MA 02139,
June, 1973,

6. Davis, A.L. The Architecture and System Method of DDM1: A Recursively
Structured Data Driven Machine. The Fifth Annual Symposium on Computer
Architecture, April, 1978, pp. 210-215.

7. Dennis, J. B. Packet Communication Architecture. Proceedings of the 1975 Sagamore
Computer Conference on Parallel Processing, August, 1975, pp. 224-229.

8. Dennis, J.B., and K.-S. Weng. An Abstract Implementation for Concurrent
Computation with Streams, Proceedings of the 1979 International Conference on Parallel

Processing, August, 1979, pp. 35-45.
9. Dennis, J. B. Data Flow Supercomputers. Computer 13, 11 (November 1980), 48-56.

10. Dennis, J. B., Boughton, G. A., and Leung, C. K. C. Building Blocks for Data Flow
Prototypes. Proceedings of the 7th Annual Symposium on Computer Architecture,
May, 1980, pp. 1 - 8.

1. Gurd, J., and Watson, I. Data Driven System for High Speed Parallel Computing -
Part 1. Structuring Software for Parallel Execution. Computer Design 19, 6 (June 1980),
91-100.

12. Keller, R. M., G. Lindstrom, and S.S. Patil. A Loosely-Coupled Applicative Muiti-
processing System. In AFIPS Conference Proceedings, Volume 48: Proceedings of the 1979
National Computer Conference, AFIPS, 1979, pp. 613-622.

13. Keller, R. M., Lindstrom, G., and Patil, 8.S. Data-Flow Concepts for Hardware
Design. COMPCON Spring 80, February, 1980, pp. 105-111.

14. Mesinger, F.and Arakawa, A. Numerical Methods used in Atmospheric Models.
Tech. Rep. 17, GARP Publication Series, 1976.

35

15. Rodriguez, J.R. A Graph Model for Parallel Computation. Ph.D. Th., MIT
Department of Flectrical Engineering, Cambridge, MA, 1967.

16. Somerville, R.et. al. The GISS Model of the Global Atmosphere. Journal of
Atmospheric Science , 31 (1974), 84-117. :

17. Watson, I and J. Gurd. A Practical Data Flow Computer. Computer 15, 2 (February
1982), 51-57.

