

S p e c i f i c a t i o n a n d I m p l e m e n t a t i o n o f R e s i l i e n t , A t o m i c D a t a Types

William Weihl
Barbara Liskov

M.I.T. Laboratory for Computer Science
Cambridge, Massachusetts

ABSTRACT

A major issue in many applications is how to preserve the
consistency of data in the presence of concurrency and hardware
failures. We suggest addressing this problem by implementing
applications in terms of abstract data types with two properties:
Their objects are atomic (they provide serializability and
recoverability for activities using them) and resilient (they survive
hardware failures with acceptably high probability). We define
what it means for abstract data types to be atomic and resilient.
We also discuss issues that arise in implementing such types, and
describe a particular linguistic mechanism provided in the Argus
programming language.

1. I n t r o d u c t i o n

There are many applications in which the manipulation and
preservation of long-lived, on-line data is of primary importance.
Examples of such applications are banking systems, airline
reservation systems, office automation systems, database
systems, and various components of operating systems. A major
issue in such systems is preserving the consistency of on-line data
in the presence of concurrency and hardware failures. This paper
is concerned with how to define and implement data objects that
help provide needed consistency.

To support consistency it is useful to make the activities that
use and manipulate the data atomic. Atomic activities are referred
to as actions or transactions; they were first identified in work on
databases [5, 6, 8]. An atomic action is distinguished by two
properties, indivisibility and recoverability. Indivisibility means that
the execution of one action never appears to overlap (or contain)

This research was supported in part by the Advanced Research
Projects Agency of the Department of Defense, monitored by the
Office of Naval Research under contract N00014-75-C-0661, and
in part by the National Science Foundation under grant
MCS79-23769.

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1983 A C M 0 - 8 9 7 9 1 - 1 0 8 - 3 / 8 3 / 0 0 6 / 0 0 5 3 $ 0 0 . 7 5

the execution of any other action. One way of achieving
indivisibility is to run actions serially. However, greater
concurrency is desirable, provided the concurrent actions do not
interfere with one another. Non-interference can be guaranteed if
the effect of running the actions concurrently is the same as if they
had been executed serially in some order. If this condition is true,
the actions are said to be seria/izab/e [8, 23].

Recoverabi/ity means that the overall effect of an action is
all-or-nothing: either all changes made to the data by the action
happen, or none of these changes happen. An action that
completes all its changes successfully commits. Otherwise it
aborts and whatever changes it made are discarded.
Recoverability allows the user on whose behalf an action runs to
decide to discard the effects of that action. In addition, it allows
an action to work properly even if there is a hardware failure
during its execution and allows the system to abort an action if
necessary (e.g., to resolve a deadlock).

Atomicity is actually achieved via the shared data, which
must be implemented in such a way that using actions appear to
be indivisible and recoverable. Data objects that support atomicity
will be referred to as atomic objects.

Atomicity alone is not sufficient to provide consistency,
because it only concerns running actions. In addition, the data
must be resilient: the probability of loss of data due to a hardware
failure such as a node or media crash must be acceptably small.
Resilient data are needed to ensure (with high probability) that
effects of committed actions are not lost in crashes that occur
later.

Up to now, consistency has been provided only in a few
database systems (e.g., see [11]) and file systems [27, 24]. In
these systems, implementors of applications are limited to using
just the types of atomic objects provided by the system, e.g., data
base relations or files. These objects are not always the most
convenient (or efficient) for implementing applications. We
advocate a different approach: implementors should be free to
implement their applications in terms of whatever kinds of data
objects they find convenient. However, the data objects chosen
must support consistency, i.e., they must be atomic and resilient.

The purpose of this paper is to discuss resilient atomic
objects, We begin in Section 2 by defining what it means for an
object to be atomic. In Section 3 we introduce a model of
computation to serve as a basis for discussing the implementation
of atomic objects; this model is taken from the Argus programming
language that we'are developing [21]. Section 4 is concerned with
implementing atomic objects under the assumption that hardware
failures never occur. Then in Section 5 we admit the possibility of
failures and discuss implementing resilience. Finally we conclude
with a discussion of open problems.

53

2 . A t o m i c Types

An atomic data type, like a regular abstract data type [18],
provides a set of objects and a set of operations. An atomic type
is an abstraction, and hence is described by a specification; it may
be implemented by a program. As with regular abstract types, the
operations provided by an atomic type are the only way to access
or manipulate the objects of the type. Unlike regular types,
however, an atomic type provides serializability and recoverability
for actions that use objects of the type. For example, relations in
most relational databases provide operations to add and delete
tuples, and to test for the existence of tuples; these operations are
synchronized (for example, using two-phase locking [8]) and
recovered (for example, using logs [11]) to ensure the atomicity of
actions using the relations.

A specification of an atomic type describes the behavior of
objects of the type as observed (via calls on the operations of the
type) by the users of those objects. An important question about
the specification of an atomic data type is whether the use of the
word "atomic" is justified: Are the type's objects defined to
behave in a way that ensures the atomicity of actions using the
objects? This question has received intense study for a few types
(like files and relations) [23]. Experience with implementing these
types has shown that the problem is difficult and subtle [8, 11]. If
programmers are to implement new, user-defined atomic types, it
is especially important to understand in general what behavior is
acceptable for an atomic type. In this section we discuss how to
specify atomic types, and what it means for a type to be atomic.

An execution of a sequential system is often viewed as a
sequence of operations. The legal executions are described by
the specifications of the types that provide the operations; these
specifications often consist of preconditions and postconditions
for each operation (e.g., see [13]). An execution of a concurrent
system is more Complicated: each process executes a sequence
of operations, but the operations executed by different processes
may interleave or overlap. To specify the behavior of a type in a
concurrent system, it is often convenient to use the events
corresponding to the invocations and returns of operations as the
steps of execution sequences. In systems of atomic actions, the
events corresponding to the commits and aborts of actions must
be considered as well. If the type is to be atomic, the execution
sequences must be sufficiently constrained so that the actions in
any global execution sequence (one involving actions invoking
operations at many objects, possibly of different types) are
serializable and recoverable.

We may view a specification of an atomic type T as
describing a set S(T) of execution sequences. Similarly, an
implementation I of an atomic type, perhaps described by a
program in some programming language, may be viewed as
describing a set S(I) of execution sequences. We define
correctness as follows: An implementation I of a type T is correct
if S(I) is a subset of S(T). This notion of correctness is analogous
to partial correctness for sequential programs: an implementation
is constrained to do only what is permitted by the specification,
but it may actually do less. In this sense the specification may be
viewed as describing permissible concurrency. In fact, it may be
impractical or undesirable to build an implementation that allows
all the executions permitted by its specification. For example,
neither the built-in atomic types in Argus nor the implementation
presented later in this paper provides as much concurrency as is
permitted by its specification.

Our notion of correctness does not permit a specification to
require that certain things must happen; such requirements are
called liveness or service properties. It seems useful to specify
these properties separately from safety properties such as

atomicity. We give an example of a service property in section 4,
but do not discuss this general class of properties in detail in this
paper.

Note that atomicity of actions is a global property, while
atomicity for a type must be a local property: it deals only with the
events (invocations and returns of operations and commits and
aborts of actions) involving the particular type. Such locality is
essential if atomic types are to be specified and implemented
independently. There are many possible local atomicity properties
that result in global atomicity. In this paper we will describe a
particular local atomicity property that is used in the programming

Argus. 1" This property is based on several assumptions language
about the structure of implementations of types; we discuss these
assumptions in section 2.1. Then in section 2.2 we describe the
local atomicity property in detail, thus defining what it means for a
type to be atomic.

2.1 Assumpt ions

Implementations of atomic types can be characterized by the
time at which atomicity of actions is enforced. Optimistic
implementations let all operations proceed (except perhaps for
some local mutual exclusion) in the hope that atomicity will not be
violated; thus the term "optimistic" [15]. If atomicity is violated,
actions must be aborted. This must be done by the time they try to
commit, and may be done earlier if the violation is detected earlier.
In contrast, pessimistic implementations let operations proceed
only if doing so cannot violate atomicity; otherwise, operations
must be delayed. It is not clear which of these approaches is more
efficient. In this paper we will assume that a pessimistic approach
is used.

Implementations of atomic types can be further
characterized by the manner in which serializabUity of actions is
ensured. Static, or timestamp-based, implementations assume
that a global ordering of actions is given a priori by an assignment
of a unique timestamp to each action. The implementations then
ensure that actions are serializable in the order determined by
their timestamps. A example of a static system is described in
[25]. Dynamic implementations allow the serialization order to be
determined by what the actions do. For example, if one action
reads some information written by another, then the former action
must be serialized after the latter. Each of these approaches has
advantages [22, 25]; hybrid approaches may be especially
effective [1]. In this paper we will assume that a dynamic
approach is used.

We make two additional assumptions about what it means for
an action to commit. First, once an action has committed, we
assume that it cannot be aborted. This rules out implementations
in which aborts can "cascade" to already committed actions (e.g.,
see [29]). Second, once an action has committed, we assume that
its effects are visible to actions that are still running. Thus
implementations do not have to retain synchronization information
for committed actions.

Finally, we assume that an object cannot control when
actions invoke operations on the object. In addition, actions that
are not waiting for an operation invocation to return are free to
commit at any time. Thus, objects must ensure serializability by
delaying the returns of operations invoked by actions, and not by
refusing to commit an action when it completes.

1. Detailed justification of this and other local properties,
including ones based on different or weaker assumptions, is given
in [28].

54

2 . 2 A t o m i c i t y

In writing specifications for atomic types, we have found it
helpful to pin down the behavior of the operations, initially
assuming no concurrency and no failures, and to deal with
concurrency and failures later. In other words, we imagine that
the objects will exist in an environment in which all actions are
executed sequentially, and in which actions never abort. This
approach is particularly useful in reasoning about an action that
uses atomic objects. The atomicity of actions means that they are
"interference.free," so we can reason about (the partial
correctness of) an individual action without considering the other
actions that might be sharing objects with it [3]. This reasoning
process is essentially the same as for sequential programs; the
only information required about objects is how they behave in a
sequential environment. As an example, an informal sequential
specification of some operations on atomic arrays in Argus is
described in Figure 1. These arrays are similar to CLU arrays [20],
and bear some resemblance to files in that they can grow and
shrink.

Given the sequential specification of the operations of a
type, we need to define the execution sequences that are
permitted by atomicity. To achieve atomicity, we impose two
requirements on these execution sequences. To support
recoverability, we require that actions can observe the effects of
other actions only if those actions committed. 1 This requirement
implies that the results returned by operations executed by one
action can reflect changes made by operations executed by other
actions only if those actions committed. For example, in an atomic
array a, if one action performs a store(a, 3, 7), a second action can
receive the answer "7" from a call of fetch(a, 3) only if the first
action committed.

This requirement supports recoverability since it ensures
that effects of aborted actions cannot be observed by other
actions. It also supports serializability, since it prevents
concurrent actions from observing one another's changes.
However, more is needed for serializability: operations executed
by one action cannot invalidate the results of operations executed
by a concurrent action. For example, suppose an action A
executes the size operation on an atomic array object, receiving n
as the result. Now suppose another action B is permitted to
execute addh. The addh operation will increase the size of the
array to n + 1, invalidating the results of the size operation
executed by A. Since A observed the state of the array before B
executed addh, A must precede B in any sequential execution of
the actions (since sequential executions must be consistent with
the sequential speci!ications of the objects). Now suppose that B
commits. By assumption, A cannot be prevented from seeing the
effects of B. If A observes any effect of B, it will have to follow B in
any sequential execution. Since A cannot both precede and
follow B in a sequential execution, serializability would be violated.

To state our requirements more concretely, let us begin by
considering a simple situation involving two concurrent actions
each executing a Single operation on a shared atomic object O.

1. Note that this requirement could be weakened to allow an
action to observe the effects of another action that had not yet
committed, but then an abort of the latter action would force an
abort of the former. This would violate our assumption that
actions should be free to commit unless they are waiting for a
pending invocation, since the former action can commit only if the
latter action also commits.

Fig. 1. Partial specification of atomic arrays.

Here T is an arbitrary type.

new() returns (atomic_array[T])
ef fect returns a new, empty atomic array with low bound O,

high bound -1 and size O.

low (a: atomic_array[T]) returns (int)
e f fect returns the current low bound of a.

high (a: atomic_array[T]) retu rns (int)
ef fect returns the current high bound of a.

size (a: atomic_array[T]) returns (int)
ef fect returns the current size of a.

addh (a: atomic_array[T], x: T)
ef fect extends a by appending x on the high end;

the current high bound and size of a increase by 1.

addl (a: atomic_array[T], x: T)
ef fect extends a by appending x on the low end; the current

low bound of a decreases by 1,
and the size of a increases by 1.

remh (a: atomic_array[T]) returns (T) signals (bounds)
ef fect if a is empty signals bounds. Otherwise removes

and returns the element at the high end of a;
the size and high bound of a decrease by 1.

reml (a: atomic_array [T]) returns (T) signals (bounds)
ef fect if a is empty signals bounds. Otherwise removes

and returns the element at the low end of a; the low
bound of a increases by 1, while the size decreases by 1.

store (a: atomic_array [T], i: int, x: T) s ignals (bounds)
ef fect if i is outside bounds of a signals bounds;

othe .rwise stores x in the ith location of a.

fetch (a: atomic_array [T], i: int) re turns (T) s ignals (bounds)
ef fect if i is outside bounds of a signals bounds; otherwise

returns the object stored in the ith location of a.

(The actions may be executing operations on other shared objects
also: we are defining a local atomicity property, so we focus on
the operations involving a single object 0.) A fairly simple
condition that guarantees serializability is the following. Suppose
0 is an object of type T. 0 has a current state determined by the
operations performed by previously committed actions. Suppose
01 and 02 are two executions of operations on 0 in its current
state. (01 and 02 might be executions of the same operation or
different operations.) If 01 has been executed by an action A and
A has not yet committed or aborted, 02 can be performed by a
concurrent action B only if Ot and 02 commute: given the
current state of O, the effect (as described by the sequential
specification of T) of performing 01 on 0 followed by 02 is the
same as performing 02 on 0 followed by 01. By "effect" we
mean both the results returned and any modifications to the state
of O.

The intuitive explanation of why the above condition works is
as follows. Suppose 01 and 02 are performed by concurrent
actions A1 and A2 at O. If Ot and 02 commute, then the order in

55

which A1 and A2 can be serialized does not matter at O. If A1 is
serialized before A2 then the local effect at O is as if O1 were
performed before 02, while if A2 is serialized before A1, the local
effect is as if 02 were performed before O1. But these two effects
are the same since O1 and 02 commute.

Notice that the common method of dividing operations into
readers and writers and using read/write locking works because it
allows operations to be executed by concurrent actions only when
the operations commute, Our condition permits more
concurrency than readers/writers because the meaning of the
individual operations and the arguments of the calls can be
considered. For example, calls of the atomic array operation addh
always commute with calls of add/, yet both these operations are
writers. As another example, store(O, i, e l) and store(O, j, e2)
commute if i ~ j.

Note that we require that O1 and 02 commute only when
they are executed starting in the current state. For example,
consider a bank account object, with operations to deposit a sum
of money, to withdraw a sum of money (w!th the possible result
that it signals insufficient funds if the current balance is less than
the sum requested), and to examine the current balance. Two
withdraw operations, say for amounts m and n, do not commute
when the current balance is the maximum of m and n: either
operation when executed in this state will succeed in withdrawing
the requested sum, but the other operation must signal insufficient
funds if executed in the resulting state. They do commute
whenever the current balance is at least the sum of m and n. Thus
if one action has executed a withdraw operation, our condition
allows a second action to execute another withdraw operation
while the first action is still active as long as there are sufficient
funds to satisfy both withdrawal requests.

Our condition is similar to the commutativity condition
identified in [2]. The condition in [2], however, appears to require
that O1 and 02 commute in all possible states if they are to be
executed by concurrent actions. This condition is more restrictive
than ours, and does not permit two actions to execute withdraw
operations concurrently. The greater generality of our condition
may be important for achieving reasonable performance.

Our condition must be extended to cover two additional
cases. First, there may be more than two concurrent actions at a
time. Suppose A1,...,An are concurrent actions, each performing
a single operation execution 01,...,On, respectively, on O. (As
before, the concurrent actions may be sharing other objects as
well.) Since A1,...,An are permitted to be concurrent at O, there is
no local control over the order in which they may appear to occur.
Therefore, all possible orders must have the same effect at O.
This is true provided that all permutations of O1 ,...,On have the
same effect when executed in the current state, where effect
includes both results obtained and modifications to O.

The second extension acknowledges that actions can
perform sequences of operation executions. For example,
suppose action A executed addh followed by remh on an array.
This sequence of operations has no net effect on the array. It is
then permissible to allow a concurrent action B to execute size on

the same array, provided the answer returned is the size of the
array before A'executed addh or after it executed remh. To
extend the definition, consider concurrent actions A1,..,,An each
performing a sequence SI,...,Sn, respectively, of operation
executions. This is permissible if all sequences Sil,Si2,...,Sin,
obtained by concatenating the sequences $1 ,...,Sn in some order,
produce the same effect.

The set of execution sequences described by the sequential
specification of the operations of a type is thus all sequences that
satisfy the condition described in the preceding paragraphs. This

.56

condition may be summarized in an inductive fashion as follows,
indicating when it is legal to extend an execution sequence by
allowing a pending invocation to return: Assume that the currently
active actions AI,...,An have already executed sequences
SI,...,Sn, respectively, of operation executions, and that some
action A has a pending invocation. (Note that A is active since it
has a pending invocation.) This invocation may be executed and
allowed to return if, starting in the current state (defined by the
operations executed by the actions that have already committed),
all sequences Sil,Si2,...,Sin, obtained by concatenating the
sequences $1 ,...,Sn in some order (where A's sequence has been
extended by appending the new operation execution), produce
the same effect.

Note that in requiring certain sequences of operations to
have the same effect, we are considering the effect of the
operations as described by the specification of the type. Thus we
are concerned with the abstract state of O, and not with the
concrete state of its storage representation. Therefore, we may
allow two operations (or sequences of operations) that do
commute in terms of their effect on the abstract state of O to be
performed by concurrent actions, even though they do not
commute in terms of their effect on the representation of O. This
distinction between an abstraction and its implementation is
crucial in achieving reasonable performance, and is the basis for
the example implementation to be presented in Section 4.

3 . M o d e l of C o m p u t a t i o n

In the remainder of the paper we will be discussing
implementation of atomic objects. This discussion must be based
on some model of computation. The purpose of this section is to
define such a model. Our model is taken from Argus, a new
language we are developing that provides atomic objects [21].
Argus is based on a number of decisions about how to implement
atomicity and resilience. For example, we use 2-phase locking to
order actions, and we keep redundant information in stable
storage to achieve resilience. The Argus model satisfies the
assumptions stated in Section 2.1; indeed, it is the reason why we
made that particular set of assumptions.

Argus is a language and system that supports distributed
programs, i.e., pro'grams that run on a distributed hardware base.
Each node in this base is an independent computer consisting of
one or more processors and some local memory; the nodes may
differ in the number and types of processors, the amount of
memory, and in the attached I /O devices. The nodes can
communicate only by sending messages over the network; we
make no assumptions about the network topology. We will
assume such a base in this paper because this allows us to
address the consistency problem in its most general form.

In Argus, an application is implemented from one or more
modules called guardians. Each guardian consists of some data
objects and some processes to manipulate those objects. The
processes within a guardian can share the objects directly, but
sharing of objects between guardians is not permitted. Instead a
guardian provides access to its objects via a set of operations
called handlers that can be called from other guardians. 1
Arguments to handler calls are passed by value; it is impossible to
pass a reference to an object in a handler call. This rule ensures
that all references to an object are within that object's guardian.

Each guardian resides at a single physical node, although a
node may support several guardians. Guardians survive crashes

1. A guardian is similar to a Simula class instance [4].

of their node of residence and other hardware failures with high
probability, and are therefore resilient. When a guardian's node
crashes, all processes within the guardian are lost, but a subset of
the guardian's objects, referred to as the guardian's stable state,
survk, es. After a crash, the guardian recovers with its stable state
intact; it then runs a special recovery process to recover the
remainder of its objects. Resilience is accomplished by copying
the guardian's stable objects to stable storage [17] periodically, as
discussed further in Section 5.

In addition to guardians, Argus also provides atomic actions
and atomic data types. Actions are the primary method of carrying
out computations in Argus. Actions terminate by either
committing or aborting and are indivisible and all-or-nothing
provided the only data shared among them is atomic. An action
starts at one guardian but can spread to other guardians by means
of handler calls. When an action completes it either commits at all
guardians or aborts at all guardians. The Argus implementation
ensures this atomicity property.

Argus provides a number of built.in atomic data types, for
example, atomic arrays and atomic records. We have chosen
implementations for the built-in atomic types in Argus that are
efficient but provide for less than maximal concurrency. For
atomic arrays and the other built-in atomic types operations are
classified as readers and writers, and reaclers and writers exclude
one another in the usual way. Thus, for example, the array addh
and add/operations are both writers and therefore exclude each
other even though this is not necessary for atomicity.

We use a locking approach to implementing serializability.
Atomic arrays and the other built.in types are implemented using
strict 2-phase locking [8]. The locks are acquired automatically
when a primitive operation (like addh) is called by an action, and
are held until the calling action terminates (commits or aborts).
Recoverability is provided by making a copy the first time an
action executes a writer operation. All changes are made to this
copy. The copy ~'eplaces the original if the action commits; if the
action aborts the copy is discarded.

4 . U s e r - D e f i n e d A t o m i c T y p e s

The built-in atomic types in Argus are somewhat limited in
their provision of concurrency. Users may very well specify new
atomic types that permit a great deal of concurrency. If users
were constrained to implementing new atomic types only in terms
of the built.in atomic types, the desired concurrency could not be
achieved.

For example, consider the semi.queue data type.
Semi-queues are similar to queues except that dequeuing does
not happen in strict FIFO order. They have three operations:
create, which creates a new, empty semi-queue; enq, which adds
an element to a semi-queue, and deq, which removes and returns
an arbitrary element e that was enqueued previously and has not
yet been dequeued.

Semi-queues have very weak concurrency constraints. Two
enq operations commute with each other, as do an enq and a deq
operation or two deq operations as long as they involve different
elements. Thus many different actions can enq concurrently, or
deq concurrently. Furthermore one action can enq while another
deq's provided only that the latter not return the newly enq'd
element.

We impose the following service requirement on
semi.queues: deq must eventually remove any element e that is
eligible for dequeuing. We have used the semi-queue in a printer
subsystem, in which actions Submit files to be printed, and the
subsystem prints a file once the action that submitted it has

committed. This constraint on the element returned by deq is
enough for the printer subsystem to guarantee that each file
submitted by an action that later commits will eventually be
printed. 1

The semi-queue data type could be implemented using an
atomic array as a representation, e.g.,

rep= atomic_array[elem]
In this case, the implementation of enq would simply be to addh
the new element to the atomic array. Since addh is a writer, an
enq operation performed on behalf of some action A would
exclude enq and deq operations from being performed on behalf
of other actions until A completed. As observed above, the
specification of the semi.queue permits much more concurrency
than this. Note that the potential loss of concurrency is
substantial since actions can last a long time. For example, an
action that performed a~ enq may do a lot of other things (to other
objects at other guardians) before committing.

To avoid loss of concurrency, it is necessary to provide a
way for users to implement new atomic types directly from
non-atomic types. Users who implement atomic types will face a
number of new problems, however, and these problems will
influence the design of a linguistic mechanism to support
user-defined atomic types.

To some extent, the issues involved in implementing an
atomic type are similar to .those that arise in implementing other
abstract types. The implementation must define a representation
for the atomic objects, and an implementation for each operation
of the type in terms of that representation. However, the
implementation of an atomic type must solve some problems that
do not occur for ordinary types, namely: inter.action
synchronization, making visible to other actions the effects of
committed actions, and hiding the effects of aborted actions,

A way of thinking about the above set of problems is in terms
of events that are of interest to an implementation of an atomic
type. Like implementations of regular types, these
implementations are concerned with the events corresponding to
operation calls and returns; here, as usual, control passes to arid
from the type's implementation. In addition, however, events
corresponding to termination (commit and abort) of actions that
had performed operations on an object of the type are also of
interest to the type's implementation.

Linguistic mechanisms to support implementation of atomic
types can be dlvided into two categories based on how
information about termination events is conveyed to a tYpe's
implementation. In the explicit approach, an implementation
would find out about these events explicitly, e.g., by providing
special commit and abort operations that are called by_the runtime
system when actions commit and abort. Alternatively, in the
implicit approach an implementation is not informed about action
termination, but rather must find out about it after the fact.

It is too early to predict what category of linguistic
mechanism will turn out to be more successful. It is even too early
to analyze the tradeoffs between the two categories; such analysis
must wait until well-engineered examples of the categories are
available for study. As always, we can expect the usual goals to
be in conflict: ease of use, efficiency, expressive power, and

1. This is not quite true when we consider failures: the action
that dequeues a file to print it could abort every time, preventing
any progress from being made. As long as failures do not occur
sufficiently often to cause this situation, every file will be printed
eventually. An intel:esting open question is how to state service
requirements for systems that can fail.

57

simplicity. For example, an explicit mechanism requires the
programmer to provide the additional commit and abort
operations, and thus may appear to be less simple and harder to
use than an implicit mechanism in which these operations are not
needed. However, in an implicit mechanism it may be difficult to
obtain needed information about past termination events, and this
difficulty could actually cause the mechanism to be harder to use
than an explicit mechanism.

4 .1 I m p l e m e n t i n g A t o m i c T y p e s in A r g u s

In this section we describe how user-defined atomic types
can be implemented-in Argus. We view Our mechanism as a first
attempt to address the issues in this area. Some related work [26]
addresses only the problem of achieving proper synchronization
of actions, and not recovery or process synchronization issues.

Our mechanism is based o.n the implicit approach, but it is
quite low level, and more complex than we would like. The design
was influenced primarily by considerations of efficiency and
expressive power, and tradeoffs were made that favored these
goals over simplicity, safety and ease of use. Our assumption is
that only rarely are new atomic types implemented in terms of
non.atomic types and therefore it is reasonable to require
considerable sopl~istication of the programmer attempting such
an implementation.

Since we are following the implicit approach, the first
question is how do programs find out about commit and abort
events? Our answer is: through the use of objects of built-in
atomic types. The representation of a user-defined atomic type
will therefore be a combination of atomic and non-atomic objects,
with the non-atomic objects used to hold information that can be
accessed by concurrent actions, and the atomic objects
containing information that allows the non-atomic data to be
interpreted properly. The built-in atomic objects can be used to
ask the following question: Did the action that caused a particular
change to the representation commit (so the new information is
now available to other actions), or abort (so the change should be
forgotten), or is still active (so the information cannot be released
yet)? The operations available on built-in atomic objects have
been extended to support this type of use, as will be illustrated
below.

The use of atomic objects permits operation implementations.
to discover what happened to previous actions and to synchronize
concurrent actions. However, the implementations also need to
synchronize concurrent operation executions. Here we are
concerned with" process concurrency (as opposed to action
concurrency), i.e., two or more processes are executing
operations on the same object at the same time.

.We provide process synchronization by means of a new data
type called mutex. Mutex objects provide mutual exclusion, as
implied by their name. A mutex object is essentially a container
for another object. This other object can be pf any type, and
mutex is parameterized by this type. An example is

mutex[array[int]]
where the mutex object contains an array of integers. Mutex
objects are created by calling operation

create = proc (x: T) returns (mutex IT])
.which constructs a new mutex object containing x as its value.
The contained object can be retrieved later via operation

get_value = proc (m: mutex [T]) returns (T)
This operation delivers the value of the mutex object, namely (a
pointer to) the contained T object, which can then be used via T
operations. Get_value can be called via the syntactic sugar
m.value where m is a mutex object.

The seize statement is used to gain possession of a mutex
object and (optionally) retrieve the contained object;

seize expr / using dec/I do body end
Here expr must evaluate to a mutex object. If that object is not
now in the possession of a process, this process gains
possession. Then, if the optional using clause is present, the
object contained in the mutex is retrieved (via the get_value
operation) and assigned to the new variable. The process then
executes the body. Possession is released when control leaves
the body. If some process has possession, this process waits until
possession is released. 1 If several processes are waiting, one is
selected fairly as the next one to gain possession.

The seize statement as explained above is semaphore.like:
ignoring the optiOnal using clause, it could be translated to

P(m.sem)
body
V(m.sem)

where m is the mutex object obtained by evaluating expr and we
imagine this object has a semaphore as a component. However,
the seize statement is more powerful than this because inside its
body it is possible to release possession temporarily. This is done
by executing the pause statement:

pause
Execution of this statement releases possession of the mutex
object that was obtained in the smallest statically containing seize
statement. The process then waits for a system determined
amount of time, after which it attempts to regain possession; any
competition at this point is resolved fairly. Finally, once it gains
possession it starts executing in the body at the statement
following ttle pause.

Clearly the combination of seize with pause gives a
structure that is similar to monitors [14]. However, pause is
simply a delay; there is no guarantee that when the waiting
process regains possession, the condition it is waiting for will be
true. 2 The reason why we do not provide an analog of a monitor's
condition variables is th e following: Often the conditions these
processes are waiting for concern commit and abort events.
These are not events over which other user processes have any
control. Therefore, it would not make sense to expect user
processes to signal such information to each other.

4 . 2 I m p l e m e n t a t i o n o f S e m i - q u e u e s

In this section we present an example implementation of the
semi-queue data type described earlier. We use this example to
illustrate how objects of built-in atomic type can be used to find
out about the completion of actions, and how mutex can be used
to synchronize user processes.

The implementation appears in Fig. 2. The implementation is
simply a CLU cluster [19, 20]. For simplicity we are assuming the
elements in the semi.queue are integers. The plan of this
implementation is to keep the enqueued integers in a regular
(non-atomic) array. This array can be used by concurrent actions,
but it is enclosed in a mutex object to ensure proper process

1. A runtime check is made to see if possession iS held by this
process. In this case, the seize statement fails with the exception
failure ("deadlock").

2. In Mesa [16] there is similarly no guarantee when a waiting
process awakens.

58

Fig. 2. Imp lementa t ion of the Semiqueue Type

semiqueue = cluster is create, enq, deq

qitem = atomlc_variant[enqueued: Int,
dequeued: null]

buffer = array[qitem]
rep = mutex[buffer]

create = proc () returns (cvt)
return(rep$create(bufferSnewO))
end create

enq = proc (q: cvt, i: int)
item: qitem : = qitem$make_dequeued(nil)
aitern$change_enqueued(item, i)
seize q using b: buffer do

buffer$addh(b, item) % add new item to buffer
end

rep$changed(q) % notify system of modification to buffer
% (this will be explained later)

end enq

deq = proc (q: cvt) returns (Int)
cleanup(q)
seize q using b: buffer do

while true do
for item: qitem in bufferSelements(b) do

% look at all items in the buffer
tagtest item % see if item can be dequeued by this action

wtag enqueued (i: Int): qitem$change_dequeued(item,nll)
return(i)

end % tagtest
end % for

pause
end % while

end % seize
end deq

cleanup = proc (q: rep)
enter topaction % start an independent action

seize q using b: buffer do
for item: qitem In buffer$~lements(b) do

% remove only qitems in the dequeued state
tagtest item

tag dequeued: buffer$reml(b)
others: return
end % tagtest

end % for
end % seize

end % enter .- commit cleanup action here
end cleanup

end semiqueue

% dequeuod if action aborts,
% enqueued if commits

synchronization. All modification and reading of the array occurs
inside a seize statement on this (~ontaining mutex object.

To determine the status of each integer in the array, we
associate with each integer an atomic object that tells the status of
actions that inserted or deleted that item. For this purpose we use
the built.in atomic type, atomic_variant. Atomic variant objects
are similar to variant records. An atomic variant object can be in
one of a number of states; each state is identified by a tag and has
an associated value. Atomic variant operation make_t creates a
new variant object in the t state; this state is the obiect's "base"
state, and the object will continue to exist in this state even if the
creating action aborts. Operation change_t changes the state (the
tag and value) of the object; this change will be undone if the

calling action aborts. There. are also operations to decompose
atomic variant objects, although these are usually called implicitly
via special statements. Atomic variant operations are classified as
readers and writers; for example, changeJ is a writer, while
make_t is a reader.

In this paper, atomic variant objects will be decomposed

using the tegtest statement. 1

tag tes t expr
{ tagarm }

[o thers:body]
end

where

tagarm :: = tagtype idn [(dec/)] : body

tagtype :: = tag I w tag

The expr must evaluate to an atomic variant object. Each tagarm
lists one of the possible tags; a tag can appear on at most one
arm. An arm will be selected if the atomic variant object has the
listed tag, and the executing action can obtain the object in the
desired mode: read mode for tag and write mode for wtag. If an
arm can be selected, the object is obtained in the desired mode.
Then, if the optional declaration is present, the current value of
the atomic variant object is assigned to the new variable. Finally,
the associated body is executed. If no arm can be selected and
the optional o thers arm is present, the body of the others arm is
executed; if the o thers arm is not present, control falls through to
the next statement. 2

The semi.queue operations are implemented as follows. The
create operation simply creates a new empty array and places it
inside of a new mutex object. The enq operation associates a new
atomic variant object with the incoming integer; this variant object
will have tag "enqueued" if the calling action commits later, and
tag "dequeued" if it aborts. Then enq seizes the mutex and adds
the new item to the contained array.

The deq operation seizes the mutex and then searches the
array for an item it can dequeue. If an item is enqueued and the
action that called deq can obtain it in write mode, that item is
selected and returned after changing its status to "dequeued".
Otherwise the search is continued. If no suitable item is found,
pause is executed and later the search is done again.

Proper synchronization of actions using a semi-queue is
achieved by using the qitems in the buffer. An enq operation need
not wait for any other action to complete. It simply creates a new
qitem and adds it to the array. Of course, it may have to wait for
another operation to release the mutex object before adding the
qHem to the array, but this delay should be relatively short. A deq
operation must wait until some enq operation has committed; thus
it searches for a qitem with tag "enqueued" that it can write.

1. In the syntax, optional clauses are enclosed with [] , zero or

more repetitions are indicated with ~ "}, and alternatives are

separated by]

2. The tagtest statement can be used to discover information
about concurrent actions, and thus violate atomicity (although we
don't do this in the examples). There is another decomposition
statement, tagwai t , that is safe in the sense that its use cannot
violate atomicity.

59

The qitems are also used to achieve proper recovery for
actions using a semi-queue. Since the array in the mutex is not
atomic, changes to the array made by actions that abort later are
not undone. This means that a deq operation cannot simply
remove a qitem from the array, since this change could not be
undone if the calling action later aborted. Instead, a deq
operation changes the state of a qitem; the atomicity of qitems
ensures proper recovery for this modification. If the calling action
later commits, the qitem will have tag dequeued permanently.
Such qitems, which are also generated by enq operations called
by actions that later abort, have no effect on the abstract state of
the semi.queue. Leaving them in the array wastes storage, so the
internal procedure cleanup, called by deq, removes them from the
low end of the array. 1 It seems characteristic of the general
approach used here that reps need to be garbage collected in this
fashion periodically.

Cleanup cannot run in the calling action because then its
view of what the semi-queue contained would not be accurate.
For example, if the calling action had previously executed a deq
operation, that deq appears to have really happened to a later
operation execution by this action. But of course the deq really
hasn't happened, because the calling action has not yet
committed.

To get a true view of the state of the semi-queue, cleanup
runs as an independent action. This action has its own view of the
semi-queue, and since it hasn't done anything to the semi-queue
previously, it cannot obtain false information. The independent
action is started by the enter statement:

enter topact ion body end
It commits when execution of the body is finished.

An independent action like the cleanup action commits while
its calling action is still active. Later the calling action may abort.
Therefore, the independent action must not make any
modifications that could reveal intermediate states of the calling
action to later actions. The cleanup action satisfies this condition
because it performs a benevolent side effect: a modification to the
semi-queue object that cannot be observed by its users.

5 . R e s i l i e n c e

Atomicity was discussed in Section 2 as if failures could
never occur. However, failures do occur, and, in fact, can never
be entirely prevented, which" gives rise to two problems: First, how
do weextend specifications to describe resilience, and second,
how do we implement resilience? This section addresses only the
latter problem.

If hardware were highly reliable, i.e., reliable enough that the
probability of loss of information were extremely small, then the
mechanism described above would be sufficient for implementing
resilient atomic objects. It may be that hardware will be this
reliable in the future, but not today: node and media failures are
likely to lead to the loss of information. Therefore, some method
of implementing data resilience in software is needed.

Various methods of achieving resilience might be imagined.
For example, every object might have one or more copies existing
at different locations in the network, and actions would read and
update the multiple copies in accordance with one of the known
algorithms, e.g., Gifford's algorithm [9]. If one of the copies
became unavailable because of a failure, some method of
recovering that copy from one of the existing copies would be
needed.

1. A more realistic implementation would call cleanup only
occasionally.

We are using a different approach based on stable storage
[17]. Each object has a backup copy kept on stable storage,
which has the property that information entrusted to it is extremely
unlikely to be lost. New backup copies must be written to stable
storage for all objects modified by committed actions. This
copying can happen when the change takes place, or after the
change takes place; it must happen before an action can commit.

Objects are kept in volatile memory while they are used by
actions, as are locks and the copies made by writers for built-in
atomic objects. If a node crashes, the locks and copies will be lost
for all objects at that node. In this case, any action that used
objects at that n()de and had not yet committed must be forced to
abort. To ensure that the action will abort, a standard two-phase
commit protocol [10] is used." In the first phase, an attempt is
made to verify that all locks are still held, and to record the new
state of each modified object on stable storage. If the first phase
is successful, then in the second phase the locks are released, the
recorded states become the current states, and the previous
states are forgotten. If the first phase fails, the recorded states are
forgotten and the action is forced to abort, restoring the objects to
their previous states.

When a physical node crashes, all guardians residing at that
node become inaccessible. However, since copies of a guardian's
objects reside on stable storage, a guardian is not destroyed by a
crash. Instead when a node recovers, its guardians restart; the
information in stable storage is used to restore the states of the
objects.

Both built-in and user-defined atomic objects must be copied
to stable storage when the actions that modified them commit.
This requirement raises the question of how the user controls
what is written to stable storage. If we were using an explicit
approach, the user might provide an operation that the system
could call to cause writing to stable storage. However, in our
implicit approach we must make do without such an operation.
Our solution is to extend the meaning of mutex.

So far, mutex has been used only for synchronization of user
processes. Now it will be used for three additional functions:
notifying the system when information needs to be written to
stable storage, defining what information is written to stable
storage, and ensuring that information is written to stable storage
in a consistent state.

The system knows when a built-in atomic object has
changed: this can happen only if the committing action holds a
write lock on the object or created the object. New mutex objects
are also written to stable storage when the creating action
commits. In addition, we provide mutex operation

changed = proc (m: mutex[T])

for notifying the system that an existing mutex object should be
written to stabie storage~ Calling this operation will cause m to be
written to stable'storage by the time the action that executed the
changed operation commits. Note that changed is not really
needed; the system could keep track of all mutex objects used by
an action (via the get_value operation) and write these to stable
storage. But we are concerned that writing to stable storage is
expensive and therefore should be avoided if possible. The
changed operation allows the user to avoid copying of mutex
objects that need not be copied (e.g., were only read).

Copying a mutex object involves copying the contained
object. By choosing the proper granularity of mutex objects the
user can control how much is written to stable storage. For
example, a large data base can be broken into partitions that are
written to stable storage independently by partitioning it among
several mutex objects. The changed operation can be used to

60

limit writing to stable storage to just those partitions actually
modified by a committing action.

Finally, mutex objects can be used to ensure that information
is in a consistent state when it is written to stable storage. The
system will gain possession of a mutex object before writing it to
stable storage. By making all modifications to these objects inside
seize statements, the user's code can prevent the system from
copying the object when it is in an inconsistent state.

In the semi-queue example in the previous section, the
addition of a new qitem to the array by an enq operation certainly
needs to be stably recorded if the calling action commits;
otherwise no permanent record of the enq operation would exist.
Thus the enq operation uses the changed operation to notify the
system of this fact. Then, when the enqueuing action commits,
the system writes the array, including the value of the new qitem,
to stable storage. A deq operation modifies an existing qitem; this
change will be stably recorded since qitems are atomic. The
effect of a deq operation on the array, however, does not need to
be stably recorded. A deq operation only modifies the array in an
invocation of cleanup. If these changes are forgotten in a failure
that restores an earlier state of the array, the presence of the extra
qitems in the array will not affect later operations, and cleanup will
remove them again the next time it is executed. Thus the
modification made by cleanup need not be recorded stably
(though it will be when the next action that executes enq
commits).

The above discussion of copying to stable Storage has
ignored two issues that must now be discussed. The first
concerns the recoverability of copying mutex objects to stable
storage. Clearly, the copying of each individual mutex object must
be all-or-nothing. But, can the copying of several mutex objects
be all-or-nothing? Our answer is to provide recoverability on a per
guardian basis, but not for the system as a whole. Our condition
guarantees consistency within each guardian, but not between
guardians.

The second" issue concerns mutex and built.in atomic
objects that refer to one another. Suppose the system is copying
a mutex object that contains as a component a mutex or built-in
atomic object. Should that contained object be copied to stable
storage too? And, if so, in what order are the two objects copied,
and, if they are both mutex objects, does the system gain
possession of both before copying either?

The method we use for copying data to stable storage has
the following properties.

1. It minimizes writing: only those objects actually modified
by the committing action are copied.

2. It is incremer~tal: each built.in atomic object and each
mutex object is written to stable storage in a separate,
atomic step. In copying each such object, the system
copies all portions of the object except contained mutex
and atomic objects. These are copied separately if they
were modified, or if they are new.

3. It is order.independent: the atomic and mutex objects
are written to stable storage in an arbitrary order (chosen to
increase the efficiency of the system).

Thus, when an enq operation commits, the system gains
possession of the mutex object, waiting if necessary, and then
copies the names (but not the values) of the contained qitems to
stab!e storage. In addition, those qitems that were modified by the
committing action, or that are new (e.g., the newly enqueued
qitem), are also written to stable storage, but this is done

independently of the copying of the array state. In particular, the
system does not have possession of the mutex object while
copying the qitems to stable storage. Furthermore, the order in
which these various objects are written to stable storage is
undefined; the system might copy the array state first and later a
contained modified qitem, or vice versa.

Copying to stable storage is incremental for the following
reason. The alternative would be to write all modified objects
together. To do s'o the system would have to gain possession of
all changed mutex objects before writing any of them. Such a
requirement would be likely to delay the system substantially
(especially when you consider that the objects are distributed),
leading to an unacceptable delay in the execution of the first
phase of two-phase commit. In fact it might be impossible for the
system ever to obtain all locks. We chose the incremental scheme
to avoid such problems.

The incremental scheme has the following impact on
programs. The true state of an object usually includes the states
of all contained objects, and a predicate expressing a consistency
condition on an object state would normally constrain the states of
contained objects (this predicate is usually referred to as the
representation invariant [12]). For example, suppose we had an
atomic type doub/e-queue that (for some reason) kept two copies
of the semi-queue and was represented by

rep = record [first, second: semiqueue]
where the representation invariant required that the states of the
two semi-queues be the same. Now suppose the system is
handling the commit of some action A that modified both
semi-queues contained in the double-queue, and while this is
happening a second action B is modifying those semi-queues.
Then it is possible that when the first semi-queue is written t~
stable storage it contains B's changes, but when the second
semi-queue is written to stable storage it does not contain B's
changes. Therefore, the information in stable storage appears not
to satisfy the representation invariant of the double-queue.

However, the representation invariant of the double-queue
really is satisfied, for the following reason. First note that the
information in stable storage is only of interest after a crash. So
suppose there is a crash. Now there are two possibilities:

1. Before that Crash, B also committed. In this case the
data read back from stable storage is, in fact, consistent,
since it reflects B's changes to both the first and second
semi-queues.

2. B aborted or had not yet committed before the crash. In
either case, B aborts. Therefore, the changes made to the
first semi-queue by B will be hidden by the semi-queue
implementation: at the abstract level, the two semi-queues
do have the same state.

The point of the above example is that if the objects being written
to stable storage are atomic, then the fact that they are written
incrementally causes no problems.

On the other hand, when an atomic type is implemented with
a representation consisting of several mute'x objects, the
programmer must be aware that these objects are written to stable
storage incrementally, ahd care must be taken to ensure that the
representation invariant is still preserved and that information is
not lost in spite of incremental writing. We have explored several
atomic type implementations that use more than one mutex. Often
incremental writing is not a problem; for example, this is the case
when a database is simply implemented as a number of partitions.
If incremental writing must be taken into account, this can be
accomplished as in the following example.

61

Suppose we decide to implement a database by two mutex
objects, a log and a table. The table is very large and contains
most of the information in the data base. The log contains only a
record of recent activity. The true state of the data base is a
combination of the information in the log and the table. For
example, in responding to a query, the log would be examined
first. Only if needed information was not in the log would it be
necessary to consult the table. By keeping recent information in
the log, only the log need be copied to stable storage when
accessing actions commit. Furthermore, locks need be stored
only in the log and not in the table.

Since the log must be copied to stable storage frequently, it
is important to keep it fairly small. This can be accomplished by
running a cleanup action periodically to copy information in the
log to the table. The cleanup action has an associated cost of
copying the table to stable storage, so we must balance the
frequency of the cleanup action against the size of the table. (The
table could be partitioned to reduce this cost.) Once information
has been moved from the log to the table, it can be deleted from
the log. However, care must be taken to ensure that the moved
information is recorded in the stable copy of the table before it is
deleted from the stable copy of the log. This is accomplished by
writing the table, but not the log, to stable storage as part of the
commit of the cleanup action. Furthermore, the cleanup action
runs inside a seize of the log, which serves to delay writing of the
log to stable storage (on behalf of accessing actions) until after
the cleanup action has committed. The changes made to the log
by the cleanup action will be written to stable storage later, when
an accessing action commits.

6 . Conclusions

In the preceding sections we discussed atomic types and
why user-defined atomic types are needed. We then discussed
the issues that arise when users implement atomic types; these
issues must be considered in designing a linguistic mechanism to
support user-defined atomic types. Finally we presented a
linguistic mechanism consisting of the mutex type, the built-in
atomic types, and the associated statement forms.

A system design methodology based on the use of atomic
actions and atomic types results in systems with useful modularity
properties. The partial correctness of an individual action can be
verified independently of the other actions in the system and of the
implementations of the atomic types. Similarly, an implementation
of an atomic type can be verified independently of which actions
use objects of the type. This independence is especially useful if a
system performs poorly because of internal concurrency
limitations. In such a case, it may be possible to identify certain
shared objects as bottlenecks, and to substitute more concurrent
(albeit more complex) implementations for the types defining
those objects. Thus, it may be possible to trade off simplicity for
concurrency systematically.

Our approach to implementing user.defined types was
designed to provide good expressive power and user control over
efficiency. The extent to which we have succeeded in achieving
these goals is not yet clear. One difficulty in evaluating expressive
power is that there is not yet a set of canonical problems that can
be used as a benchmark. Most of the problems we have looked at
we have been able to solve efficiently. However, there are
problems that are difficult to solve using our mechanism. For
example, protocols that process read.only actions more efficiently
[1] appear to require extensions to the mechanism. Also, there
are complicated locking protocols for search structures [7] that
cannot be implemented easily With our mechanism.

In evaluating the ease of use of our mechanism, it is worth
discussing atomicity and resilience separately. A problem in
implementing atomicity, and one we have not discussed in this
paper, is that it is difficult to analyze the starvation and deadlock
properties of implementations. To some extent, this difficulty is
inherent in the problem domain. However, it is difficult to
guarantee fairness with our mechanism, even if mutex is fair. The
problem is that the underlying mechanism does not guarantee that
when a waiting process awakens its condition for proceeding is
satisfied. Therefore, it is Possible that each time a process
awakens, it must pause again, and so it starves. Fairness can be
programmed using our mechanism by keeping a queue of active
actions and doing scheduling explicitly, but such a solution is
complicated and inefficient.

If we changed our mutex mechanism to link pause to a
boolean expression that must be true for the process to be
awakened, then the system could provide fairness. However, the
cost of implementing such a mechanism is substantial, and may
not be worthwhile, for two reasons. First starvation probably
doesn't happen in practice (see [16]). Second, what is really
wanted is some guarantee of progress for the system as a whole,
and it is not clear how local guarantees of progress like fairness
contribute to global progress, particularly in the presence of
failures.

An alternative to the implicit approach is the explicit
approach. One interesting fact about Argus is that the
system-provided implementation of the built.in atomic types
follows the explicit approach. It is worth noting that the system
implementations are quite complex, primarily because in Argus we
have nested subactions. These are actions that can commit and
abort independently of their parent, and that can run concurrently
with their siblings. However, the commit of a child subaction is
relative to the parent; if the parent aborts the effects of the child
will be undone. We are convinced that nested subactions are
necessary as discussed in [21]. One mason for choosing an
implicit mechanism for Argus is that nested subactions have little
impact on it; this is why we did not need to explain nested
subactions in this paper. Nested subactions appear to have a
major impact on an explicit mechanism. An explicit mechanism,
however~ may provide a more uniform basis for implementing the
specialized protocols (e.g., for read-only actions) mentioned
earlier.

In addition to synchronization, mutex is used to provide
resilience. It is worth noting that the time may come when
resilience is provided by the hardware. It is also true that it may
become cost effective to provide resilience in software but below
the level of the language. If we could assume resilience at the
language level, much of the difficulty in implementing atomic types
disappears.

If programmers must cope with resilience, then some notion
of copies and copying is necessary. We keep those copies on
stable storage; an alternative would be to keep them at other
nodes. In either case, the programmer must worry about how the
copying happens. Also, efficiency considerations may dictate that
the copies be space-efficient.

The main advantage of an explicit approach appears to be to
give the user direct control over copying. With such control the
user should be able to insure that the copy satisfies the
representation invariant, and also contains just the right
information. Also, it is probably easier with an explicit approach to
use a representation of the data in stable storage that differs from
that used in volatile storage. An explicit approach raises a number
of difficult questions, however. The code for translating the
volatile representation into the stable representation runs during

62

the first phase of the two.phase commit protocol for an action,
Suppose this code makes remote procedure calls to other
guardians. Is this allowed? Do those guardians need to be
included in the two-phase commit for this action? Concern about
such problems was a major factor in our decision to pursue the
implicit approach. These questions must be resolved before a
complete evaluation of the different approaches can be made,

We believe atomic types are useful for building general
systems that depend on consistent on-line data. In this paper we
have discussed what makes a type atomic, and the issues that
arise in implementing atomic types. More work is needed in
investigating these issues and in designing linguistic mechanisms.
Our discussion was based on a number of assumptions; different
assumptions may lead to changes in the basic definition of
atomicity and to different linguistic mechanisms. Our hope in
writing this paper is to interest others in this area of research.

7. R e f e r e n c e s

Bernstein, P., and Goodman, N., "Concurrency control
algorithms for multiversion database systems", ACM
Symposium on Principles of Distributed Computing,
Ottawa, August 1982, 209-215.

2. Bernstein, P., Goodman, N., and Lai, M., "Two part proof
schema for database concurrency control", Proceedings
of the Fifth Berkeley Workshop on Distributed Data
Management and Computer Networks, February 1981,
71.84.

3. Best, E., and Randell, B., "A formal model of atomicity in
asynchronous systems", Acta Informatica 16, 1981,
93-124.

4. Dahl, O.oJ., et al., "The Simula 67 common base
language", Publication No. S-22, Norwegian Computing
Center, Oslo, 1970.

5. Davies, C.T., "Recovery semantics for a DB/DC system",
Proceedings of the 1973 ACM National'Conference, 1973,
136-141.

6. Davies, C.T., "Data processing spheres of control", IBM
Systems Journal 17, 2, 1978, 179-198.

7. Ellis, C., "Concurrent search and insertion in 2-3 trees",
Acts Informatica 14, 1980, 63-86.

8. Eswaren, K.P, Gray, J.N, Lorie, R.A., and Traiger, I.L.,
• "The notion of consistency and predicate locks in a
database system", Communications ACM 19, 11,
November 1976, 624.633.

9. Gifford, D., "Weighted voting for replicated data",
Proceedings of the Seventh ACM SIGOPS Symposium on
Operating Systems Principles, December 1979, 150-162.

10. Gray, J.N., "Notes on data base operating systems",
Lecture Notes in Computer Science 60, Goos and
Hartmanis editors, Springer-Verlag, Berlin, 1978, 393-481.

11. Gray, J.N., et al. "The recovery manager of the System R
database manager", ACM Computing Surveys 13, 2, June
1981, 223-242.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Guttag, J., Horowitz, E., and Musser, D., "Abstract data
types and" software valiclation", Communications of the
ACM21, 12, December 1978, 1048-1064.

Guttag, J., and Homing, J., "Formal specification as a
design tool", Proceedings of the Seventh Annual ACM
Symposium on Principles of Programming Languages,
January 1980, 251-261.

Hoare, C.A.R., "Monitors: an operating system structuring
concept", Communications ACM 17, 10, October 1974,
549-557.

Kung, H.T., and Robinson, J.T., "On optimistic methocfil
for concurrency control", ACM Transactions on Database
Systems 6, 2, June 1981, 213-226.

Lampson, B., and Redell, D., "Experience with processes
and monitors in Mesa", Communications of the ACM 23, 2,
February 1980, 105-117.

Lampson, B., "Atomic transactions", Distributed Systems:
Architecture and Implementation, Lecture Notes in
Computer Science 105, Goos and Hartmanis editors,
Springer-Verlag, Berfin, 1981, 246-265.

Liskov, B. and Zilles, S. N., "Programming with abstract
data types", Proceedings ACM SIGPLAN Conference on
Very High Level Languages, S/GPLAN Notices 9, 4, April
1974, 50-59.

Liskov, B., Snyder, A., Atkinson, R.R., and Schaffert, J.C.,
"Abstraction mechanisms in CLU", Communications ACM
20, 8, August 1977, 564.576.

Liskov, B. etal., "CLU reference manual", Lecture Notes
in Computer Science 114, Goos and Hartmanis editors,
Springer-Vedag, Bedin, 1981.

Liskov, B., and Scheifler, R., "Guardians and actions:
linguistic support for robust, distributed programs",
Proceedings of the Ninth Annual ACM Symposium on
Principles of Programming Langua'ges, January 1982,
7-19. Revised version to appear in TOPLAS.

Moss, J.E.B., "Nested transactions: an approach to
reliable distributed computing", Ph.D thesis, Technical
Report M/T/LCS/TR-260, MIT Laboratory for Computer
Science, Cambridge, MA, 1981.

Papedimitriou, C.H., "The serializability of concurrent
database updates", Journal of the ACM 26, 4, October
1979, 631-653.

Paxton, W., "A client-based transaction system to
maintain data integrity", Proceedings of the Seventh ACM
S/GOPS Symposium on Operating Systems Principles,
December 1979, 18-23.

Reed, D.P., "Naming and synchronization in a
decentralized computer system", Ph.D thesis, Technical
Report K41T/LCS/TR-205, MIT Laboratory for Computer
Science, Cambridge, MA, 1978.

63

26.

27.

28.

29.

Schwarz, P., and Spector, A., "Synchronizing shared
abstract types", Technica/ Report CMU-CS-82-128, CMU
Department of Computer Science, September 1982.

Sturgis, H., Mitchell, J., and Israel, J., "Issues in the design
and use of a distributed file system", Operating Systems
Review 14, 3, July 1980, 55.69.

Weihl, W., PhD thesis, MIT Laboratory for Computer
Science, forthcoming.

Wood, W.G., "Recovery control of communicating
processes in a distributed system", Technical Report 158,
University of Newcastle upon Tyne, 1980.

64

