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Abstract

Data flow computers differ sufficiently from conventional computers that new concepts of program
structure. and new programming languages and methodology are needed for their effective utilization. At the
MIT .Laboratory for Computer Science, we have constructed an engihecring model consisting of eight
processing units coupled by a packet communication network !Juilt of two-by-two routers. This facility is
heing used to study issues and cvaluate alternatives in the design of high performance data flow computing
systems.  Principal aspects being addressed are: (1.) development of good machine code structures for
computations basic to numerical physics problems, especially stfuctures capable of handling massive data
bases composed of large arrays of numerical data: (2.) the design of instruction sets suitable for data flow
processing clements; (3.) evaluation of packet-switched interconnection networks; (4.} the methodologies to
be used for designing the custom devices required in a prototype macﬁine and providing the level of fault

tolerance to achieve reliable system operation.
1. Introduction

[t is gencrally agreed that any substantial increase in the computational capacity of high pf:rfonnance
computers will require the exploitation of parallelism using to advantage the large density of circuits possible
~with advancing integrated circuit tcchnology.‘ Conventional approaches using overlapped instruction

execution, vector processing architecture, or large coordinated arrays of processing elements have reached the

1. This research was supported by the Department of Energy under grant number DE-AC02-79ER 10473 and
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limits of their potential and have failed to provide resolution of the problems of programmability. We have
advanced data flow concepts [3, 6] of computer architecture to address the challenge of producing the next
genceration of high performance machines. '

In a data flow computcr, instructions of the stored program are activated by arrival of the data values on
which the instruction is to act. 'The machine’s memory contains instruction cells, each containing an
instruction and space to reccive operand values. There is no program counter in a data flow computer; since
instructions are activated by data, many instructions may be available for execution at once, allowing for a
high degree of concurrency in program operation. The limit on the level of parallelism that can be achieved is
that available in computations to be run. We have found that many important problems offer the parallelism
of computation nceded to fully utilize a high performance data flow computer.

Because data flow computers are a radical deparwre from conventional computer architectures, new
tools of programming and new design methodologics are required. Major issucs being addressed are devising
strategies or algorithms for translating data flow programs expressed in an applicative programming language
into cfficient machine level program structures; and developing practical hardware designs embodying the
principles of packet communication architecture. The question of what features for fault twlerance should be
built into the architecture to achicve the desired degree of reliability must also be addressed. The MIT D_ata
Flow Engincering Model has been constructed to support the study of these a;1d other issues.

We begin in Scction 2 with a brief review of the architecture we have proposed for high performance
data flow computers. The engincering model constructed to study and evaluate various software and
hardware aspects of data flow computers is described in Section 3. The software systems we have developed
to control and monitor operation of the engineering model, and to translate and link data flow source
programs written in the applicative language VAL are outlined in Section 4. The engineering mode] has been
useful for studying a number of implementation issues. Three of these areas, ciiscussed in Sections 5 through
7, are: the design and generation of run-time structures for data flow programs; evaluation of design

methodologies for asynchronous systems; and development of strategies for testing and fault diagnosis.

2. Data Flow Overview

In a data flow computer, operations of a stored program are coded in instruction cells containing an
opcode, tields for storing operands, destination ficlds, and control information. When an instruction cell is
executed or “fired”, onc or more result packets are sent to target instruction cells specified by the destination
ficlds. Since each cell holds only one set of operand vatues, the stored program must be structured so that an

instruction ccll can fire only when its target instruction cells have space for storing the result values. For this



purpose, cach instruction cell may be fired only when it has received an acknowledge signal from each
instruction cell that received its previous result values. A count of acknowledge signals received and the value
to which this count must be resct are part of the control information in cach instruction cell.

A data flow program, represented as a coliection of instruction cells, is essentially a directed graph with
instruction cells as the nodes, and an arc for each destination field of an instruction cell. Such a graph is
termed a data flow graph. Figure | shows an cxample of a data flow graph for a very simple data flow
program computing the sum of the two produets 4*B and C'*D. In the firing of instruction cells, the result
values being sent can be viewed as "tokens™ or packets passed along the arcs. In the figure it can be seen that
after the firing of the two multiplier instruction cells, tokens are presented to the addition instruction cell
which then fires to produce the desired sumn.

Many forms of data flow machines have been proposcd- and several experimental models have been
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Figure 1. An Example of a Data Flow Graph



PE : Processing Element
FU : Functional Unit

AM : Array Memory

RN : Routing Network

Figure 2. A Large Secale IData Flow Machine

built [S]. The form of data flow computer we have advocated for high performance computation is shown in
Figure 2. In this physical structure, there are four basic kinds of components -~ processing clements,
functional units, array memories, and interconnection networks. The processing elements hold instruction

cells, determine when cells are ready for execution. and perform the simplest instructions. The functional




units perform the complex scalar operations including floating point operations. The cfficicnt handling of
large arrays of data is supported by the array memorics. These components are joined by interconnection
networks that forward information packets from unit to unit by a "store and forward" protocol. The data flow

engineering model is designed for emulating this and other similar architecture.
3. The Fngincering Model

The engineering model has the configuration shown in Figure 3. A PDP 11740 mini-computer serves as
"host” to a data flow subsystem consisting of eight identical proccséing units (PUs) connected by an 8-input,
8-output (i.e. 8 X 8) packet routing network. All components of the data flow subsystem, shown in Figure 4
arc on the host's UNIBUS. The communication among PUs and routers is asynchronous and packet oriented
while that between the host and the data flow subsystem is synchronous and bus oriented. The design of the
PU, routers, and routing network for the engineering model has been discussed in {7].

The host performs a number of supervisory functions. It loads the PUs with programs and data. The
states of the PUs can be controlled by the host for debugging and normal operations. Once programs are

loaded, the host may start the PUs and continuously monitor them until they indicate they are donc. The host
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Figure 3. Architecture of the MIT Data Flow Engincering Model
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Figure 4. Interconnection Structure of the Data Flow Processors

can read data from PUs and this is how the results of data flow computation are returned to the user. The

host can also set the states of the routers for testing purposes. These capabilities are used by the host during

the running of diagnostic programs for the PUs and the routing network.



3.1 Processing Units

The PUs are general-purpose microprocessor-based computers capable of performing the usual
manipulations of data in their scratchpad registers, the data memory, and the communication ports. Each PU
is composed of a microprocessor (built from AM 2903, 2904 and 2910 chips) with 16 8-bit scratchpad registers
(forming the processor proper), 4K of 40-bit words of program memory, 64Kbytes of data memory, two pairs
of 8-bit wide communication ports, and a UNIBUS interface. Figure 5 shows a simplified architecture of the
PU. The program memory holds the microcodes for the PU. The data memory is used for storing the
information used by the emulated data flow processing clement.  The communications ports ar¢ used for
simulating byte serial packet transmission,

The flexibility of the processing units allows for quite a varicty of emulations. By writing suitable

microcode, one could emulate data flow computers {or other systems} in any way one desires.
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Figure 5. Structure of the Data Flow Processing Unit



3.2 Routing Network

To connect the PUs, we use an interconnection of Z-input 2-output (i.e. 2 X 2) switching clements or

routers. Transmission of packets through the routers is byte serial. Each byte of the packet is ta

gged with an

extra bit indicating whether the byte is the last byte or not. We refer to the 8 data bits and the last byte bitas a

packer byte. The communication protocol implemented uses two control signals; a ready

source to the destination to indicate arrival of the byte; and an acknowledge sign

signal is sent by the
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the source to acknowledge the réceipt of the byte. Hence the data paths between ports of the routers are
comprised of 11 wires. The protocol works as follows. The ready and acknowledge lines are initially low.
The packet byte is then asserted on the data wires and the ready line is set high to indicate that a packet byte is°
available. Once the destination has acted on the data byte, it sets the acknowledge line high. In response the
source sets the ready line low. The destination then indicates readiness to receive the next packet byte by
resctting the acknowledge line.,

Each router is an asynchronous circuit that routes packets, transmitted byte serially, from an input port
to an output port. Figure 6 shows the structure of the router. The router ecstablishes a link for packet
transmission between one of its input ports and one of its output ports. Since packets may differ in length, the
link must remain established until all bytes of the packet have been transmitted. Each input port has a buffer
(the FIFO module) for holding 64 incoming packet bytcs.' Also associated with the input port is a
asynchronous state machine (the MASTER module in Figure 6} with six states: the initial state where the
input port is not connected to any of the output port; two staies for each output port (giving a total of four
states) for the cases where the packet byte being sent through is or is not the last one for the packet; and a
sixth state which is uscd when the packet length is greater than one. A tequest to establish a link is sent on
reccipt of the first packet byte (containing the destination address) by the MASTER module to _the
appropriate output port ARBITER module. The output port selected is determined by the value of the least
significant bit of the first packet byte. In the case where there are two compct:mg requests for the same output
port, only one of the input port is granted access to the output port. Meanwhile packet transmission through
the other input port is delayed until the output port is available. Based on the grant signal generated by the
ARBITER meodule, the appropriate input and output ports are connected via the OUTPUT module. Note
that if thérc is no contention for the same output port, packet transmission can proceed concurrently for the
two pairs of input and output ports.

The routing network used has the structure of a baseline network [20] as shown in Figure 4. For an
8 X 8 network, there is a total of 12 routers organized as 3 columns of 4 routers each. To completely address
all the 8 output ports, 3 bits are nceded. Hence only the least significant 3 bits of the destination address byte
of the packet is used. At the i-th stage, fori=0, 1 and 2, the Icast significant i-th bit of the destination address
byte is used. Since each router selécts an output port based on the value of the least significant bit of the
destination address byte, rotation of the byte must be performed from one stage to the next. Furthermore the
address byte must be rotated back to its original state before it leaves the network. To accomplish both forms
of bit rotation, the OUTPUT module of each router can be set to rotate all bytes through it by a fixed amount.
Hence for stages 0 and 1 the bits are rotated to the right by 1 while at stage 2, the last stage of the network, the
bits are rotated back (i.e. to the left) by 2 to compensate for the bit rotations by the carlier stages. This simple



scheme will work if the total number of bytes used docs not exceed 8, limiting the network size to be
256 X 256. Extension to larger networks can be accomplished by using a larger byte, by dropping address

bytes once used up, or by designing the 2 X 2 router o allow testing of the second byte.

4. Software System

The PUs and routers are all [70 devices on the PDP-11/40 computer, which uses the UNIX [15]
operating system. All operations involving the PUs and routers are supervised by programs running on the
PDP-11 host. These programs include extensive hardware diagnostics for, the PUs and routing network, and
the program APPL Y that supervises a data flow emulation.

The majority of the software involved in data flow emulation, however, runs on a DECsystem-20 with
the TOPS-20 operating system. This software, all written in CLU [13}, includes the micro-assembler for the
processing units [1] and a variety of translation, optimization, simulation, and diagnostic programs for
manipulating VAL programs. Files produced on the DECsystem-20 are sent to the PDP-11 via a local
communication nctwork.

.Sevcral projects are studying the automatic translation of VAL programs into instruction cell templates,
and some studies of hand gencrated code for certain benchmark applications are being carried out. The
supporting software tools are shown in Figure 7. The program VAL performs syntax and data type analysis of
the source program and produces a parse tree file. The VALSYS program can directly interpret this, if
desired, to check functional correctness of the source program. The graph generator {actually several
programs) converts the parse tree file into instruction cells and codes the {csult into text in standard format for
transmission to the PIP-11 host machine. In addition to these programs, all running on the DECsystem-20,
there are also the microcode assembler ASA and a simulator S7AM for the PUs. AN microcode for the PUs is

assembled on the DECsystemn-20. After translation into a standard textual form, they are transmitted to the

PDP-11.

On the PDP-11, the utility programs UI.OAD and APPLY load the files into microstore and data
memory, and monitor processing unit operation. Once a processing unit is loaded and started, it emulates the
<clls in its data memory, listening for incoming packets containing data or acknowledge tokens. These packets
can comg cither from the routing network (that is, from another PU) or from the PDP-11. The Jatter path is
for the initial arguments to the program.

APPLY prompts the operator for the arguments to the VAL program, using information contained in
the instruction cell file, formats those arguments into packets, and sends the packets to the appropriate PUs.

The tokens then flow through the data flow graph under control of the PUs. When the final results have been
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Figure 7. Software System

computed, the PUs send packets to the PDP-11. APPLY decodes these packets and displays the results, along

with statistics that it reads from the PUs’ data memeory.
5. Run-time Structures for Data Flow Programs

The engineering model is being used to explore several techniques for structuring data flow programs to
~ exploit concurrency and to process large collections of numerical data. So far these projects use common data
formats (described below) for instruction cells, and use the same rules for cell firing and the cxecution of

non-array instructions.



5.1 Instruction Cells

In the standard emulation, cach instruction cell is represented by a 32 byte block of data memory,
containing a part (the "template”) that docs not change once loaded, and a part that is manipulated by the
PU. The former includes the opcrauon code, information indicating presence and values of constant
operands, the destination addresses of cells to which the result of a firing should be sent, and the number of
acknowledgments that must be reccived before the cell is ready to fire again. The latter includes the values of
the operands that have been received (4 bytes, or 32 bits each), the presence of received operands, and the
number of acknowledgments still being awaited. A typical instruction cclt is shown in Figure 8.

Celis become cnabled as a consequence of receiving operand or acknnw]édgmcm tokens, either from
the routing network or from other cells in the same PU, When this happens, the cell is added to the end of
the queue of cnabled cells. The microcode services this queue, exccuting the instructinn in the cell at the head
of the queue. It then sends the results to the indicated destinations, cither through the routing network for

cells in other PUs, or directly to the cells for "local” destinations.
5.2 Implementing Arrays in Data Flow Processors . -

Several techniques for handling arrays in data flow programs are being explored using the engineering
model. These involve dedicating one or more PUs to act as “array memory servers” loaded with special
microcode, and possibly altering the structure of the routing network. These projects will involve specialized
instruction cell operation codes, possibly with unusual firing rules,.and'special translation techniques for
producing the necessary instruction cells from the source program.

One such project [8] employs transmission of arrays fro_m one part of the program (the "producer”) to

OP CODE | NEXT ENABLED CELL PTR. \
OTHER CONTROL INFO.
ARGUMENT 1
ARGUMENT 2
ARGUMENT 3

DESTINATION ADDRESSES

Figure 8. A Typical Instruction Celt
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another part (the "consumer”) as scquences of values transmitted scrially. This is possible when the array
elements are produced and consumed in regular sequential order, as is oftc.n the case. This approach to array
computation is motivated by the analysis of benchmark programs in hydrodynamics and weather forecasting
[18). The type of array storage actually required in such a case is a "FIFO buffer pipeline”, and operation
codes have been developed to simulate such ﬁ' pipeline by sending tokens to the memory server for later
retricval.

Another project to be implemented in the future invoives array operations which, at the level of the
emulated data flow computer, closely resemble the high-level array operations of the VAL language. The
array "tokens” in this case will be pointers to arrays allocated dynémically by the server. Mcemory
management will be performed by using reference counts on all arrays. The efficiency of this scheme will be
cnhanced by interlcaving the arrays, and appropriate transformations will be made to the VAL program to

hundle the interleaved "slices" efficiently [2].

6. Design Mcthodology for Asynchronous Systems

-ln the engincering model, the data flow subsystem is composed of 8 independently clocked data ﬂowr
processors. As the number of processors increases, it is infeasible to implement a data flow systcm running on
a single clock. The large distance between processors will severely limit the speed of the clock and hence the
system performance if the synchronous approach is taken. If the system components are independently
clocked. then every data transmission between these components have to be synchronized with respect to the
clock of the receiving component. This can lead to synchronizer failure. [4] where the receiving party can at
times fail to detect all the arrivals of such externally generated data. The higher the data or clock rate the
more likely it is for synchronizer failure to occur. On the other hand if the system is totally asynchronous,
there is no need for such synchronization as no clocks are used. The only problem of a similar nature that can
occur in asynchronoué system is the arbitration of signals competing for the same resource — e.p. the
arbitration performed by the ARBITER module of the 2 X 2 router described in Section 3.2. The time it
takes to perform the arbitration is unbounded though the mean arbitration time is smail. However this
problem only arises when there is cuntentibn of requests. For our form of data flow system, arbitration is
required in the routing network. Furthermore -arbitration occurs less frequently than synchronization for
multi-clock systems. This is because, for independently generated data, the data rate at each input port of a
router is much higher than the rate of occurrence of contentions for an output port in the router. The above
reasons have led us to explore asynchronous systems for implementing data flow machines — for example

multi-clock systems, asynchronous systems, self-timed schemes [16] or "stoppable” clock schemes.
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The design of asynchronous systems on the scale of large data flow computers requircs new approaches
and methodologies. By restricting the sct of primitive building blocks to be a small. well understood and
correctly implemented collectior of clements, a methodology [10, 17] can be developed for the design of large,
correct asynchronous systems built from these primitive blocks. One methodology we are developing starts
with a high level description written in the language PADI[12] which is designed for the structural and
functional specification of packet communication systems. PADL has been used for specifying asynchronous
versions of the 2 X 2 router and parts of the processing unit. We have implemented the routers of our
engineering model as asvnchronous systems built from TTL parts, and an exploratory router chip has been
designed for NMOS fabrication.

Schemes using stoppable clocks have been in vestigated by a number of people [14. 16, 19]. Such an
approach is a compromise between the famitiar and cost-effective synchronous approach and the radically
different. asynchronous approach. Stoppable clocked systems seem to have the attractive features of both
approaches.  Using stoppable clocks, system components can be designed as synchronous finite state
machines and hence can bcneﬁr from the vast experience that has been accumulated in the field. Finally,
synchronization schemes are possible using stoppable clocks that avoid the possibility of synchronizer fallure

that is always present in multi-clocked system.
7. Test Strategics and Fault Diagnosis

The use of asynchronous circuits requires new approaches in test strategies. Restricting the class of
faults to single stuck-at faults, a test strategy has been developed for testing the router [11]. Such faults can
cause errors in the packet data value, and failures in the communication protocol. Errors in data value can be
detected by providing redundancy in the data transmitted such that the redundant data can be used for
checking the integrity of the data sent. Failures in the communication protocol are due to either the source or
destination failing to send the proper signal (ready or acknowledge signal), or either of them failing to detect
signals sent by the other party. Such failures are detected using a time-out mechanism. A fault in the last
byte bit may have both kinds of effects, The fault can be viewed as occurring in the packet byte but it can
cause cither the fragmentation of a packet into smaller packets or a packet with no last packet byte. All these
have undesirable effects on the operation of the routing network. A fault diagnosis strategy has been
developed and implemented for the network of the engincering model.

The original design of the router does not provide facilities for testing and fault diagnosis. Such
facilities have been added and implemented in the engineering model. All the facilities are available to the

host. They include capabilities for router initialization which is important for the proper initialization of the
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whole routing network. Since thé routers are asynchronous, those at the preceding stages of the network must
be initialized before those at the current stage. Otherwise the uninitialized outputs of the carlier stages will
cause the routers being initialized to be set in some unknown and very ofien erroncous states. fo aid in the
debugging of the router, each of its modules can be isolated for testing purposes. The test strategy of the
network very often calls for the establishment of privileged paths. For example if a router is suspected of
being faulty, privileged paths are used to send test packets through it and to receive its output packets, if there
are any. Very often in checking the integrity of established paths, packets are Sent to those output ports of the
routers that have already been conncected to the input ports. 'The arrival of the new packets should not cause
the established paths to be broken. To do this test, each router can be set to a special mode where the flow of
packets through either input ports can be interrupted. Subsequent packet flow through the interrupted path

can be triggered by the host. The host can also read status information from the routers.
8. Conclusion

The engineering model is a uscful tool in our research on data flow architecture. Its flexibility has
provided us with a powerful means for exploring trade-offs and issucs in the implementation of a data flow
machine. The experience gained from the engineering model will be useful in the design of practical
full-scale data flow systems. For example the design of a VLSI version of the data flow processors or routers
will be influenced by the experience gained from the run-time structures and the performance of the routers
and routing network of the engineering model. Also the implementation of array memorics in VILSI will be
guided by the success of the array implementation schemes being explored. In addition, the engineering
model will support studies of new schemes for achicving fault tolerance in computer systems employing
packet architecture {9].

The “hands on" experience provided By the ability to construct and run data flow graphs on an actual
hardware system has improved our general ﬁndcmtanding of data flow machines and increased our

confidence in the importance of these concepts for future computer systems.
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