: MASSACHUSETTS
LABORATORY FOR INSTITUTE OF
COMPUTER SCIENCE] TECHNOLOGY
A Design Strategy for

Testable Self-timed Systems

Computation Structures Group Memo 216-1
April 1982
Revised October 1982

Tam-Anh Chu

This resecarch was sn;pportcd by the National Scicnce Foundation under grant
number MCS-7915255.

- J

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Computation Structures Group Memo 218
Revised October 1982

A Design Strategy for
Testable Self-Timed Systems!

Tam-Anh Chu
MIT Laboratory for Computer Science
Cambridge Massachusetls 02139

Abstract

This paper presents a strategy for designing testable self-timed systems, using additional layout
rules and hardware which couid facilitate testing of the fabricated IC chips. It is assumed that a
fabricated chip contains no logical faults, and that the types of physical faults present can only be
stuck-at and bridging faults. The design strategy consists of a number of techniq-ues aiming at the-
testability of the system. First, additional layout rples are proposed to reduce the set of physical faults
to stuck-al faults aloné,_ then test hardware_is introduced to allow testing for stuck-at faults in
self-timed modules. C-elements with special test modes are used for constructing self-timed
combinational logic modules. In test modes, they can be configured as either AND or OR gates; thus,
a self-timed combinational logic module can be transformed into two simple and related networks,
from which test vectors can be derived. For seif-timed state machines, scan-in/scan-out shift
registers are used to test their combinational logic part and feedback paths. in test modes, the
self-timed communication protoco! is not observed, therefore, these techniques are used for off-fine

testing only.

1. This research was supported by the National Science Foundation under grant number
MCS-7915258,

A.Design Strategy for
Testable Self-Timed Systems1

1. Introduction

This paper presents a strategy for designing seif-timed systems, using additional layout rules
and hardware which could facilitate testing of the fabricated IC chips. First, a high level design
hierarchy inciuding functional, logic simulations, and mask generation, etc. is suggested. This will
allow us to argue for the assumptions made on the types of fault; a VLSI self-timed system might
have. Thereafter, we will present a numﬁer of techniques permitting design for testability of VLSI

self-timed systems.

2. High Level Design Hierarchy

The block diagram in Figure 1 shows a flow chart of the steps required in the design of
selt-timed VLSI chips, up to the level of mask generation. Associated with each step is an appropriate
computer aided design tools (shown in small boxes), including simulation softwares, artwork
description language and design rule chle?:ker. The following paragraph describe briefly each step in

the flow chart.

2.1 Functional Specification and Simulation

Functional specification and simulation can be considered as the most important steps in the whole
design process. Here, the specificatiqn of the system is generated from a high-level hardware
description language such as PADL[?7]). The functional simulator takes these descriptions and
simulate the behavior of the system and its submodules. During this phase of simulation, problems

with system design, including deadlocks and logical errors shouid be detected and corrected,

1. This research was supported by the National Science Foundation under grant number
MCS-7915255,)

2.2 Circuit Simulation

A transistor level simulator such as SPICE [13] can be used to aid the design of standard cells, in our
case, self-imed modules. It allows the optimization of the designs in terms of delay, power
dissipation, and also allows one to check the timing behavior and ensure that they do not produce
output hazards due to independent input changes. Once the cells are verified, they can be used

without any unanticipated timing problems at the system level.
2.3 Mask Description

The transistor network layout can be described using layout description languages. A symbolic
description language such as Design Procedural Language [2] (DPL) can describe the chip by
specifying the relative locations of the standard cells {(which are descriptions of transistor circuits)
and their interconnebts..section "Logic Simulation" A gate level simulator using binary or ternary
values can simulate a large network, suc-h as the whole chip or a subsystem. For MOS networks, a
particularly useful logic simulator is MOSSIM [3], which models the MOS transistor as a bidirectional
switch with charge holding capacitances, and uses ternary representation of logic levels. As shown
in the block diagram, the input to the simulator includes information from the functional specification,
and the transistor network description that can be extracted from the mask layout description by a
node extraction program [1]. It shouid be emphasized that the purpose of logic simulation is to verify
that the translatlon process from functional specification to transistor networks is correctly carried
out. Whereas in other systems using synchronous design or bus architecture, timing simulation and
verification are of utmost importance, in self-timed system design, it only serves the purpose of speed
optimization, and logic simulation alone would be adequate for verifying the design. The reason is
that for self-timed systems, inter-module or long distant communication is implemented using the
reset signaling protocol [11], which is speed-independent and therefore, free of timing skews and
races. At the local level, timing constraints of each self-timed module can be satisfied easily by using
a standard set of macro cells whose electrical and timing characteristics have been verified by a

circuit simulator, as mentioned above.

2.5 Design Rule Checking

The design rule checker checks for design rule violation in the layout. A set of simple rules {Mead
and Conway's) can be implemented, and a large portion of the layout description can be input to the

checker,

The design process usually takes a number of iterations before the design passes both the
simulation and design rule checking steps. At this point the mask description can be forwarded for

fabrication.

FUNCTIONAL
SPECIFICATION

llﬂ

LIBRARY CELLS FUNCTIONAL
DESIGN SIMULATION

ECE l

> LAYOUT
GENERATION

==

LOGIC/TIMING
SIMULATION

llm

DESIGN RULE
CHECKING

ll_oﬂc_

MASK FABRICATION

Figure 1. Flow chart of a Self-Timed VLS design system

3. Assumptions on Types of Faults in VLS1 Self-Timed Systems

As described in the previous section, a VLSI self-timed system will only be fabricated after it has
been proven that the system is functionally correct and free of logical errors. This is done by
functional simulation, mask information extraction, and logical simulation. These steps guarantea
that the transistor networks generated behave according to the functional specifications of the
system. Thus, the types of faults exisling at the chip level could only be physical faults, i.e., those

caused by defects, process variations, etc.

We will assume two main types of physical faults that can affect the circuits.

3.1 Stuck-at Faults

This type of fault modeling is most popular for fault simulations of digital systems. Stuck-at-1 and
Stuck-at-0 fauits of a fogic gate correspond to cases when its input or output signal paths are shorted
to the power supply voltage or to ground, respectively. A great deal of work and many strategies

developed for testing systems with stuck-at faults can be found in the literature.

_In a self-timed systems, stuck-at faults may affect either the handshake signals or the data
signals. In the first case, the system stops running because the effect of the faulty communication
signal will eventually propagate to the system input aﬁd output ports. In the latter case, data integrity
is no longer preserved. If dual-rail coded data were used, the system would always 'hang’, as the data

signals themseives implicitly contain a request signal.
3.2 Bridging Faults

In many cases, the stuck-at fau_lt model does not adequately describe many real situation
caused by faults in VLSI systems. In fact, one can consider stuck-at fault as a special case of bridging
fault, occurred due to shorts between signal lines. The stuck-at fault model, which originally came
from fault modeling in DTL digital circuits, represents all faults as shorts bgtween signal paths and
power supply busses (Vdd and ground). In apiece of combinational logic circuit, if some of its input
and output signal paths are shorted, an asynchronous state machine can accidentally be formed. If
pull-ups and puli-downs are shorted, analog voltage levels might result. In other cases, shorts

between signal lines can cause stuck-at faults.

Because of all these peculiarities introduced by shorted signal paths, bridging faults are
generally much harder to detect and diagnose compared to stuck-at faults. For example, an analog
voltage caused by pull-up/pull-dowr shorts can manifest as stuck-at-one, stuck-at zero, an

intermittent fault, or it might show up at the system output as an analog signal.

As discussed in [6], experimental results indicated that bridging faults are very common in VLSI
chips. Bridges occur almost exclusively between signal paths at the same layer of interconnects, ie,
between two metal lines, two diffusion lines, etc. Another source of bridging faults is due to shorts

between melal lines and the substrate.

Another type of faults complementary to bridging faults shouid be mentioned here : faults due to
broken signal paths, Causing opens. In static operation, these faults can be modeled as stuck-at
faults because an unconnected signal line will eventually discharge to ground. In a VLSI chip, these
faults are commonly caused by missing contact cuts, defective chip areas. Metal interconnects and
busses suffer most due to the fact that they run on a rugged terrain and carry high currents, a

phenomenon known as metal migration can break off metal lines and thus cause open-circuits.

a. Design for Testability Strategies

Having discussed a number of fault models for VISt systems, we now propose a number of design
techniques aimed at enhancing system testability. The first technique deals with bridging faults, and
may be applicable to VLS| system in general; the approach taken is an extension and modification of
that discussed in [6], in which additional layout rules are put forth to minimize the probability of
shorts in the digital circuits, The second technique is more specifically derived for testing self-timed
systems. At the hardware level, additional tesi capability is designed into self-timed modules such

that enough controllability and observability are introduced for testing of stuck-at fauits.
4.1 Layout Approach for Reduction of Bridging Faults

As discussed earlier, bridging faults can cause anomalous behaviors, and it is difficuit to detect as
well as diagnose the taulty modules in this case. In this section, we briefly summarize the sources of
bridging faults and their effects. Then, a layout rule { Mead and Conway's } is evaluated in terms of its
susceptibility to bridging faults. Next, interconnect models at logic gate and biock levels are
introduced, which lead to a definition of a set of layout guidelines for reducing bridging faults.

4.1.1 Sources and Effects of Bridging Faults

As mentioned earlier, bridging occurs between signal paths on the same iayer of'interconnects. In a
typical NMOS process with three layers of interconnects {metal, diffusion and polysilicon), three types
of shorts can occur. Shorts between diffusion and polysilicon is less likety, and are neglected for
simplicity. Also, shorts from metal lines to the substrate at contact cuts between metal and diffusion

are not considered because they can only be prevented by processing technigues.

Shorts between two inputs or two outputs usually create analog voltage leveis or stuck-at fauits,
whereas shorts between inputs and outputs of a combinational logic circuit can produce an

unwanted asynchronous state machine,
4.1.2 Evaluation of Mead and Conway’s Layout Rules

Design rules for NMOS VLS| systems introduced in [8] form a simple and conservative set of rules for
layout. They are specified in terms of the basic metric A, being equal to the fundamenta! resolution of
the process used. It is the distance by which a geometrical feature on any one layer may stray from

another geometrical feature on the same layer or on another layer, all processing factors considered

and an appropriate safety factor added [8]. Following these rules, for example, two poly lines are
placed at least 2 A apart to prevent them from being shorted to each other. Other rules deal with
separation between other layers, and their effects are similar, that is, they prevent bridges between
signal paths. Thus one can conclude that Mead and Conway's design rules are appropriate for
eliminating bridging faults. However. to further ensure that bridging faults exist at a very low
probability, we derive additional rules on the relative placement of elements within a logic gate, and
relative placement of logic blocks within a subsystem or system. A difficult requirement for these
rules is that they do not work against the previously adopted layout rules. For example, it is not useful

to derive another rule which says that two poly lines should be placed at least 3 A apart.

4.1.3 Layout Rules for Reducing Bridging Faults

Additional layout rules exist at two levels logic gate and logic block, the former being a single logic
function with one output, the latter a network of interconnected logic gates. The approach used to
derive the rules is : first, define a model for the gate or block, identify the possible interactions
between elements, then derive rules to inhibit cases where interactions can lead to bridges between

elements.

4.1.3.1 Logic Gates

For an NMOS static logic gate, the model used in Figure 2 is adequate to describe it. The logic gate
contain a pull-up (typically a depletion load device}, one output, and a network of inputs consisting of
one or more conduction paths, with one or more transistors on each path. A conduction path is
defined as a path connecting the output to ground when all transistors on that path are turned on.
Given that our typical process implements conduction paths on diffusion, inputs on poly layer,
outputs on poly or metal, possible types of shorts are: input-input, input-output, and conduction
path-conduction path. Those between conduction paths and inputs or output are less likely to occur.

The following rules can further eliminate the shorts between inputs, and between output and inputs.

1. Wherever permitted, arrange the elements such that the spacing between
adjacent signal lines on the same interconnect layer is as large as possible,
with the constraint that the gate layout is as small as possible (see layout
examples below).

vDD
PU
our
IN PO
N Po| 1ro IN
IN
—-_m

Figure 2. Mode! of an NMOS logic gate

2. Inputs and output are kept geographically apart by routing all inputs from
one side of the logic gate, outputs from the other.

Rule 1 eliminates shorts between inputs, while 2 between inputs and outputs.

Two examples are presented befow . In the first one (Figure 3), two layouts for a three input
NOR gate are shown, the left one is laid out with no consideration for bridging faults, and the possible
locations where bridges can torm are indicated. in the layout at right, laid out to minimize the
occurrence of bridging faults, contact cuts are inserted between input poly lines to increase their
spacings. Note that the second lay out has ail the possibie short locations removed. In the second
example (Figure 4}, layouts for the C-element are shown, the one at left has many possible short

locations indicated while the one at right has none.
4.1.3.2 Logic Blocks

A logic block is defined as a network of interconnected logic gates. In Figure 5, a logic biock
containing three logic gates is shown. The possible fault iocations due to bridging are indicated. The

following two rules can be implemented to reduce bridging fauits.

1. Logic gates should be placed so that loops can not be formed, that is,
output should not be routed back to the input side of the logic gate.

2. In order to eliminate the interactions between elements internal and
external to a gate, a safety boundary should be included in the layout of the

gate.

...................
..............

...................

................................

el /4;??/

Figure 3. Layouts of

...................
..............

I L LT TR T S
................

.....................
.............

......................

.................
...............

0o [10

.......

T

20

Figure 4. Layouts of the C-elements

30

..............

...............

....................

-10 -

The safety boundary is defined as the region in which no external elements can interact with
internal ones. In Figure 6 below, a gate is laid out with horizontal metal busses. The verticals stripg
and the busses form a safety boundary. The only thing allowed in it is input or output interconnects.
Note that the modified layouts in Figures 3 and 4 contain safety boundaries and therefore are slightly

larger than those on the left.
4.1.4 Hardware Approach to Stuck-at Faults

It the above layout rules are strictly applied to designing VLS| Systems, one can be much more
ascertained that bridging faults seldom occur, and the stuck-at fauit assumption holds true for such
systems. Since there has been a great deal of work done on test pattern generation for combinational
logic networks under stuck-at fault assumption, we wili only be concerned about designing hardware
to allow easy testing of such networks. in this section, we first disc uss the strategy used for designing
testable self-timed VLS| systems. Then we developed in detail the design techniques for self-timed
combinational logic and self-timed state machine. Occasionally, specific self-timed hardware used in

the implementation of a self-timed router module [10] wiil be drawn upon as examples,
4.1.4.1 General Strategy
4.1.4.1.1 Network of Self-Timed Modules

We define a self-timed module as a circuit whose input/output timing specifications follow the
weak-conditions and an asynchronous communication protocol [11). A primary self-timed module is
one which can not be further decomposed into other self-timed modules, thus is the lowest-level
entity of self-timed circuits, A secondary self-timed module is one Composed of more than one
primary module. A self-timed system is a network of interconnected self-timed modules, primary or

a— power bus 7 safety boundary

\ region for
WJ 3 / internal elements /

Large square- Logic gates
Small square - internal elementa

Figure 5. Model of a Logic Block

11

safety boundary power bus

Figure 6. Layout constraint for alogic gate

-11 -

secondary, as shown in Figure 7. According to this definition, it is absolutely arbitrary to define the
boundary of a self-timed modute, and our partition is mainly for defining appropriate boundaries to
incorporate test circuits. In Figure 7, each communication link between modules consists of a tupie
of data lines and a Request/Acknowledge signal pair required for implementing the reset signaling

prrotocol.

A self-timed combinational logic (STCL) module is one with no state inform_ation retained, thus
can either be a primary or secondary self-timed module. One way of synthesizing STCL using
dual-rail coded signals and C-elements is shown in Figure 8. A self-timed state machine {STSM) is
one with state information stored in fe;edback registers. Thus it is necessarily a secondary self-timed
modules. Figure 9 shows an implementation of a STSM , using Join, Fork , Register modules and a
STCL module [12]. These have been used in {10].

4.1.4.1.2 Design for Testability Strategy

Two key concepts utilized in our design strategy are thoseof divide and conquer and increase
controllability and observability. These are simple but powerful concepts used in the fieid of design

for testability [9]. The strategy can be brieffy described as follows

ST

P
> 8T > ST p—Pp

Figure 7. A network of Self-timed modules

ST

C -2
2n 2m Data/Ack —{
Datm C > CL P> J ™ stcL PMF
C —
AcliLout C Ack-in R
STCL STSM

Figure 8. A Selt-Timed Combinational Logic Module Figure 9. A Self-Timed State Machine

Data/Ach
>

Li2.

1. If a self-timed system consists only of STCL’s, it is transformed into a
single combinational network with all timing restrictions removed. This ig
done by setting all C-elements in Test mode.

2. If a self-timed system consists only of STSM's {nota likely case).a different
technique is used, in which, shift registers are inserted at the input and
output of the STCL of the state machine. Next the rest of the circuit is
isolated and test vectors and results can be shifted in and out through an
additiona! seriat line for testing purpose. This technique is similar to a host
of others described in [5,9].

3. If a self-timed system consists of both types of module, then both
techniques proposed can be used. Note that in this case, the combinational
and the sequential parts are separated by the isolation shift registers,

The point to be stressed here is that in test mode, the system is transformed into a different network

which allows for testing of mainiy stuck-at faults. This strategy is used only for off-line testing.

4.1.4.2 Combinational Logic Networks

4.1.4.2.1 Concept

In a" STCL module, C-elements are used to synchronize signal events and enforce the timing
constraints of the reset signaling protocol. The C-element can be designed with test modes, in which
it behaves either like an AND or an OR gate, depending on the test modes desiréd. In the AND test
mode, it aliows selective control of signals, while in OR test mode, it allows signal to feed through,
Thus, a STCL network can be transformed into two test networks, providing more information for
testing. Furthermore, additional flexibility is obtained by individuaity programming the self-timed
modules in AND or OR test mode.

4.1.4.2.2 Impiementation

Because the basic structure of the C-element already contains AND and OR logic function, it is very
easy to implement the test modes. Figure 10 shows a block diagram of a C-element with test modes,
where a Multiplexor is used in the feedback path. it is selected by the test signal TEST and the test
mode is defined by the external input OR. The table lists the functions of the C-element depending on
the test mode settings. In the NMOS implementation, a multiplexor can be built out of pass transistors
and thus the layout area does not increase substantially. Also, the detay through the pass transistor is
very small, introducing only little additional delay in the feedback path. SPICE simulations show that

-13-

its performance is almost the same as that of one with no extra feedback delay.
4.1.4.2.3 Discussion

The test modes of the C-element greatly facilitate testing of self-timed circuits. As the C-element
contains AND and OR gates, by breaking the feedback path and setting the feedback input at either
Zero or one, we can test the AND or the OR gates of the C-element. Test generation for such a circuit
is also greatly simplified : because each C-element can be configured as an AND or an OR gate, a few

test vectors can totally check a C-element for stuck-at faults.

Note that there is no equivalent technique for synchronous systems, as the latches used in a

clocked system do not have simple structures for incorporating test modes.
4.1.4.3 State Machines
4.1.4.3.1 Concept

The technique used for testing STSM's is to insert shift registers at the input and output ports of the
combinational logic part, isolate it from the rest of the system, and shift bit strings in and out serially.
_ The block diagram of the circuit is shown in Figure 11, the Join and Fork modules are implemented
simply as wires and C-elements. In test mode, the feedback registers will feed data through, i. e., their
input and output ports are shorted together. The shift registers have a number of modes : Shift, Load

and Hold. In order to test the combinationat logic, a test vector is shifted in serially. After waiting a

a majority .
b gate c TEST | OR | FUNCTION
0 X | C-element
1 0 AND-gate
mux o
Y 1 t]| OR-gate
s 1 on
;—- TEST Test modes of the C-element

Figure 10. implementation of a C-element
with test modes

-14.

number of test clock cycles for propagation delay through the combinational logic network, its output
is loaded into the output shift registers, while whatever was previously stored in the output shift
_registers is loaded into the input shift registers. The content is then shifted out serially. Thus one can

check for stuck-at faults in both the combination logic and the feedback registers.

4.1.4.3.2 Implementation

The block diagram of the shift registers and their implementation in NMOS are presented in Figures
12(a) and (b). Each register needs four control signals which are derived from the external test input
signals SHIFT, LOAD, TEST and the ;est clock &, Internally, ¢ is used 1o generate two
non-overlapped clock phases &1 and ®2. More logic is used to convert them into the required

signais, as shown in Figure 12(c).
4.1.4.3.3 Discussion

The above technique for testing state machines can be easily ihcorporated into a state machine
implemented in Programmable Logic Array (PLA) form. A PLA requires input and output buffers to
drive large capacitance loads on the AND plane and OR plane busses. A little extra hardware is
Needed to convert these buffers into isolation shift registers. On the other hand, techniques used in
synchronous systems such as Level Sensitive Scan Design {LSSD) [4) or Scan Path , fequire a
substantial amount of additional hardware to implement the test registers. Also, in the techniques
proposed above, the number of extra wires dedicated for the test circuits is comparable to that

required by others (LSSD requires 3 wires for the test registers).

Test-Data-In Test-Data-Out
[l

1 F
| J
Data-in — G Ack-in
ko SRl sTCL [SR Q

Data-out
—

Y

Test-Data

R

J - Join module , F- Fork module
R - Reqister module , SR . Shift register

Figure 11. Implementation of test hardware for

~ e - fme L .

Data-Qut
Conirol A A A
¥ 7 ¥
do ctl e do ctl * e do ctl
Serial-in e SO p—e— —— si 80— ——] 5i 50 ___}Serlal-Out
di d_i di
Data-In
(a)
SH1 SH2 Dout
Sin J_ _.I_ Sout

ol T

HLD
Din (b)
T C/L 4
TEST »_ @, SHIFT —> SH1
SHIFT @, + TEST > SH2
®; SHIFT [H—> HLD
LOAD S—
@9 LOAD+TEST [» LD
A
2 @,
O>—

{c)
Flgure 12
(a) Block diagram of a shift register
{b) NMOS implementation of a shift register call
(c} Contro! togic for the shift register

5. Conclusion

This paper presents a strategy for designing testable self-timed systems. The types of faults m the
system can be either stuck-at or bridging faults, as it is assumed that the high-level design and
simulation steps can guarantee a system free of logical errors. Since bridging faults are complicated
to deal with, additional layout rules are introduced in order to minimize their occurrence. At this stage,
only stuck-at faults prevail. Two techniques are employed for testing self-timed combinational logic
circuits and self-timed state machines. Exploiting the structure of the C- element, we incorporate test
modes that can configure G-elements as AND or OR gates. The result is one can obtain two
combinationat logic networks for testing, thus reducing substantially the number of test vectors
required for testing stuck-at faults. The second technique for testing state machines is similar to
others like L.SSD, etc., it allows testing for stuck-at faults of the combmatlonal logic and feedback

paths of a state machine.

An issue of considerable interest which has not been addressed in this paper is the hardware
technique allowing on-line testing of self-fimed systems. In a self-timed system, each self-timed
module interacts with its neighbors by hequest/Acknow!edge signal pairs, and it asserts them at a
rate determined by internal delays of the module. By holding back the assertion of the acknowledge
signal of the communication lines, one can temporarily stops the system to perform some on-line
testing. Normal operation resumes once the acknowledge signal is released. This is analogous to
stoppmg the clock’ in a synchronous system, but is much more flexible and localized. A strategy
needed to realize this technique can be quite involved, and the hardware required can be substantial:
however, the potential advantages for testing self-timed systems should make this approach

favorable.
6. Acknowledgments

I would like to thank Prof. Jack Dennis for his encouragement, support and criticism. Thanks are also
due to Bill Ackerman, Andy Boughton for helpful discussions. Lastly, much insights have been
gained through discussions with Willie Lim, whose interest in this subject provides a strong

motivation for me.

217 .-

6. References

10.

Baker, C. M., Artwork Analysis Tools for VLSI Circuits, VLSI Memo 81 -16, June
1980,

Batali, J. and Hartheimer, A., The Design Procedure Language Manual, VLSI
Memo 80-31, September 1980.

BryantR. E., MOSSIM : A Logic Level Simulation for MOS LS|, VLSI Memo
81-47, April 1981.

Eichelberger.' E. G., and Williams, T. W., A Logic Design Structure for LS|
Testability, Proc. 14th Design Automation Conference, ACM, New York, June
1977 , pp 462-468.

Frank, E. H. and Sproull, R. F., Testing and Debugqging Custom Integrated
Cirguits, Computing Surveys, Vol. 13, No. 4, Dec. 1981, pp 425-451 ,

Galiay,J., Crouzet, Y. and Vergniault, M., Physical Versus Logical Fault
Models in MOS LSI Circuits Impact on Their Testability, IEEE TC Vo! C-29, No.
6, June 1980, pp 527-531.

Leung, C. K. C. and Lim, W. Y-P., PADL . A Packet Architecture Description

Language, Preliminary Reference Manual. MIT-LCS Computation Structures
Group, October 1981.

Mead and Conway, Introduction to VLSI Systems, Addison-Wesiey, Reading
Mass. 1980.

Mueldorf, E. I. and Savkar, A. D.,LSi Logic Testing - An Overview, IEEE TC Vol
C-30, No. 1, January 1981, pp 1-16.

Ries, P. S., A VLS| Implementation of a Two by Two Router, VLS| Memo 80-22,
June 1980.

11,

12.

13.

.-18.-

Seitz, C., System Timing, Chapter 7 of Mead and Conway.

Singh, N. P., A Design Methodology for Self-Timed Systems, MIT-LCS TR-258,
February 1981.

Vladimirescu, A., Newton, R. A. and D. O. Pederson, SPICE Version 2F.1
User's Guide, Departme:nt of EECS, UC Berkeley,

