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ABSTRACT 

A major issue in many applications is how to preserve the 
consistency of data in the presence of concurrency and hardware 
failures. We suggest addressing this problem by implementing 
applications in terms of abstract data types with two properties: 
Their objects are atomic (they provide serializability and 
recoverability for activities using them) and resilient (they survive 
hardware failures with acceptably high probability). We define 
what it means for abstract data types to be atomic and resilient. 
We also discuss issues that arise in implementing such types, and 
describe a particular linguistic mechanism provided in the Argus 
programming language. 

1.  I n t r o d u c t i o n  

There are many applications in which the manipulation and 
preservation of long-lived, on-line data is of primary importance. 
Examples of such applications are banking systems, airline 
reservation systems, office automation systems, database 
systems, and various components of operating systems. A major 
issue in such systems is preserving the consistency of on-line data 
in the presence of concurrency and hardware failures. This paper 
is concerned with how to define and implement data objects that 
help provide needed consistency. 

To support consistency it is useful to make the activities that 
use and manipulate the data atomic. Atomic activities are referred 
to as actions or transactions; they were first identified in work on 
databases [5, 6, 8]. An atomic action is distinguished by two 
properties, indivisibility and recoverability. Indivisibility means that 
the execution of one action never appears to overlap (or contain) 
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the execution of any other action. One way of achieving 
indivisibility is to run actions serially. However, greater 
concurrency is desirable, provided the concurrent actions do not 
interfere with one another. Non-interference can be guaranteed if 
the effect of running the actions concurrently is the same as if they 
had been executed serially in some order. If this condition is true, 
the actions are said to be seria/izab/e [8, 23]. 

Recoverabi/ity means that the overall effect of an action is 
all-or-nothing: either all changes made to the data by the action 
happen, or none of these changes happen. An action that 
completes all its changes successfully commits. Otherwise it 
aborts and whatever changes it made are discarded. 
Recoverability allows the user on whose behalf an action runs to 
decide to discard the effects of that action. In addition, it allows 
an action to work properly even if there is a hardware failure 
during its execution and allows the system to abort an action if 
necessary (e.g., to resolve a deadlock). 

Atomicity is actually achieved via the shared data, which 
must be implemented in such a way that using actions appear to 
be indivisible and recoverable. Data objects that support atomicity 
will be referred to as atomic objects. 

Atomicity alone is not sufficient to provide consistency, 
because it only concerns running actions. In addition, the data 
must be resilient: the probability of loss of data due to a hardware 
failure such as a node or media crash must be acceptably small. 
Resilient data are needed to ensure (with high probability) that 
effects of committed actions are not lost in crashes that occur 
later. 

Up to now, consistency has been provided only in a few 
database systems (e.g., see [11]) and file systems [27, 24]. In 
these systems, implementors of applications are limited to using 
just the types of atomic objects provided by the system, e.g., data 
base relations or files. These objects are not always the most 
convenient (or efficient) for implementing applications. We 
advocate a different approach: implementors should be free to 
implement their applications in terms of whatever kinds of data 
objects they find convenient. However, the data objects chosen 
must support consistency, i.e., they must be atomic and resilient. 

The purpose of this paper is to discuss resilient atomic 
objects, We begin in Section 2 by defining what it means for an 
object to be atomic. In Section 3 we introduce a model of 
computation to serve as a basis for discussing the implementation 
of atomic objects; this model is taken from the Argus programming 
language that we'are developing [21]. Section 4 is concerned with 
implementing atomic objects under the assumption that hardware 
failures never occur. Then in Section 5 we admit the possibility of 
failures and discuss implementing resilience. Finally we conclude 
with a discussion of open problems. 
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2 .  A t o m i c  Types 

An atomic data type, like a regular abstract data type [18], 
provides a set of objects and a set of operations. An atomic type 
is an abstraction, and hence is described by a specification; it may 
be implemented by a program. As with regular abstract types, the 
operations provided by an atomic type are the only way to access 
or manipulate the objects of the type. Unlike regular types, 
however, an atomic type provides serializability and recoverability 
for actions that use objects of the type. For example, relations in 
most relational databases provide operations to add and delete 
tuples, and to test for the existence of tuples; these operations are 
synchronized (for example, using two-phase locking [8]) and 
recovered (for example, using logs [11]) to ensure the atomicity of 
actions using the relations. 

A specification of an atomic type describes the behavior of 
objects of the type as observed (via calls on the operations of the 
type) by the users of those objects. An important question about 
the specification of an atomic data type is whether the use of the 
word "atomic" is justified: Are the type's objects defined to 
behave in a way that ensures the atomicity of actions using the 
objects? This question has received intense study for a few types 
(like files and relations) [23]. Experience with implementing these 
types has shown that the problem is difficult and subtle [8, 11]. If 
programmers are to implement new, user-defined atomic types, it 
is especially important to understand in general what behavior is 
acceptable for an atomic type. In this section we discuss how to 
specify atomic types, and what it means for a type to be atomic. 

An execution of a sequential system is often viewed as a 
sequence of operations. The legal executions are described by 
the specifications of the types that provide the operations; these 
specifications often consist of preconditions and postconditions 
for each operation (e.g., see [13]). An execution of a concurrent 
system is more Complicated: each process executes a sequence 
of operations, but the operations executed by different processes 
may interleave or overlap. To specify the behavior of a type in a 
concurrent system, it is often convenient to use the events 
corresponding to the invocations and returns of operations as the 
steps of execution sequences. In systems of atomic actions, the 
events corresponding to the commits and aborts of actions must 
be considered as well. If the type is to be atomic, the execution 
sequences must be sufficiently constrained so that the actions in 
any global execution sequence (one involving actions invoking 
operations at many objects, possibly of different types) are 
serializable and recoverable. 

We may view a specification of an atomic type T as 
describing a set S(T) of execution sequences. Similarly, an 
implementation I of an atomic type, perhaps described by a 
program in some programming language, may be viewed as 
describing a set S(I) of execution sequences. We define 
correctness as follows: An implementation I of a type T is correct 
if S(I) is a subset of S(T). This notion of correctness is analogous 
to partial correctness for sequential programs: an implementation 
is constrained to do only what is permitted by the specification, 
but it may actually do less. In this sense the specification may be 
viewed as describing permissible concurrency. In fact, it may be 
impractical or undesirable to build an implementation that allows 
all the executions permitted by its specification. For example, 
neither the built-in atomic types in Argus nor the implementation 
presented later in this paper provides as much concurrency as is 
permitted by its specification. 

Our notion of correctness does not permit a specification to 
require that certain things must happen; such requirements are 
called liveness or service properties. It seems useful to specify 
these properties separately from safety properties such as 

atomicity. We give an example of a service property in section 4, 
but do not discuss this general class of properties in detail in this 
paper. 

Note that atomicity of actions is a global property, while 
atomicity for a type must be a local property: it deals only with the 
events (invocations and returns of operations and commits and 
aborts of actions) involving the particular type. Such locality is 
essential if atomic types are to be specified and implemented 
independently. There are many possible local atomicity properties 
that result in global atomicity. In this paper we will describe a 
particular local atomicity property that is used in the programming 

Argus. 1" This property is based on several assumptions language 
about the structure of implementations of types; we discuss these 
assumptions in section 2.1. Then in section 2.2 we describe the 
local atomicity property in detail, thus defining what it means for a 
type to be atomic. 

2.1 Assumpt ions  

Implementations of atomic types can be characterized by the 
time at which atomicity of actions is enforced. Optimistic 
implementations let all operations proceed (except perhaps for 
some local mutual exclusion) in the hope that atomicity will not be 
violated; thus the term "optimistic" [15]. If atomicity is violated, 
actions must be aborted. This must be done by the time they try to 
commit, and may be done earlier if the violation is detected earlier. 
In contrast, pessimistic implementations let operations proceed 
only if doing so cannot violate atomicity; otherwise, operations 
must be delayed. It is not clear which of these approaches is more 
efficient. In this paper we will assume that a pessimistic approach 
is used. 

Implementations of atomic types can be further 
characterized by the manner in which serializabUity of actions is 
ensured. Static, or timestamp-based, implementations assume 
that a global ordering of actions is given a priori by an assignment 
of a unique timestamp to each action. The implementations then 
ensure that actions are serializable in the order determined by 
their timestamps. A example of a static system is described in 
[25]. Dynamic implementations allow the serialization order to be 
determined by what the actions do. For example, if one action 
reads some information written by another, then the former action 
must be serialized after the latter. Each of these approaches has 
advantages [22, 25]; hybrid approaches may be especially 
effective [1]. In this paper we will assume that a dynamic 
approach is used. 

We make two additional assumptions about what it means for 
an action to commit. First, once an action has committed, we 
assume that it cannot be aborted. This rules out implementations 
in which aborts can "cascade" to already committed actions (e.g., 
see [29]). Second, once an action has committed, we assume that 
its effects are visible to actions that are still running. Thus 
implementations do not have to retain synchronization information 
for committed actions. 

Finally, we assume that an object cannot control when 
actions invoke operations on the object. In addition, actions that 
are not waiting for an operation invocation to return are free to 
commit at any time. Thus, objects must ensure serializability by 
delaying the returns of operations invoked by actions, and not by 
refusing to commit an action when it completes. 

1. Detailed justification of this and other local properties, 
including ones based on different or weaker assumptions, is given 
in [28]. 
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2 . 2  A t o m i c i t y  

In writing specifications for atomic types, we have found it 
helpful to pin down the behavior of the operations, initially 
assuming no concurrency and no failures, and to deal with 
concurrency and failures later. In other words, we imagine that 
the objects will exist in an environment in which all actions are 
executed sequentially, and in which actions never abort. This 
approach is particularly useful in reasoning about an action that 
uses atomic objects. The atomicity of actions means that they are 
"interference.free," so we can reason about (the partial 
correctness of) an individual action without considering the other 
actions that might be sharing objects with it [3]. This reasoning 
process is essentially the same as for sequential programs; the 
only information required about objects is how they behave in a 
sequential environment. As an example, an informal sequential 
specification of some operations on atomic arrays in Argus is 
described in Figure 1. These arrays are similar to CLU arrays [20], 
and bear some resemblance to files in that they can grow and 
shrink. 

Given the sequential specification of the operations of a 
type, we need to define the execution sequences that are 
permitted by atomicity. To achieve atomicity, we impose two 
requirements on these execution sequences. To support 
recoverability, we require that actions can observe the effects of 
other actions only if those actions committed. 1 This requirement 
implies that the results returned by operations executed by one 
action can reflect changes made by operations executed by other 
actions only if those actions committed. For example, in an atomic 
array a, if one action performs a store(a, 3, 7), a second action can 
receive the answer "7" from a call of fetch(a, 3) only if the first 
action committed. 

This requirement supports recoverability since it ensures 
that effects of aborted actions cannot be observed by other 
actions. It also supports serializability, since it prevents 
concurrent actions from observing one another's changes. 
However, more is needed for serializability: operations executed 
by one action cannot invalidate the results of operations executed 
by a concurrent action. For example, suppose an action A 
executes the size operation on an atomic array object, receiving n 
as the result. Now suppose another action B is permitted to 
execute addh. The addh operation will increase the size of the 
array to n + 1, invalidating the results of the size operation 
executed by A. Since A observed the state of the array before B 
executed addh, A must precede B in any sequential execution of 
the actions (since sequential executions must be consistent with 
the sequential speci!ications of the objects). Now suppose that B 
commits. By assumption, A cannot be prevented from seeing the 
effects of B. If A observes any effect of B, it will have to follow B in 
any sequential execution. Since A cannot both precede and 
follow B in a sequential execution, serializability would be violated. 

To state our requirements more concretely, let us begin by 
considering a simple situation involving two concurrent actions 
each executing a Single operation on a shared atomic object O. 

1. Note that this requirement could be weakened to allow an 
action to observe the effects of another action that had not yet 
committed, but then an abort of the latter action would force an 
abort of the former. This would violate our assumption that 
actions should be free to commit unless they are waiting for a 
pending invocation, since the former action can commit only if the 
latter action also commits. 

Fig. 1. Partial specification of atomic arrays.  

Here T is an arbitrary type. 

new( ) returns (atomic_array[T]) 
ef fect  returns a new, empty atomic array with low bound O, 

high bound -1 and size O. 

low (a: atomic_array[T]) returns (int) 
e f fect  returns the current low bound of a. 

high (a: atomic_array[T]) retu rns (int) 
ef fect  returns the current high bound of a. 

size (a: atomic_array[T]) returns (int) 
ef fect  returns the current size of a. 

addh (a: atomic_array[T], x: T) 
ef fect  extends a by appending x on the high end; 

the current high bound and size of a increase by 1. 

addl (a: atomic_array[T], x: T) 
ef fect  extends a by appending x on the low end; the current 

low bound of a decreases by 1, 
and the size of a increases by 1. 

remh (a: atomic_array[T]) returns (T) signals (bounds) 
ef fect  if a is empty signals bounds. Otherwise removes 

and returns the element at the high end of a; 
the size and high bound of a decrease by 1. 

reml (a: atomic_array [T]) returns (T) signals (bounds) 
ef fect  if a is empty signals bounds. Otherwise removes 

and returns the element at the low end of a; the low 
bound of a increases by 1, while the size decreases by 1. 

store (a: atomic_array [T], i: int, x: T) s ignals (bounds) 
ef fect  if i is outside bounds of a signals bounds; 

othe .rwise stores x in the ith location of a. 

fetch (a: atomic_array [T], i: int) re turns (T) s ignals (bounds) 
ef fect  if i is outside bounds of a signals bounds; otherwise 

returns the object stored in the ith location of a. 

(The actions may be executing operations on other shared objects 
also: we are defining a local atomicity property, so we focus on 
the operations involving a single object 0.) A fairly simple 
condition that guarantees serializability is the following. Suppose 
0 is an object of type T. 0 has a current state determined by the 
operations performed by previously committed actions. Suppose 
01 and 02  are two executions of operations on 0 in its current 
state. (01 and 02  might be executions of the same operation or 
different operations.) If 01 has been executed by an action A and 
A has not yet committed or aborted, 02 can be performed by a 
concurrent action B only if Ot and 02 commute: given the 
current state of O, the effect (as described by the sequential 
specification of T) of performing 01 on 0 followed by 02 is the 
same as performing 02  on 0 followed by 01. By "effect" we 
mean both the results returned and any modifications to the state 
of O. 

The intuitive explanation of why the above condition works is 
as follows. Suppose 01 and 02 are performed by concurrent 
actions A1 and A2 at O. If Ot and 02 commute, then the order in 
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which A1 and A2 can be serialized does not matter at O. If A1 is 
serialized before A2 then the local effect at O is as if O1 were 
performed before 02, while if A2 is serialized before A1, the local 
effect is as if 02 were performed before O1. But these two effects 
are the same since O1 and 02 commute. 

Notice that the common method of dividing operations into 
readers and writers and using read/write locking works because it 
allows operations to be executed by concurrent actions only when 
the operations commute, Our condition permits more 
concurrency than readers/writers because the meaning of the 
individual operations and the arguments of the calls can be 
considered. For example, calls of the atomic array operation addh 
always commute with calls of add/, yet both these operations are 
writers. As another example, store(O, i, e l )  and store(O, j, e2) 
commute if i ~ j. 

Note that we require that O1 and 02 commute only when 
they are executed starting in the current state. For example, 
consider a bank account object, with operations to deposit a sum 
of money, to withdraw a sum of money (w!th the possible result 
that it signals insufficient funds if the current balance is less than 
the sum requested), and to examine the current balance. Two 
withdraw operations, say for amounts m and n, do not commute 
when the current balance is the maximum of m and n: either 
operation when executed in this state will succeed in withdrawing 
the requested sum, but the other operation must signal insufficient 
funds if executed in the resulting state. They do commute 
whenever the current balance is at least the sum of m and n. Thus 
if one action has executed a withdraw operation, our condition 
allows a second action to execute another withdraw operation 
while the first action is still active as long as there are sufficient 
funds to satisfy both withdrawal requests. 

Our condition is similar to the commutativity condition 
identified in [2]. The condition in [2], however, appears to require 
that O1 and 02 commute in all possible states if they are to be 
executed by concurrent actions. This condition is more restrictive 
than ours, and does not permit two actions to execute withdraw 
operations concurrently. The greater generality of our condition 
may be important for achieving reasonable performance. 

Our condition must be extended to cover two additional 
cases. First, there may be more than two concurrent actions at a 
time. Suppose A1,...,An are concurrent actions, each performing 
a single operation execution 01,...,On, respectively, on O. (As 
before, the concurrent actions may be sharing other objects as 
well.) Since A1,...,An are permitted to be concurrent at O, there is 
no local control over the order in which they may appear to occur. 
Therefore, all possible orders must have the same effect at O. 
This is true provided that all permutations of O1 ,...,On have the 
same effect when executed in the current state, where effect 
includes both results obtained and modifications to O. 

The second extension acknowledges that actions can 
perform sequences of operation executions. For example, 
suppose action A executed addh followed by remh on an array. 
This sequence of operations has no net effect on the array. It is 
then permissible to allow a concurrent action B to execute size on 

the same array, provided the answer returned is the size of the 
array before A'executed addh or after it executed remh. To 
extend the definition, consider concurrent actions A1,..,,An each 
performing a sequence SI,...,Sn, respectively, of operation 
executions. This is permissible if all sequences Sil,Si2,...,Sin, 
obtained by concatenating the sequences $1 ,...,Sn in some order, 
produce the same effect. 

The set of execution sequences described by the sequential 
specification of the operations of a type is thus all sequences that 
satisfy the condition described in the preceding paragraphs. This 
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condition may be summarized in an inductive fashion as follows, 
indicating when it is legal to extend an execution sequence by 
allowing a pending invocation to return: Assume that the currently 
active actions AI,...,An have already executed sequences 
SI,...,Sn, respectively, of operation executions, and that some 
action A has a pending invocation. (Note that A is active since it 
has a pending invocation.) This invocation may be executed and 
allowed to return if, starting in the current state (defined by the 
operations executed by the actions that have already committed), 
all sequences Sil,Si2,...,Sin, obtained by concatenating the 
sequences $1 ,...,Sn in some order (where A's sequence has been 
extended by appending the new operation execution), produce 
the same effect. 

Note that in requiring certain sequences of operations to 
have the same effect, we are considering the effect of the 
operations as described by the specification of the type. Thus we 
are concerned with the abstract state of O, and not with the 
concrete state of its storage representation. Therefore, we may 
allow two operations (or sequences of operations) that do 
commute in terms of their effect on the abstract state of O to be 
performed by concurrent actions, even though they do not 
commute in terms of their effect on the representation of O. This 
distinction between an abstraction and its implementation is 
crucial in achieving reasonable performance, and is the basis for 
the example implementation to be presented in Section 4. 

3 .  M o d e l  of C o m p u t a t i o n  

In the remainder of the paper we will be discussing 
implementation of atomic objects. This discussion must be based 
on some model of computation. The purpose of this section is to 
define such a model. Our model is taken from Argus, a new 
language we are developing that provides atomic objects [21]. 
Argus is based on a number of decisions about how to implement 
atomicity and resilience. For example, we use 2-phase locking to 
order actions, and we keep redundant information in stable 
storage to achieve resilience. The Argus model satisfies the 
assumptions stated in Section 2.1; indeed, it is the reason why we 
made that particular set of assumptions. 

Argus is a language and system that supports distributed 
programs, i.e., pro'grams that run on a distributed hardware base. 
Each node in this base is an independent computer consisting of 
one or more processors and some local memory; the nodes may 
differ in the number and types of processors, the amount of 
memory, and in the attached I /O devices. The nodes can 
communicate only by sending messages over the network; we 
make no assumptions about the network topology. We will 
assume such a base in this paper because this allows us to 
address the consistency problem in its most general form. 

In Argus, an application is implemented from one or more 
modules called guardians. Each guardian consists of some data 
objects and some processes to manipulate those objects. The 
processes within a guardian can share the objects directly, but 
sharing of objects between guardians is not permitted. Instead a 
guardian provides access to its objects via a set of operations 
called handlers that can be called from other guardians. 1 
Arguments to handler calls are passed by value; it is impossible to 
pass a reference to an object in a handler call. This rule ensures 
that all references to an object are within that object's guardian. 

Each guardian resides at a single physical node, although a 
node may support several guardians. Guardians survive crashes 

1. A guardian is similar to a Simula class instance [4]. 



of their node of residence and other hardware failures with high 
probability, and are therefore resilient. When a guardian's node 
crashes, all processes within the guardian are lost, but a subset of 
the guardian's objects, referred to as the guardian's stable state, 
survk, es. After a crash, the guardian recovers with its stable state 
intact; it then runs a special recovery process to recover the 
remainder of its objects. Resilience is accomplished by copying 
the guardian's stable objects to stable storage [17] periodically, as 
discussed further in Section 5. 

In addition to guardians, Argus also provides atomic actions 
and atomic data types. Actions are the primary method of carrying 
out  computations in Argus. Actions terminate by either 
committing or aborting and are indivisible and all-or-nothing 
provided the only data shared among them is atomic. An action 
starts at one guardian but can spread to other guardians by means 
of handler calls. When an action completes it either commits at all 
guardians or aborts at all guardians. The Argus implementation 
ensures this atomicity property. 

Argus provides a number of built.in atomic data types, for 
example, atomic arrays and atomic records. We have chosen 
implementations for the built-in atomic types in Argus that are 
efficient but provide for less than maximal concurrency. For 
atomic arrays and the other built-in atomic types operations are 
classified as readers and writers, and reaclers and writers exclude 
one another in the usual way. Thus, for example, the array addh 
and add/operations are both writers and therefore exclude each 
other even though this is not necessary for atomicity. 

We use a locking approach to implementing serializability. 
Atomic arrays and the other built.in types are implemented using 
strict 2-phase locking [8]. The locks are acquired automatically 
when a primitive operation (like addh) is called by an action, and 
are held until the calling action terminates (commits or aborts). 
Recoverability is provided by making a copy the first time an 
action executes a writer operation. All changes are made to this 
copy. The copy ~'eplaces the original if the action commits; if the 
action aborts the copy is discarded. 

4 .  U s e r - D e f i n e d  A t o m i c  T y p e s  

The built-in atomic types in Argus are somewhat limited in 
their provision of concurrency. Users may very well specify new 
atomic types that permit a great deal of concurrency. If users 
were constrained to implementing new atomic types only in terms 
of the built.in atomic types, the desired concurrency could not be 
achieved. 

For example, consider the semi.queue data type. 
Semi-queues are similar to queues except that dequeuing does 
not happen in strict FIFO order. They have three operations: 
create, which creates a new, empty semi-queue; enq, which adds 
an element to a semi-queue, and deq, which removes and returns 
an arbitrary element e that was enqueued previously and has not 
yet been dequeued. 

Semi-queues have very weak concurrency constraints. Two 
enq operations commute with each other, as do an enq and a deq 
operation or two deq operations as long as they involve different 
elements. Thus many different actions can enq concurrently, or 
deq concurrently. Furthermore one action can enq while another 
deq's provided only that the latter not return the newly enq'd 
element. 

We impose the following service requirement on 
semi.queues: deq must eventually remove any element e that is 
eligible for dequeuing. We have used the semi-queue in a printer 
subsystem, in which actions Submit files to be printed, and the 
subsystem prints a file once the action that submitted it has 

committed. This constraint on the element returned by deq is 
enough for the printer subsystem to guarantee that each file 
submitted by an action that later commits will eventually be 
printed. 1 

The semi-queue data type could be implemented using an 
atomic array as a representation, e.g., 

rep=  atomic_array[elem] 
In this case, the implementation of enq would simply be to addh 
the new element to the atomic array. Since addh is a writer, an 
enq operation performed on behalf of some action A would 
exclude enq and deq operations from being performed on behalf 
of other actions until A completed. As observed above, the 
specification of the semi.queue permits much more concurrency 
than this. Note that the potential loss of concurrency is 
substantial since actions can last a long time. For example, an 
action that performed a~ enq may do a lot of other things (to other 
objects at other guardians) before committing. 

To avoid loss of concurrency, it is necessary to provide a 
way for users to implement new atomic types directly from 
non-atomic types. Users who implement atomic types will face a 
number of new problems, however, and these problems will 
influence the design of a linguistic mechanism to support 
user-defined atomic types. 

To some extent, the issues involved in implementing an 
atomic type are similar to .those that arise in implementing other 
abstract types. The implementation must define a representation 
for the atomic objects, and an implementation for each operation 
of the type in terms of that representation. However, the 
implementation of an atomic type must solve some problems that 
do not occur for ordinary types, namely: inter.action 
synchronization, making visible to other actions the effects of 
committed actions, and hiding the effects of aborted actions, 

A way of thinking about the above set of problems is in terms 
of events that are of interest to an implementation of an atomic 
type. Like implementations of regular types, these 
implementations are concerned with the events corresponding to 
operation calls and returns; here, as usual, control passes to arid 
from the type's implementation. In addition, however, events 
corresponding to termination (commit and abort) of actions that 
had performed operations on an object of the type are also of 
interest to the type's implementation. 

Linguistic mechanisms to support implementation of atomic 
types can be dlvided into two categories based on how 
information about termination events is conveyed to a tYpe's 
implementation. In the explicit approach, an implementation 
would find out about these events explicitly, e.g., by providing 
special commit and abort operations that are called by_the runtime 
system when actions commit and abort. Alternatively, in the 
implicit approach an implementation is not informed about action 
termination, but rather must find out about it after the fact. 

It is too early to predict what category of linguistic 
mechanism will turn out to be more successful. It is even too early 
to analyze the tradeoffs between the two categories; such analysis 
must wait until well-engineered examples of the categories are 
available for study. As always, we can expect the usual goals to 
be in conflict: ease of use, efficiency, expressive power, and 

1. This is not quite true when we consider failures: the action 
that dequeues a file to print it could abort every time, preventing 
any progress from being made. As long as failures do not occur 
sufficiently often to cause this situation, every file will be printed 
eventually. An intel:esting open question is how to state service 
requirements for systems that can fail. 
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simplicity. For example, an explicit mechanism requires the 
programmer to provide the additional commit and abort 
operations, and thus may appear to be less simple and harder to 
use than an implicit mechanism in which these operations are not 
needed. However, in an implicit mechanism it may be difficult to 
obtain needed information about past termination events, and this 
difficulty could actually cause the mechanism to be harder to use 
than an explicit mechanism. 

4 .1  I m p l e m e n t i n g  A t o m i c  T y p e s  in A r g u s  

In this section we describe how user-defined atomic types 
can be implemented-in Argus. We view Our mechanism as a first 
attempt to address the issues in this area. Some related work [26] 
addresses only the problem of achieving proper synchronization 
of actions, and not recovery or process synchronization issues. 

Our mechanism is based o.n the implicit approach, but it is 
quite low level, and more complex than we would like. The design 
was influenced primarily by considerations of efficiency and 
expressive power, and tradeoffs were made that favored these 
goals over simplicity, safety and ease of use. Our assumption is 
that only rarely are new atomic types implemented in terms of 
non.atomic types and therefore it is reasonable to require 
considerable sopl~istication of the programmer attempting such 
an implementation. 

Since we are following the implicit approach, the first 
question is how do programs find out about commit and abort 
events? Our answer is: through the use of objects of built-in 
atomic types. The representation of a user-defined atomic type 
will therefore be a combination of atomic and non-atomic objects, 
with the non-atomic objects used to hold information that can be 
accessed by concurrent actions, and the atomic objects 
containing information that allows the non-atomic data to be 
interpreted properly. The built-in atomic objects can be used to 
ask the following question: Did the action that caused a particular 
change to the representation commit (so the new information is 
now available to other actions), or abort (so the change should be 
forgotten), or is still active (so the information cannot be released 
yet)? The operations available on built-in atomic objects have 
been extended to support this type of use, as will be illustrated 
below. 

The use of atomic objects permits operation implementations. 
to discover what happened to previous actions and to synchronize 
concurrent actions. However, the implementations also need to 
synchronize concurrent operation executions. Here we are 
concerned with" process concurrency (as opposed to action 
concurrency), i.e., two or more processes are executing 
operations on the same object at the same time. 

.We provide process synchronization by means of a new data 
type called mutex. Mutex objects provide mutual exclusion, as 
implied by their name. A mutex object is essentially a container 
for another object. This other object can be pf any type, and 
mutex is parameterized by this type. An example is 

mutex[array[int]] 
where the mutex object contains an array of integers. Mutex 
objects are created by calling operation 

create = proc (x: T) returns (mutex IT]) 
.which constructs a new mutex object containing x as its value. 
The contained object can be retrieved later via operation 

get_value = proc (m: mutex [T]) returns (T) 
This operation delivers the value of the mutex object, namely (a 
pointer to) the contained T object, which can then be used via T 
operations. Get_value can be called via the syntactic sugar 
m.value where m is a mutex object. 

The seize statement is used to gain possession of a mutex 
object and (optionally) retrieve the contained object; 

seize expr / using dec/I do body end 
Here expr must evaluate to a mutex object. If that object is not 
now in the possession of a process, this process gains 
possession. Then, if the optional using clause is present, the 
object contained in the mutex is retrieved (via the get_value 
operation) and assigned to the new variable. The process then 
executes the body. Possession is released when control leaves 
the body. If some process has possession, this process waits until 
possession is released. 1 If several processes are waiting, one is 
selected fairly as the next one to gain possession. 

The seize statement as explained above is semaphore.like: 
ignoring the optiOnal using clause, it could be translated to 

P(m.sem) 
body 
V(m.sem) 

where m is the mutex object obtained by evaluating expr and we 
imagine this object has a semaphore as a component. However, 
the seize statement is more powerful than this because inside its 
body it is possible to release possession temporarily. This is done 
by executing the pause statement: 

pause 
Execution of this statement releases possession of the mutex 
object that was obtained in the smallest statically containing seize 
statement. The process then waits for a system determined 
amount of time, after which it attempts to regain possession; any 
competition at this point is resolved fairly. Finally, once it gains 
possession it starts executing in the body at the statement 
following ttle pause. 

Clearly the combination of seize with pause gives a 
structure that is similar to monitors [14]. However, pause is 
simply a delay; there is no guarantee that when the waiting 
process regains possession, the condition it is waiting for will be 
true. 2 The reason why we do not provide an analog of a monitor's 
condition variables is th e following: Often the conditions these 
processes are waiting for concern commit and abort events. 
These are not events over which other user processes have any 
control. Therefore, it would not make sense to expect user 
processes to signal such information to each other. 

4 . 2  I m p l e m e n t a t i o n  o f  S e m i - q u e u e s  

In this section we present an example implementation of the 
semi-queue data type described earlier. We use this example to 
illustrate how objects of built-in atomic type can be used to find 
out about the completion of actions, and how mutex can be used 
to synchronize user processes. 

The implementation appears in Fig. 2. The implementation is 
simply a CLU cluster [19, 20]. For simplicity we are assuming the 
elements in the semi.queue are integers. The plan of this 
implementation is to keep the enqueued integers in a regular 
(non-atomic) array. This array can be used by concurrent actions, 
but it is enclosed in a mutex object to ensure proper process 

1. A runtime check is made to see if possession iS held by this 
process. In this case, the seize statement fails with the exception 
failure ("deadlock"). 

2. In Mesa [16] there is similarly no guarantee when a waiting 
process awakens. 
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Fig. 2. Imp lementa t ion  of the Semiqueue Type 

semiqueue = cluster is create, enq, deq 

qitem = atomlc_variant[enqueued: Int, 
dequeued: null] 

buffer = array[qitem] 
rep = mutex[buffer] 

create = proc () returns (cvt) 
return(rep$create(bufferSnewO)) 
end create 

enq = proc (q: cvt, i: int) 
item: qitem : = qitem$make_dequeued(nil) 
aitern$change_enqueued(item, i) 
seize q using b: buffer do 

buffer$addh(b, item) % add new item to buffer 
end 

rep$changed(q) % notify system of modification to buffer 
% (this will be explained later) 

end enq 

deq = proc (q: cvt) returns (Int) 
cleanup(q) 
seize q using b: buffer do 

while true do 
for item: qitem in bufferSelements(b) do 

% look at all items in the buffer 
tagtest item % see if item can be dequeued by this action 

wtag enqueued (i: Int): qitem$change_dequeued(item,nll) 
return(i) 

end % tagtest 
end % for 

pause 
end % while 

end % seize 
end deq 

cleanup = proc (q: rep) 
enter topaction % start an independent action 

seize q using b: buffer do 
for item: qitem In buffer$~lements(b) do 

% remove only qitems in the dequeued state 
tagtest item 

tag dequeued: buffer$reml(b) 
others: return 
end % tagtest 

end % for 
end % seize 

end % enter .- commit cleanup action here 
end cleanup 

end semiqueue 

% dequeuod if action aborts, 
% enqueued if commits 

synchronization. All modification and reading of the array occurs 
inside a seize statement on this (~ontaining mutex object. 

To determine the status of each integer in the array, we 
associate with each integer an atomic object that tells the status of 
actions that inserted or deleted that item. For this purpose we use 
the built.in atomic type, atomic_variant. Atomic variant objects 
are similar to variant records. An atomic variant object can be in 
one of a number of states; each state is identified by a tag and has 
an associated value. Atomic variant operation make_t creates a 
new variant object in the t state; this state is the obiect's "base" 
state, and the object will continue to exist in this state even if the 
creating action aborts. Operation change_t changes the state (the 
tag and value) of the object; this change will be undone if the 

calling action aborts. There. are also operations to decompose 
atomic variant objects, although these are usually called implicitly 
via special statements. Atomic variant operations are classified as 
readers and writers; for example, changeJ is a writer, while 
make_t is a reader. 

In this paper, atomic variant objects will be decomposed 

using the tegtest  statement. 1 

tag tes t  expr 
{ tagarm } 

[o thers:body]  
end 

where 

tagarm :: = tagtype idn [ (dec/) ] : body 

tagtype :: = tag I w tag  

The expr must evaluate to an atomic variant object. Each tagarm 
lists one of the possible tags; a tag can appear on at most one 
arm. An arm will be selected if the atomic variant object has the 
listed tag, and the executing action can obtain the object in the 
desired mode: read mode for tag and write mode for wtag. If an 
arm can be selected, the object is obtained in the desired mode. 
Then, if the optional declaration is present, the current value of 
the atomic variant object is assigned to the new variable. Finally, 
the associated body is executed. If no arm can be selected and 
the optional o thers  arm is present, the body of the others  arm is 
executed; if the o thers  arm is not present, control falls through to 
the next statement. 2 

The semi.queue operations are implemented as follows. The 
create operation simply creates a new empty array and places it 
inside of a new mutex object. The enq operation associates a new 
atomic variant object with the incoming integer; this variant object 
will have tag "enqueued" if the calling action commits later, and 
tag "dequeued" if it aborts. Then enq seizes the mutex and adds 
the new item to the contained array. 

The deq operation seizes the mutex and then searches the 
array for an item it can dequeue. If an item is enqueued and the 
action that called deq can obtain it in write mode, that item is 
selected and returned after changing its status to "dequeued". 
Otherwise the search is continued. If no suitable item is found, 
pause is executed and later the search is done again. 

Proper synchronization of actions using a semi-queue is 
achieved by using the qitems in the buffer. An enq operation need 
not wait for any other action to complete. It simply creates a new 
qitem and adds it to the array. Of course, it may have to wait for 
another operation to release the mutex object before adding the 
qHem to the array, but this delay should be relatively short. A deq 
operation must wait until some enq operation has committed; thus 
it searches for a qitem with tag "enqueued" that it can write. 

1. In the syntax, optional clauses are enclosed with [ ] ,  zero or 

more repetitions are indicated with ~ "}, and alternatives are 

separated by ] 

2. The tagtest  statement can be used to discover information 
about concurrent actions, and thus violate atomicity (although we 
don't do this in the examples). There is another decomposition 
statement, tagwai t ,  that is safe in the sense that its use cannot 
violate atomicity. 
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The qitems are also used to achieve proper recovery for 
actions using a semi-queue. Since the array in the mutex is not 
atomic, changes to the array made by actions that abort later are 
not undone. This means that a deq operation cannot simply 
remove a qitem from the array, since this change could not be 
undone if the calling action later aborted. Instead, a deq 
operation changes the state of a qitem; the atomicity of qitems 
ensures proper recovery for this modification. If the calling action 
later commits, the qitem will have tag dequeued permanently. 
Such qitems, which are also generated by enq operations called 
by actions that later abort, have no effect on the abstract state of 
the semi.queue. Leaving them in the array wastes storage, so the 
internal procedure cleanup, called by deq, removes them from the 
low end of the array. 1 It seems characteristic of the general 
approach used here that reps need to be garbage collected in this 
fashion periodically. 

Cleanup cannot run in the calling action because then its 
view of what the semi-queue contained would not be accurate. 
For example, if the calling action had previously executed a deq 
operation, that deq appears to have really happened to a later 
operation execution by this action. But of course the deq really 
hasn't happened, because the calling action has not yet 
committed. 

To get a true view of the state of the semi-queue, cleanup 
runs as an independent action. This action has its own view of the 
semi-queue, and since it hasn't done anything to the semi-queue 
previously, it cannot obtain false information. The independent 
action is started by the enter  statement: 

enter  topact ion body end 
It commits when execution of the body is finished. 

An independent action like the cleanup action commits while 
its calling action is still active. Later the calling action may abort. 
Therefore, the independent action must not make any 
modifications that could reveal intermediate states of the calling 
action to later actions. The cleanup action satisfies this condition 
because it performs a benevolent side effect: a modification to the 
semi-queue object that cannot be observed by its users. 

5 .  R e s i l i e n c e  

Atomicity was discussed in Section 2 as if failures could 
never occur. However, failures do occur, and, in fact, can never 
be entirely prevented, which" gives rise to two problems: First, how 
do weextend specifications to describe resilience, and second, 
how do we implement resilience? This section addresses only the 
latter problem. 

If hardware were highly reliable, i.e., reliable enough that the 
probability of loss of information were extremely small, then the 
mechanism described above would be sufficient for implementing 
resilient atomic objects. It may be that hardware will be this 
reliable in the future, but not today: node and media failures are 
likely to lead to the loss of information. Therefore, some method 
of implementing data resilience in software is needed. 

Various methods of achieving resilience might be imagined. 
For example, every object might have one or more copies existing 
at different locations in the network, and actions would read and 
update the multiple copies in accordance with one of the known 
algorithms, e.g., Gifford's algorithm [9]. If one of the copies 
became unavailable because of a failure, some method of 
recovering that copy from one of the existing copies would be 
needed. 

1. A more realistic implementation would call cleanup only 
occasionally. 

We are using a different approach based on stable storage 
[17]. Each object has a backup copy kept on stable storage, 
which has the property that information entrusted to it is extremely 
unlikely to be lost. New backup copies must be written to stable 
storage for all objects modified by committed actions. This 
copying can happen when the change takes place, or after the 
change takes place; it must happen before an action can commit. 

Objects are kept in volatile memory while they are used by 
actions, as are locks and the copies made by writers for built-in 
atomic objects. If a node crashes, the locks and copies will be lost 
for all objects at that node. In this case, any action that used 
objects at that n()de and had not yet committed must be forced to 
abort. To ensure that the action will abort, a standard two-phase 
commit protocol [10] is used." In the first phase, an attempt is 
made to verify that all locks are still held, and to record the new 
state of each modified object on stable storage. If the first phase 
is successful, then in the second phase the locks are released, the 
recorded states become the current states, and the previous 
states are forgotten. If the first phase fails, the recorded states are 
forgotten and the action is forced to abort, restoring the objects to 
their previous states. 

When a physical node crashes, all guardians residing at that 
node become inaccessible. However, since copies of a guardian's 
objects reside on stable storage, a guardian is not destroyed by a 
crash. Instead when a node recovers, its guardians restart; the 
information in stable storage is used to restore the states of the 
objects. 

Both built-in and user-defined atomic objects must be copied 
to stable storage when the actions that modified them commit. 
This requirement raises the question of how the user controls 
what is written to stable storage. If we were using an explicit 
approach, the user might provide an operation that the system 
could call to cause writing to stable storage. However, in our 
implicit approach we must make do without such an operation. 
Our solution is to extend the meaning of mutex. 

So far, mutex has been used only for synchronization of user 
processes. Now it will be used for three additional functions: 
notifying the system when information needs to be written to 
stable storage, defining what information is written to stable 
storage, and ensuring that information is written to stable storage 
in a consistent state. 

The system knows when a built-in atomic object has 
changed: this can happen only if the committing action holds a 
write lock on the object or created the object. New mutex objects 
are also written to stable storage when the creating action 
commits. In addition, we provide mutex operation 

changed = proc (m: mutex[T]) 

for notifying the system that an existing mutex object should be 
written to stabie storage~ Calling this operation will cause m to be 
written to stable'storage by the time the action that executed the 
changed operation commits. Note that changed is not really 
needed; the system could keep track of all mutex objects used by 
an action (via the get_value operation) and write these to stable 
storage. But we are concerned that writing to stable storage is 
expensive and therefore should be avoided if possible. The 
changed operation allows the user to avoid copying of mutex 
objects that need not be copied (e.g., were only read). 

Copying a mutex object involves copying the contained 
object. By choosing the proper granularity of mutex objects the 
user can control how much is written to stable storage. For 
example, a large data base can be broken into partitions that are 
written to stable storage independently by partitioning it among 
several mutex objects. The changed operation can be used to 
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limit writing to stable storage to just those partitions actually 
modified by a committing action. 

Finally, mutex objects can be used to ensure that information 
is in a consistent state when it is written to stable storage. The 
system will gain possession of a mutex object before writing it to 
stable storage. By making all modifications to these objects inside 
seize statements, the user's code can prevent the system from 
copying the object when it is in an inconsistent state. 

In the semi-queue example in the previous section, the 
addition of a new qitem to the array by an enq operation certainly 
needs to be stably recorded if the calling action commits; 
otherwise no permanent record of the enq operation would exist. 
Thus the enq operation uses the changed operation to notify the 
system of this fact. Then, when the enqueuing action commits, 
the system writes the array, including the value of the new qitem, 
to stable storage. A deq operation modifies an existing qitem; this 
change will be stably recorded since qitems are atomic. The 
effect of a deq operation on the array, however, does not need to 
be stably recorded. A deq operation only modifies the array in an 
invocation of cleanup. If these changes are forgotten in a failure 
that restores an earlier state of the array, the presence of the extra 
qitems in the array will not affect later operations, and cleanup will 
remove them again the next time it is executed. Thus the 
modification made by cleanup need not be recorded stably 
(though it will be when the next action that executes enq 
commits). 

The above discussion of copying to stable Storage has 
ignored two issues that must now be discussed. The first 
concerns the recoverability of copying mutex objects to stable 
storage. Clearly, the copying of each individual mutex object must 
be all-or-nothing. But, can the copying of several mutex objects 
be all-or-nothing? Our answer is to provide recoverability on a per 
guardian basis, but not for the system as a whole. Our condition 
guarantees consistency within each guardian, but not between 
guardians. 

The second" issue concerns mutex and built.in atomic 
objects that refer to one another. Suppose the system is copying 
a mutex object that contains as a component a mutex or built-in 
atomic object. Should that contained object be copied to stable 
storage too? And, if so, in what order are the two objects copied, 
and, if they are both mutex objects, does the system gain 
possession of both before copying either? 

The method we use for copying data to stable storage has 
the following properties. 

1. It minimizes writing: only those objects actually modified 
by the committing action are copied. 

2. It is incremer~tal: each built.in atomic object and each 
mutex object is written to stable storage in a separate, 
atomic step. In copying each such object, the system 
copies all portions of the object except contained mutex 
and atomic objects. These are copied separately if they 
were modified, or if they are new. 

3. It is order.independent: the atomic and mutex objects 
are written to stable storage in an arbitrary order (chosen to 
increase the efficiency of the system). 

Thus, when an enq operation commits, the system gains 
possession of the mutex object, waiting if necessary, and then 
copies the names (but not the values) of the contained qitems to 
stab!e storage. In addition, those qitems that were modified by the 
committing action, or that are new (e.g., the newly enqueued 
qitem), are also written to stable storage, but this is done 

independently of the copying of the array state. In particular, the 
system does not have possession of the mutex object while 
copying the qitems to stable storage. Furthermore, the order in 
which these various objects are written to stable storage is 
undefined; the system might copy the array state first and later a 
contained modified qitem, or vice versa. 

Copying to stable storage is incremental for the following 
reason. The alternative would be to write all modified objects 
together. To do s'o the system would have to gain possession of 
all changed mutex objects before writing any of them. Such a 
requirement would be likely to delay the system substantially 
(especially when you consider that the objects are distributed), 
leading to an unacceptable delay in the execution of the first 
phase of two-phase commit. In fact it might be impossible for the 
system ever to obtain all locks. We chose the incremental scheme 
to avoid such problems. 

The incremental scheme has the following impact on 
programs. The true state of an object usually includes the states 
of all contained objects, and a predicate expressing a consistency 
condition on an object state would normally constrain the states of 
contained objects (this predicate is usually referred to as the 
representation invariant [12]). For example, suppose we had an 
atomic type doub/e-queue that (for some reason) kept two copies 
of the semi-queue and was represented by 

rep = record [first, second: semiqueue] 
where the representation invariant required that the states of the 
two semi-queues be the same. Now suppose the system is 
handling the commit of some action A that modified both 
semi-queues contained in the double-queue, and while this is 
happening a second action B is modifying those semi-queues. 
Then it is possible that when the first semi-queue is written t~ 
stable storage it contains B's changes, but when the second 
semi-queue is written to stable storage it does not contain B's 
changes. Therefore, the information in stable storage appears not 
to satisfy the representation invariant of the double-queue. 

However, the representation invariant of the double-queue 
really is satisfied, for the following reason. First note that the 
information in stable storage is only of interest after a crash. So 
suppose there is a crash. Now there are two possibilities: 

1. Before that Crash, B also committed. In this case the 
data read back from stable storage is, in fact, consistent, 
since it reflects B's changes to both the first and second 
semi-queues. 

2. B aborted or had not yet committed before the crash. In 
either case, B aborts. Therefore, the changes made to the 
first semi-queue by B will be hidden by the semi-queue 
implementation: at the abstract level, the two semi-queues 
do have the same state. 

The point of the above example is that if the objects being written 
to stable storage are atomic, then the fact that they are written 
incrementally causes no problems. 

On the other hand, when an atomic type is implemented with 
a representation consisting of several mute'x objects, the 
programmer must be aware that these objects are written to stable 
storage incrementally, ahd care must be taken to ensure that the 
representation invariant is still preserved and that information is 
not lost in spite of incremental writing. We have explored several 
atomic type implementations that use more than one mutex. Often 
incremental writing is not a problem; for example, this is the case 
when a database is simply implemented as a number of partitions. 
If incremental writing must be taken into account, this can be 
accomplished as in the following example. 
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Suppose we decide to implement a database by two mutex 
objects, a log and a table. The table is very large and contains 
most of the information in the data base. The log contains only a 
record of recent activity. The true state of the data base is a 
combination of the information in the log and the table. For 
example, in responding to a query, the log would be examined 
first. Only if needed information was not in the log would it be 
necessary to consult the table. By keeping recent information in 
the log, only the log need be copied to stable storage when 
accessing actions commit. Furthermore, locks need be stored 
only in the log and not in the table. 

Since the log must be copied to stable storage frequently, it 
is important to keep it fairly small. This can be accomplished by 
running a cleanup action periodically to copy information in the 
log to the table. The cleanup action has an associated cost of 
copying the table to stable storage, so we must balance the 
frequency of the cleanup action against the size of the table. (The 
table could be partitioned to reduce this cost.) Once information 
has been moved from the log to the table, it can be deleted from 
the log. However, care must be taken to ensure that the moved 
information is recorded in the stable copy of the table before it is 
deleted from the stable copy of the log. This is accomplished by  
writing the table, but not the log, to stable storage as part of the 
commit of the cleanup action. Furthermore, the cleanup action 
runs inside a seize of the log, which serves to delay writing of the 
log to stable storage (on behalf of accessing actions) until after 
the cleanup action has committed. The changes made to the log 
by the cleanup action will be written to stable storage later, when 
an accessing action commits. 

6 .  Conclusions 

In the preceding sections we discussed atomic types and 
why user-defined atomic types are needed. We then discussed 
the issues that arise when users implement atomic types; these 
issues must be considered in designing a linguistic mechanism to 
support user-defined atomic types. Finally we presented a 
linguistic mechanism consisting of the mutex type, the built-in 
atomic types, and the associated statement forms. 

A system design methodology based on the use of atomic 
actions and atomic types results in systems with useful modularity 
properties. The partial correctness of an individual action can be 
verified independently of the other actions in the system and of the 
implementations of the atomic types. Similarly, an implementation 
of an atomic type can be verified independently of which actions 
use objects of the type. This independence is especially useful if a 
system performs poorly because of internal concurrency 
limitations. In such a case, it may be possible to identify certain 
shared objects as bottlenecks, and to substitute more concurrent 
(albeit more complex) implementations for the types defining 
those objects. Thus, it may be possible to trade off simplicity for 
concurrency systematically. 

Our approach to implementing user.defined types was 
designed to provide good expressive power and user control over 
efficiency. The extent to which we have succeeded in achieving 
these goals is not yet clear. One difficulty in evaluating expressive 
power is that there is not yet a set of canonical problems that can 
be used as a benchmark. Most of the problems we have looked at 
we have been able to solve efficiently. However, there are 
problems that are difficult to solve using our mechanism. For 
example, protocols that process read.only actions more efficiently 
[1] appear to require extensions to the mechanism. Also, there 
are complicated locking protocols for search structures [7] that 
cannot be implemented easily With our mechanism. 

In evaluating the ease of use of our mechanism, it is worth 
discussing atomicity and resilience separately. A problem in 
implementing atomicity, and one we have not discussed in this 
paper, is that it is difficult to analyze the starvation and deadlock 
properties of implementations. To some extent, this difficulty is 
inherent in the problem domain. However, it is difficult to 
guarantee fairness with our mechanism, even if mutex is fair. The 
problem is that the underlying mechanism does not guarantee that 
when a waiting process awakens its condition for proceeding is 
satisfied. Therefore, it is Possible that each time a process 
awakens, it must pause again, and so it starves. Fairness can be 
programmed using our mechanism by keeping a queue of active 
actions and doing scheduling explicitly, but such a solution is 
complicated and inefficient. 

If we changed our mutex mechanism to link pause to a 
boolean expression that must be true for the process to be 
awakened, then the system could provide fairness. However, the 
cost of implementing such a mechanism is substantial, and may 
not be worthwhile, for two reasons. First starvation probably 
doesn't happen in practice (see [16]). Second, what is really 
wanted is some guarantee of progress for the system as a whole, 
and it is not clear how local guarantees of progress like fairness 
contribute to global progress, particularly in the presence of 
failures. 

An alternative to the implicit approach is the explicit 
approach. One interesting fact about Argus is that the 
system-provided implementation of the built.in atomic types 
follows the explicit approach. It is worth noting that the system 
implementations are quite complex, primarily because in Argus we 
have nested subactions. These are actions that can commit and 
abort independently of their parent, and that can run concurrently 
with their siblings. However, the commit of a child subaction is 
relative to the parent; if the parent aborts the effects of the child 
will be undone. We are convinced that nested subactions are 
necessary as discussed in [21]. One mason for choosing an 
implicit mechanism for Argus is that nested subactions have little 
impact on it; this is why we did not need to explain nested 
subactions in this paper. Nested subactions appear to have a 
major impact on an explicit mechanism. An explicit mechanism, 
however~ may provide a more uniform basis for implementing the 
specialized protocols (e.g., for read-only actions) mentioned 
earlier. 

In addition to synchronization, mutex is used to provide 
resilience. It is worth noting that the time may come when 
resilience is provided by the hardware. It is also true that it may 
become cost effective to provide resilience in software but below 
the level of the language. If we could assume resilience at the 
language level, much of the difficulty in implementing atomic types 
disappears. 

If programmers must cope with resilience, then some notion 
of copies and copying is necessary. We keep those copies on 
stable storage; an alternative would be to keep them at other 
nodes. In either case, the programmer must worry about how the 
copying happens. Also, efficiency considerations may dictate that 
the copies be space-efficient. 

The main advantage of an explicit approach appears to be to 
give the user direct control over copying. With such control the 
user should be able to insure that the copy satisfies the 
representation invariant, and also contains just the right 
information. Also, it is probably easier with an explicit approach to 
use a representation of the data in stable storage that differs from 
that used in volatile storage. An explicit approach raises a number 
of difficult questions, however. The code for translating the 
volatile representation into the stable representation runs during 
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the first phase of the two.phase commit protocol for an action, 
Suppose this code makes remote procedure calls to other 
guardians. Is this allowed? Do those guardians need to be 
included in the two-phase commit for this action? Concern about 
such problems was a major factor in our decision to pursue the 
implicit approach. These questions must be resolved before a 
complete evaluation of the different approaches can be made, 

We believe atomic types are useful for building general 
systems that depend on consistent on-line data. In this paper we 
have discussed what makes a type atomic, and the issues that 
arise in implementing atomic types. More work is needed in 
investigating these issues and in designing linguistic mechanisms. 
Our discussion was based on a number of assumptions; different 
assumptions may lead to changes in the basic definition of 
atomicity and to different linguistic mechanisms. Our hope in 
writing this paper is to interest others in this area of research. 
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