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Abstract  

Maintaining the consistency of long-lived, on-line 
data is a difficult task, particularly in a distributed 
system. A variety of researchers have suggested 
atomicity as a fundamental organizational concept for 
such systems. In this paper we present a formal 
treatment of atomicity. Our treatment is novel in three 
respects: First, we treat serializability and 
recoverability together, facilitating the precise analysis 
of online implementations. Second, we explore how to 
analyze user.specified semantic information to achieve 
greater concurrency. Third, we focus on local 
properties of components of a system, thus supporting 
modular design. We present three local properties, 
verify that they ensure atomicity, and show that they 
are optimal. Previously published protocols are 
suboptimal. We show that these differences are the 
result of fundamental limitations in the model used to 
analyze those protocols; these limitations are not 
shared by our model. 

1. Introduction 

There are many applications in which the 
manipulation and preservation of long-lived, on-line 
data is of primary importance. Examples of such 
applications are banking systems, airline reservation 
systems, office automation systems, database systems, 
and various components of operating systems. A 
major issue in such systems is preserving the 
consistency of on-line data in the presence of 
concurrency and hardware failures. In this paper we 
are concerned with how to define data objects that 
help provide needed consistency. 

To support consistency it is useful to make the 
activities that use and manipulate the data atomic (see 
[Liskov & Scheifler 82] and [Reed 78], among others, 

for discussion and motivation of the use of atomicity). 
Atomic activities are referred to as actions or 
transactions; they were first identified in work on 
databases [Davies 73, Davies 78, Eswaren 76]. Atomic 
actions are characterized informally by two properties: 
serializability and recoverability. Serializability means 
that the actions appear to execute in some sequential 
order, even though they actually execute concurrently. 
Recoverability means that each action appears to be 
all-or-nothing: either it executes to completion and 
commits, or it aborts and appears to have no effect on 
data shared with other actions. Recoverability allows 
the user on whose behalf an action runs to decide to 
discard the effects of that action. In addition, it allows 
an action to work properly even if there is a hardware 
failure during its execution and allows the system to 
abort an action if necessary (e.g., to resolve a 
deadlock). Serializability in databases has received a 
great deal of attention in the theoretical literature (see, 
for example, [Papadimitriou 79]); recoverability has 
received less. 

In this paper we present a formal treatment of 
atomicity. Our treatment is novel in three respects: 

It is integrated: we treat serializability and 
recoverability together, rather than 
analyzing only serializability or only 
recoverability. 

It is data-dependent: our definition of 
atomicity is based on an explicit 
specification of the semantics of the data. 
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It supports modular design: we focus on 
local properties of individual data objects 
that ensure global atomicity of the 
activities using the objects. 
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Others (see, for example, [Bernstein 81], [Korth 81], 
and, more recently, [Schwarz & Spector 82]} have also 
recognized the utility of analyzing specifications of the 
semantics of data objects to achieve greater 
concurrency. Existing approaches, however, suffer 
from two limitations that are not shared by our 
approach. First, they have a fixed model of recovery, 
and formally treat only serializability. As we will 
illustrate in Section 5, this biases the specifications of 
objects toward certain recovery techniques. This bias 
limits concurrency unnecessarily, and makes it difficult 
to analyze novel recovery techniques such as those 
proposed by Reed [Reed 78]. Second, their 
specifications require operations to be functions, 
precluding the description of non-deterministic 
operations. Non-deterministic operations are useful for 
avoiding over-specification during the design of a 
system; in addition, as we illustrated in [Weihl & Liskov 
83], non-determinism may be needed to achieve a 
reasonable level of concurrency among actions. 

Our focus on local properties is useful when 
applying a design methodology based on the use of 
abstract data objects (cf. [Liskov & Zilles 74]). Since 
the synchronization and recovery needed for an object 
may depend heavily on the semantics of the object, it is 
important that the code that performs the 
synchronization and recovery not be scattered 
throughout each activity; rather, it should be 
encapsulated within the implementation of each data 
object. The local properties that we present in this 
paper support this kind of encapsulation. 

The rest of this paper is organized as follows: In 
Section 2, we discuss our system model. In Section 3, 
we use the model to define atomicity. Then, in Section 
4, we explore properties of individual objects that 
ensure atomicity of activities using the objects. We 
consider three such local properties: a generalization 
of common locking protocols, which we call dynamic 
atomicity; a generalization of the timestamp-based 
multi-version protocol proposed by Reed [Reed 78], 
which we call static atomicity; and a novel hybrid 
approach that incorporates features of both locking 
and timestamp protocols. Next, in Section 5, we 
discuss related work and illustrate the problems with 
existing approaches. Finally, in Section 6, we 
summarize our results and discuss their significance. 

2.  S y s t e m  M o d e l  

We view a system as composed of activities and 
objects. Activities correspond roughly to processes or 
threads of control: they are the active entities in the 
system, and perform tasks for users. Objects contain 
the state of the system: they provide operations by 
which activities can examine and modify the system 

state, and constitute the sole path by which activities 
can pass information among themselves. 

We model a computation as a finite sequence of 
events. (More precisely, our sequences may be 
considered as observations of a computation; for our 
purposes it is sufficient to consider all possible 
observations of a system rather than actual 
computations, which may be more properly viewed as 
partial orders.) For the remainder of this section, 
Section 3, and the first part of Section 4, we assume 
that an event is either the invocation of an operation on 
an object by an activity, the termination of an 
invocation, the commit (successful completion) of an 
activity at an object, or the abort (unsuccessful 
completion) of an activity at an object. Each event 
identifies the activity and the object that participated in 
it. In Sections 4.2 and 4.3 we will augment our model 
with additional events that introduce information about 
timestamps for activities. 

For example, suppose x is an object that is intended 
to behave like a set of integers, with operations to 
insert an integer in x, to delete an integer, and to check 
for membership. If a is an activity, example events 
include the following: 

-a invokes insert on x with argument 3 
(written <insert(3),x,a>) 

- an invocation of insert by a on x terminates 
(written <ok,x,a>) 

-a invokes member on x with argument 7 
(written <member(7),x,a>) 

-an invocation of member by a on x 
terminates with result "true" (written 
<true,x,a>) 

- a commits at x (written <commit,x,a>) 

If a and b are activities, the following event sequence 
might be a computation of a system containing a set 
object x: 

<insert(3),x,a> 
<ok,x,a> 

<member(3),x,b> 
<commit,x,a> 

<true,x,b> 
<commit,x,b> 

If h is an event sequence and x is an object, we 
define hlx to be the subsequence of h consisting of all 
events in which x participates. We define hla similarly 
for an activity a. 

Not all event sequences make sense as 
computations: activities are intended to act like 
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sequential processes. Thus, we restrict our attention 
to event sequences h satisfying the following 
conditions: 

-An activity must wait until one invocation 
terminates before invoking another 
operation. 

-No activity both commits and aborts in h 
(at the same or different objects). 

- An activity cannot commit if it is waiting for 
an invocation to terminate. 

-An activity cannot invoke any operations 
after it commits. 

Such event sequences will be called well-formed; in the 
remainder of this paper we will only be concerned with 
well-formed sequences. 

Tlie objects in our model are abstractions; the 
interpretation of the results of their operations is 
determined by their specifications. We assume that the 
specification of an object x describes the permissible 
sequences of events involving x; thus a specification of 
an object x is a set of well-formed event sequences h 
such that every event in h involves x. For instance, if x 
is an integer set object, the example sequence above 
might be in the specification of x. On the other hand, 
the following sequence would probably not be in the 
specification of x: 

<insert(3),x,a> 
<ok,x,a> 

<member(3),x,b> 
<commit,x,a> 

<false,x,b> 
<commit,x,b> 

Similarly, each activity has a specification describing 
the sequences of events in which it can participate. In 
this paper we will assume that specifications are given 
for each object and activity in a system; details of how 
to write such specifications will be published in [Weihl 
83]. 

Given specifications for each object and activity in a 
system, the possible computations of the system are 
defined to be all well-formed sequences h such that, for 
every object x and activity a, hlx is permitted by the 
specification of x and hla is permitted by the 
specification of a. 

3. Global  A t o m i c i t y  

In Section 1 we gave an informal definition of 
atomicity, characterizing it by two properties, 

serializability and recoverability. Now that we have 
described precisely our model of computation, 
specifications of objects and activities, and how the 
specifications of the components of a system 
determine the possible computations of the system, we 
can make the notions of serializability and 
recoverability more precise. 

We begin by defining serializability. We say that two 
sequences h and k are equivalent if every activity has 
the same view in h as in k; i.e., if hla = kla for every 
activity a. We also say that a sequence is acceptable in 
a system if it is permitted by the specifications of the 
objects and activities in the system. We then say that a 
sequence is seria/izab/e if it is equivalent to an 
acceptable serial sequence (one in which events for 
different activities are not interleaved). In addition, if T 
is a total ordering of activities, we say that a sequence 
is serializable in the order T if it is equivalent to an 
acceptable serial sequence in which the activities 
appear in the order T. If no information about the 
semantics of the operations on objects is available, the 
serial sequences may be characterized by assuming a 
free interpretation for the operations as in 
[Papadimitriou 79]. A similar approach is commonly 

used when operations are classified as read and write 
operations. We want to analyze the concurrency that is 
permissible when we have complete information about 
the semantics of the operations on objects; thus, we 
assume we have an explicit description of the 
acceptable sequences for each object. 

For example, an integer set object x, with its initial 
state being the empty set, might allow the following 
serial sequence: 

<insert(3),x,b> 
(ok,x,b> 

<commit,x,b> 
<member(3),x,a> 

<true,x,a> 
<commit,x,a> 

On the other hand, x would probably not allow the 
following serial sequence: 

<insert(3),x,b> 
<ok,x,b> 

<commit,x,b> 
<member(3),x,a> 

<false,x,a> 
<commit,x,a> 

This defines serializability; we now define atomicity. 
If h is a well-formed event sequence, let perm(h) be the 
subsequence of h consisting of all events involving 
activities that commit in h, and no others. We say that 
h is atomic if perm(h) is serializable, This formalizes 
recoverability by throwing away events for non- 
committed activities, and requiring that the committed 
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activities be serializable. This is similar to the definition 
of serializability in[Papadimitriou 79], where it is 
assumed that some underlying recovery mechanism 
handles aborts of activities, and the formal analysis 
considers only events for committed activities. It is 
different in that we include events for aborted and 
active activities in our formal model; this facilitates the 
precise description of online support for recoverability. 

For example, if x is an integer set and h is the 
sequence 

<member(3),x,a> 
<insert(3),x,b> 

<ok,x,b> 
<true,x,a> 

<commit,x,b> 
<delete(3),x,c> 

<ok,x,c> 
<commit,x,a> 
<abort,x,c> 

then perm(h) is the sequence 

<member(3),x,a> 
<insert(3),x,b> 

<ok,x,b> 
<true,x,a> 

<commit,x,b> 
<commit,x,a> 

which is equivalent to the following serial sequence: 

<insert(3),x,b> 
<ok,x,b> 

<commit,x,b> 
<member(3),x,a> 

<true, x,a> 
<commit,x,a> 

This serial sequence is permitted by x, so h is atomic. 
On the other hand, the sequence 

<member(2),x,a> 
<true,x,a> 

<commit,x,a> 

is not atomic: since x is initially empty, the member 
operation cannot return "true" in a serial sequence 
unless the queried element was inserted by a previous 
operation. 

4.  Loca l  A t o m i c i t y  P r o p e r t i e s  

We are interested in ways of ensuring that all 
possible computations of a system are atomic. As 
discussed in Section 2, the possible computations of a 
system are determined by the specifications of the 
components of the system. In this section we 
investigate several properties of individual objects that 
ensure atomicity of activities using the objects, We call 

such properties local atomicity properties. More 
precisely, a local atomicity property is a property P of 
specifications of objects such that the following is true: 
If the specification of every object in a system satisfies 
P, then every computation of the system is atomic. The 
remainder of this section is divided into three 
subsections, each of which presents a different local 
atomicity property. 

4.1. Dynamic Atomici ty 
Our first local atomicity property, which we call 

dynamic atomicity, is a generalization of the locking 
protocols of [Bernstein 81], [Korth 81], and [Schwarz & 
Spector 82]. Locking protocols are based on the 
notion of dependencies between operations: 
informally, we say that operation P depends on 
operation Q if P is executed after Q, and P and Q 
cannot be reordered without affecting the results of P 
or Q. We say that activity A depends on activity B if an 
operation executed by A depends on an operation 
executed by B. Locking protocols work by preventing 
one activity from depending on another unless the 
latter has committed. For example, locking protocols 
generally prevent one activity from reading data written 
by another activity until the latter has committed. 
Similarly, an activity cannot write data read by another 
activity until the latter has committed. 

We can describe dynamic atomicity precisely as 
follows. If h is an event sequence, define precedes(h) 
to be the following relation on activities: 
<a,b>Eprecedes(h) if and only if there exists an 
operation invoked by b that terminates after a commits. 
For example, if h is the sequence 

<insert(2),x,a> 
<ok,x,a> 

<member(3),x,b> 
<false,x,b> 

<commit,x,b> 
<commit,x,a> 

then precedes(h) is the empty relation, while if h is the 
sequence 

<insert(2),x,a> 
<ok,x,a> 

<member(3),x,b> 
<commit,x,a> 

<false,x,b> 
<commit,x,b> 

then precedes(h) contains the pair <a,b>. Note that if h 
is well-formed then precedes(h) is a partial order. 

Intuitively, dynamic atomicity allows an activity b to 
depend on an activity a in a computation h only if 
<a,b>Eprecedes(h). Thus, if a and b are not related by 
the precedes relation, there must be an equivalent 
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serial sequence containing a followed by b, and 
another equivalent serial sequence containing b 
followed by a. More precisely, we say that a sequence 
h is dynamic atomic if perm(h) is serializable in every 
total order consistent with precedes(h). In other words, 
every serial sequence equivalent to perm(h), with the 
activities in an order consistent with precedes(h), must 
be allowed by the specification of the permissible serial 
sequences. 

For example, the following sequence h is atomic: 

<member(3),x,a> 
<insert(3),x,b> 

<ok,x,b> 
<false,x,a> 

<member(3),x,c> 
<commit,x,b> 

<true,x,c> 
<commit,x,a> 
<commit,x,c> 

However, it is not dynamic atomic, for the following 
reason. Perm(h), which is the same as h, is equivalent 
to the following acceptable serial sequence: 

<member(3),x,a> 
<false,x,a> 

<commit,x,a;> 
<insert(3),x,b> 

<ok,x,b> 
<commit,x,b;> 

<member(3),x,c> 
<true,x,c> 

<commit,x,c> 

and thus is serializable in the order a followed by b 
followed by c (written a-b-c). However, since 
precedes(h) contains only the single pair <b,c), 
perm(h) must also be serializable in the orders b-a-c 
and b-c-a. This is not the case; for example, the serial 
sequence 

<insert(3),x,b> 
<ok,x,b> 

<commit,x,b> 
<member(3),x,a> 

<false,x,a> 
<commit,x,a> 

<member(3),x,c> 
<true,x,c> 

<commit,x,c> 

is not acceptable. Informally, we might say that b 
depends on a, since a must be serialized before b. 

As another example, the sequence 

<member(2),x,a> 
<insert(3),x,b> 

<ok,x,b> 

<false,x,a) 
<member(3),x,c> 

<commit,x,b> 
<true,x,c;, 

<commit,x,a> 
<commit,x,c> 

is dynamic atomic. Precedes(h) contains the single 
pair <b,c>, and perm(h) is serializable in the orders 
a-b-c, b-a-c, and b-c-a. Informally, we might say that a 
does not depend on b or c, and that c depends on b. 
Since <b,c>Eprecedes(h), c can depend on b. 

We say that an object is dynamic atomic if every 
sequence permitted by the object's specification Is 
dynamic atomic. The following theorem justifies our 
claim that dynamic atomicity is a local atomicity 
property: 

Theorem 1: If every object in a system is 
dynamic atomic, then every computation of 
the system is atomic. 

Proof: The theorem follows from the 
following two technical lemmas, which follow 
easily from the definitions: 

Lemma 2: If h is a well-formed 
sequence and x is an object, then 
precedes(hlx) C_ precedes(h). 

Lemma 3: If h is a well-formed 
sequence, h is serializable in the 
order T if and only if, for every 
object x, hlx is serializable in the 
order T. 

Now, suppose every object in a system is 
dynamic atomic, and let h be a computation 
of the system. Since h is well-formed, 
precedes(h) is a partial order; let T be a total 
order of the activities in h that is consistent 
with precedes(h). By Lemma 2, 
precedes(hlx) C_ precedes(h), so T is also 
consistent with precedes(hlx) for every x. 
Since each object is dynamic atomic, 
perm(hlx) is serializable in every total order 
consistent with precedes(h); in particular, it 
is serializable in the order T. By Lemma 3, 
perm(h) is serializable in the order T. Thus, h 
is atomic. 

This description of dynamic atomicity can be used to 
prove the correctness of common synchronization and 
recovery techniques, including a combination of the 
locking protocols of [Bernstein 81], [Korth 81], and 
[Schwarz & Spector 82] and the intentions lists of 
[Lampson & Sturgis ??]. Details can be found in [Weihl 

83]. 
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Dynamic atomicity is optimal:  there is no other local 
atomicity property that allows strictly more 
concurrency. We sketch a proof of this result here; a 
complete proof can be found in [Weihl 83]. The proof 
proceeds by contradiction: Suppose P is a local 
atomicity property that allows strictly more 
concurrency than dynamic atomicity. We exhibit a 
system composed of objects satisfying P and a non- 
atomic computation of that system, contradicting the 
claim that P is a local atomicity property. 

Since P is more permissive than dynamic atomicity, 
there must be a specification S x of an object x such 
that S x satisfies P but S x is not dynamic atomic. In 
particular, there must be at least one event sequence 
h x in S x that is not dynamic atomic; that is, such that 
perm(hx) is not serializable in at least one total order T 
consistent with precedes(hx). We can construct an 
object y whose specification contains a sequence hy 
involving the activities in h x that is serializable only in 
the order T. Now, consider a system containing x, y, 
and all the activities in h x. Because of the order in 
which activities appear in h x and h v, there is a 
computation h of this system such that hlx = h x and 
hlY = h~. Since perm(h, ) is only serializable in the order 
T, and perm(hx) is Rot serializable in that order, 
perm(h) is not serializable. Thus, h is not atomic. 

The construction of y is as follows: Let y have a 
single operation called increment, y is intended to 
behave like a counter: its state is initially zero, and 
each invocation of the increment operation increments 
the state of y and returns the resulting value. The serial 
sequences permitted by y have the following form: 

<increment,y,al~> 
<1 ,y,al > 

<commit,y,al> 
<increment,y,a2> 

<2,y,a2> 
<commit,y,a2> 

, , ,  

<increment,y,an> 
<n,y,an> 

<commit,y,an> 

The only serial sequences permitted by y are similar to 
this, but may contain more than one invocation per 
activity. Let the specification of y be the largest set S. 
that is dynamic atomic and contains all these seria~ 
sequences. Since P is more permissive than dynamic 
atomicity, Sy satisfies P. Let a l, a2 . . . . .  an be the 
committed activities in h x in the order T, and let hy be 
the serial sequence permitted by y in which each 
activity performs one invocation, and with committed 
activities a l ,  a2, an in that order. Note that h is " ° ' ~  , y  

serializable only in the order T. This gives the des=red 
contradiction. 

Th~ locking protocols of [Bernstein 81], [Korth 81], 
and [Schwarz & Spector 82] are suboptimal: while 
sufficient to ensure atomicity (given the assumptions 
about the underlying recovery mechanism), they permit 
strictly less concurrency than does dynamic atomicity. 
This is due in part to fundamental limitations of the 
underlying models of those protocols. We will illustrate 
this point with detailed examples in Section 5. 

4.2. Static Atomicity 
Our second local atomicity property, which we call 

static atomicity, is a generalization of the timestamp-- 
based multi-version protocol proposed by Reed [Reed 
78]. Static atomicity differs from dynamic atomicity in 
that the serialization order of activities is determined a 
priori :  before an activity invokes any operations, it 
chooses a unique timestamp. Each object then 
ensures that activities are serializable in timestamp 
order. 

In the implementation of static atomicity described in 
[Reed 78] for objects with read and write operations, 

serializability in timestamp order is achieved by 
maintaining multiple versions of each object; 
associated with each version is the timestamp of the 
activity that wrote it. When an activity with timestamp t 
invokes a read operation on an object x, it selects the 
version of x with the largest timestamp less than t. In 
this section we describe in general terms the 
correctness property for Reed's scheme, extending 
Reed's ideas to include objects with user-specified 
operations. 

4.2.1.  Additional Events 
To define static atomicity, we need to introduce 

some new events that describe the timestamps chosen 
by activities. An activity chooses a timestamp when it 
starts. Thus, in addition to invocation, termination, 
commit, and abort events, we include initiation events. 
We write the event corresponding to the initiation of 
activity a at object x with timestamp t as <initiate(t),x,a>. 
We assume that timestamps are taken from some 
countable, well-ordered set; in this paper we will use 
natural numbers. 

In addition to the well-formedness constraints on 
event sequences stated earlier, we have the following 
constraints: 

- An activity must initiate at an object before 
invoking any operations at the object. 

- Initiation events for distinct activities must 
have distinct timestamps. 

-Any two initiation events for the same 
activity must have the same timestamp. 
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For example, the following sequence is well-formed: 

<initiate(1),x,a> 
<member(2),x,a> 

<false,x,a> 
<commit,x,a> 

The sequence 

<3nitiate(1),x,a> 
<member(2),y,a> 

<false,y,a> 
<initiate(2),y,a> 
<initiate(1),y,b> 
<commit,x,a;, 

is not, however, for three reasons. First, a initiates with 
two different timestamps. Second, b initiates with a 
timestamp used by a. Third, a invokes operations at y 
before initiating at y. 

4.2.2. Definition of Static Atomicity 
Let h be a well-formed sequence containing 

initiation, invocation, termination, commit, and abort 
events. We say that h is static atomic if perm(h) is 
serializable in timestamp order. 

For example, the following sequence h is atomic: 

<initiate(2),x,a> 
<member(3),x,a> 

<false,x,a> 
<commit,x,a> 

<initiate(1),x,b> 
<insert(3),x,b> 

(ok,x,b> 
<commit,x,b> 

However, it is not static atomic, for the following 
reason. Perm(h) is an acceptable serial sequence, and 
thus is serializable in the order a-b. However, the 
timestamp order in h is b-a, and perm(h) is not 
serializable in this order. 

As another example, the sequence 

<initiate(2),x,a> 
<insert(3),x,a> 

<ok,x,a> 
<commit,x,a> 

<initiate(1 ),x,b> 
<member(3),x,b> 

<false,x,b> 
<commit,x,b> 

is static atomic. Perm(h) is serializable in timestamp 
order (b-a). 

We say that an object is static atomic if every 
sequence permitted by the object's specification is 
static atomic. The following theorem verifies that static 
atomicity is a local atomicity property: 

Theorem 4: If every object in a system is 
static atomic, then every computation of the 
system is atomic. 

Proof: Suppose that every object in a 
system is static atomic, and let h be a 
computation of the system. Let T be the 
timestamp order on the activities in h. By the 
definition of static atomicity, perm(hlx) is 
serializable in the order T. By Lemma 3, 
perm(h) is also serializable in the order T, so 
h is atomic. 

Static atomicity, like dynamic atomicity, is optimal. 
The proof of optimality is similar to that for dynamic 
atomicity; the details may be found in [Weihl 83]. 

4.2.3. Comparison of Dynamic and Static 
Atomicity 

Dynamic atomicity and static atomicity are different: 
each permits operations to be interleaved in ways that 
the other does not. This implies that optimality is a 
relatively weak property. In particular, optimal does not 
mean "best," but rather that nothing else is strictly 
better. 

Which of these two local atomicity properties is best 
for a given application will depend on the patterns of 
operations invoked by activities. For example, dynamic 
atomicity works poorly for long read-only activities 
such as audits. If dynamic atomicity is implemented 
using a locking protocol, a read-only activity, once it 
has a lock on an object, will cause other activities that 
need conflicting locks to wait. Because of the need to 
wait for locks, long read-only activities can be quite 
prone to deadlock. Static atomicity, however, works 
reasonably wel! for long read-only activities. In the 
implementation proposed by Reed [Reed 78], read-only 
activities are never forced to abort (the analog of 
deadlock in a locking system), and are rarely delayed 
by other activities. On the other hand, static atomicity 
works poorly for updating activities unless timestamps 
are generated using closely synchronized clocks. For 
example, in the implementation proposed by Reed, if 
an activity attempts to write an object after another 
activity with a later timestamp has already read the 
object, the former activity must be aborted. Using 
dynamic atomicity, the writer might be delayed until the 
reader committed, but would then be able to proceed. 

4.3. Hybrid Atomicity 

Our final local atomicity property, which we call 
hybrid atomicity, combines features of dynamic and 
static atomicity, so as to avoid some of the 
disadvantages of each. It is similar to the multiversion 
scheme proposed in [DuBourdieu 82] and formally 
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analyzed in [Bernstein & Goodman 82], but is more 
general in that we permit (and take advantage of) user- 
specified operations. 

Hybrid atomicity is based on a partition of activities 
into two classes: read-only activities, and update 
activities. Intuitively, a read-only activity is one that 
does not invoke any operations that change the state of 
an object; a formal definition of this property can be 
found in [Weihl 83], where we describe in detail how to 
specify objects and activities as well as what it means 
for an operation to change the state of an object. All 
activities that invoke operations that change the states 
of objects are considered to be update activities. 

Hybrid atomicity processes updates using dynamic 
atomicity. Then, as update activities commit, they 
choose timestamps in such a way that the updates are 
serializable in timestamp order. Finally, read-only 
activities choose timestamps before invoking any 
operations. When a read-only activity with timestamp t 
invokes an operation, it computes the answer to its 
query by including the effects of all operations 
executed by committed updates with timestamps less 
than t. 

4.3.1. Additional Events 

To define hybrid atomicity precisely, we need to use 
a slightly different set of events to describe timestamps. 
In addition, we must partition the set of activities into 
two subsets: the updates (written a, b, and c), and the 
read-only activities (written r, s, and t). Timestamps for 
updates are chosen when they commit; we write the 
event corresponding to the commitment of an update a 
at object x with timestamp t as <commit(t),x,a>. 
Timestamps for read.only activities are chosen when 
they start, so we use initiation events for them, writing 
the events as <initiate(t),x,r>. We use the term 
timestamp events to denote the set of all commit events 
for updates and all initiation events for read-only 
activities. 

In addition to the well-formedness constraints on 
event sequences stated in Section 2, we have the 
following constraints: 

-A read-only activity must initiate at an 
object before invoking any operations at 
the object. 

-Any two timestamp events for distinct 
activities have distinct timestamps. 

-Any two timestamp events for the same 
activity have the same timestamp. 

For example, the following sequence is well-formed: 

<insert(3),x,a> 
<ok,x,a> 

<commit(2),x,a> 
<initiate(1),x,r> 

<member(3),x,r> 
<false,x,r> 

<commit,x#> 

The following sequence h, however, is not: 

<insert(3),x,a> 
<ok,x,a> 

<commit(2),x,a> 
<member(3),x,b> 

<true,x,b> 
<commit(1),x,b> 
<initiate(2),x,r> 

Precedes(h) contains the single pair <a,b>, yet the 
timestamp chosen by b is less than that chosen by a. 
Also, r and a use the same timestamp, violating the 
uniqueness property of timestamps. 

4.3.2. Definition of Hybrid Atomicity 
Let h be a well-formed sequence. Define updates(h) 

to be the subsequence of h consisting of all events 
involving update activities in h, and no others. Thus, 
updates(h) can be obtained from h by throwing away all 
events for read-only activities. We say that h is hybrid 
atomic if perm(h) is serializable in timestamp order. 

For example, the following sequence h is atomic: 

<insert(3),x,a> 
<ok,x,a> 

<insert(4),x,b> 
<ok,x,b> 

<commit(1),x,a> 
<commit(3),x,b> 
<initiate(2),x,r> 

<member(3),x,r> 
<true,x,r> 

<member(4),x,r> 
<true,x#> 

<commit,x,r> 

since it is serializable in the order a-b-r. However, it is 
not hybrid atomic, for the following reason. Perm(h) in 
timestamp order is the sequence 
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<insert(3),x,a> 
<ok,x,a> 

<commit(1),x,a> 
<initiate(2),x,r> 

<member(3),x,r> 
<true,x,r> 

<member(4),x,r> 
<true,x,r> 

<commit,x,r> 
<insert(4),x,b> 

<ok,x,b> 
<commit(3),x,b> 

which is not an acceptable serial sequence. 
As another example, the sequence 

<insert(3),x,a> 
<ok,x,a> 

<insert(4),x,b> 
<ok,x,b> 

<commit(1 ),x,a> 
<commit(3),x,b> 
<initiate(2),x,r> 

<member(3),x,r> 
<true,x#> 

<member(4),x,r> 
<false,x#> 

<commit,x#> 

is hybrid atomic. 
We say that an object is hybrid atomic if every 

sequence permitted by the object's specification is 
hybrid atomic. The following theorem verifies that 
hybrid atomicity is a local atomicity property: 

Theorem 5: If every object in a system is 
hybrid atomic, then every computation of the 
system is atomic. 

The proof is identical to that for static atomicity. 
Hybrid atomicity is optimal; the proof again is by 

contradiction. 

4.3.3. Discussion 
At first glance hybrid atomicity might not seem very 

different from static atomicity: both work by 
establishing a global timestamp ordering on activities 
and ensuring that activities are serializable in that 
order. Hybrid atomicity, however, chooses timestamps 
for updates as they commit, not before they start 
executing. This difference is substantial: it raises a 
number of interesting implementation issues, and 
results in some useful properties. 

The basic correctness condition for hybrid atomicity 
is that committed activities are serializable in 
timestamp order. The online implementation of hybrid 
atomicity discussed in [Weihl ??] combines several 
properties to achieve this result. First, it generates 

timestamps for updates so that the timestamp ordering 
on updates is consistent with precedes at each object. 
This can be achieved easily with some simple 
modifications to a two-phase commit protocol [Gray 
78], or by using a Lamport clock [Lamport 78] as 
suggested in [Bernstein & Goodman 82]; the details 
can be found in [Weihl ??]. Second, it processes 
updates using dynamic atomicity; in combination with 
the first property, this ensures that committed updates 
are serializable in timestamp order. Third, it computes 
the results for operations invoked by read-only 
activities by allowing a read-only activity with 
timestamp t to see the effects of exactly those 
committed updates with timestamps less than t. 

The implementation of hybrid atomicity discussed 
in [Weihl ??] processes read-only activities so that they 
do not interfere in any way with update activities. Thus, 
the problems with read-only activities under dynamic 
atomicity are avoided. In addition, updates are 
processed using dynamic atomicity, avoiding the 
problems with updates under static atomicity. 

In a sense, hybrid atomicity is really better than 
dynamic atomicity: it allows more interleaving of 
operations, although the results seen by a read-only 
activity under hybrid atomicity may be different than 
those seen by the same activity under dynamic 
atomicity. Actually comparing the event sequences 
permitted by the two properties is problematic since 
the event sets differ. Assuming that the cost of 
implementing hybrid atomicity is not too large, 
however, it seems likely that hybrid atomicity will 
perform better than dynamic atomicity. Hybrid 
atomicity achieves this improvement over dynamic 
atomicity by using more information, namely that 
certain activities are read-only. 

For instance, consider the example of a banking 
system presented by Lamport[Lamport 76]. The 
system contains transfer activities (that move money 
between two accounts) and audit activities (that print 
out the current balances of all accounts). Lamport 
noted the performance problems of locking 
implementations, and suggested that the solution to 
these problems is to allow non-atomic executions. He 
defined a correctness property, namely that the view of 
the database seen by an audit must be consistent, and 
described an implementation that guarantees this 
property while permitting more concurrency than a 
locking implementation of atomicity. His correctness 
property does not ensure, however, that the view seen 
by an audit bears any relation to the actual state of the 
database. In addition, audits under his implementation 
still interfere with some updates. Hybrid atomicity 
solves the problem addressed by Lamport, namely the 
performance problems with read-only activities under 
dynamic atomicity. In contrast to Lamport's solution, 
hybrid atomicity ensures atomicity; this means that the 
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view seen by an audit can be related to the updates 
performed by transfers and to the views seen by other 
audits. Furthermore, audits under the implementation 
of hybrid atomicity in [Weihl .??] do not interfere with 
any updates. 

5. Re la ted  W o r k  

Our discussion of related work is organized into two 
parts. First, in Section 5.1, we illustrate the limitations 
of a model commonly used to analyze the concurrency 
control problem, and discuss why our approach avoids 
these limitations. Then, in Section 5.2, we make some 
general comments on the idea of using user.specified 
information about the semantics of a system to achieve 
greater concurrency. 
5.1. Limitations of the Scheduler  Model  

Dynamic atomicity permits more concurrency than 
conventional locking protocols. In this subsection we 
show that this difference is the result of a fundamental 
limitation in the model used to analyze those protocols. 
We begin by comparing the degree of concurrency 
permitted by dynamic atomicity with that permitted by 
conventional locking protocols, showing that dynamic 
atomicity permits more concurrency. Then we discuss 
in some detail the limitations of the model used to study 
the locking protocols. 

The following example illustrates that dynamic 
atomicity allows more concurrency than the locking 
protocols of [Bernstein 81], [Korth 81], and [Schwarz & 
Specter 82]. Let y be a bank account object, with initial 
balance 0, and with operations to deposit a sum of 
money, to withdraw a sum of money, and to examine 
the current balance. Assume that an invocation of the 
withdraw operation can terminate in one of two ways: 
either normally (with result ok), indicating that the 
requested sum has been withdrawn, or abnormally 
(with result insufficient_funds), indicating that the 
account balance is too small to cover the request. 
Note that the locking protocols allow two activities to 
execute operations concurrently only if the operations 
commute. Two deposit operations commute, since 
addition is commutative. Two withdraw operations do 
not commute, however: if the current balance is large 
enough to cover either request but not both, then the 
results of the operations depend on the order in which 
they'are executed. Similarly, a deposit operation does 
not commute with a withdraw operation: if the current 
balance is not quite large enough to cover the 
withdrawal, but the current balance plus the amount 
deposited is large enough, then the results of the 
operations depend on the order in which they are 
executed. Thus the locking protocols must prevent 
activities from executing two withdraw operations 
concurrently, and from executing withdraw operations 
concurrently with deposit operations. 

Dynamic atomicity allows activities to execute 
withdraw operations concurrently as long as there is 
sufficient money in the account to cover all of the 
requests. For example, the following sequence is 
dynamic atomic, since it is serializable in the orders 
a-b.c and a.c-b: 

<deposit(10),y,a> 
<ok,y,a> 

<commit,y,a> 
<withdraw(4),y,b> 
<withdraw(3),y,c> 

<ok,y,c) 
(ok,y,b) 

<commit,y,c> 
<commit,y,b> 

This sequence would not be allowed, however, by any 
of the locking protocols. 

Similarly, dynamic atomicity allows withdraw 
operations to be executed concurrently with deposit 
operations as long as the deposits are not needed to 
cover the withdrawals. For example, the following 
sequence is dynamic atomic, since it is serializable in 
the orders a-b-c and a-c-b: 

<deposit(1),y,a) 
(ok,y,a) 

<commit,y,a> 
<deposit(1),y,b> 

(ok,y,b> 
<withdraw(1),y,c> 

(ok,y,c> 
(commit,y,b> 
<commit,y,c) 

As above, this sequence would not be allowed by any 
of the locking protocols. 

The difference between dynamic atomicity and the 
locking protocols appears to be a result of a 
fundamental limitation in the model used in [Berostein 
81], [Korth 81], and [Schwarz & Spector 82]. That 
model, which we will call the scheduler mode/, is 
pictured in Figure 5-1. 

, \ 

I 
/ 

p 

Figure 5-1 : The scheduler model. 
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The boxes on the left represent transactions, which 
submit invocations to the scheduler in the middle. The 
scheduler determines the order in which to run 
operations invoked by transactions, and submits the 
invocations in that order to the storage module on the 
right, which processes the operations and returns their 
results to the transactions. The problem addressed in 
[Bernstein 81], [Korth 81], and [Schwarz & Spector 82] 
is to analyze the properties of the scheduler module. 
The problem that we address is slightly different: we 
analyze the properties of the interface represented by 
the dotted line. 

The limitations of the scheduler model are illustrated 
by the following example. Consider a first-in-first-out 
queue object x, with operations to enqueue an integer 
onto the back of the queue and to dequeue an integer 
from the front of the queue. Note that an operation to 
enqueue the integer 1 does not commute with an 
operation to enqueue the integer 2. Now consider the 
following execution sequence: 

<enqueue(1),x,a> 
<ok,x,a> 

<~enqueue(1),x,b) 
<ok,x,b> 

<enqueue(2),x,a> 
<ok,x,a> 

<enqueue(2),x,b> 
<ok,x,b> 

<commit,x,a> 
<commit,x,b> 

<dequeue,x,c> 
<1 ,x,c> 

<dequeue,x,c> 
<2,x,c> 

<dequeue,x,c> 
<1 ,~,c> 

<dequeue,x,c> 
(2,x,c> 

<commit,x,c> 

Note that this execution would not be permitted by the 
locking protocols, since the operations executed by a 
do not commute with the operations executed by b. It 
is, however, permitted by dynamic atomicity, since both 
equivalent serial executions of a, b, and c (in the orders 
a-b-c and b-a-c) are acceptable. 

Now consider what happens in the scheduler model. 
We claim that the scheduler cannot schedule the 
invocations in the order given here. If it did, the state of 
the queue object after a and b commit would be 1122 
(reading from front to back); thus, c would have to 
receive 1, 1, 2, and 2, not 1, 2, 1, and 2. This does not 
correspond to either serial execution of a and b. Thus, 
under the scheduler model, the example execution 
above is not serializable. The mason for this is that the 

semantics of the operations are determined by the 
interface between the scheduler and the storage 
module. The order in which operations are scheduled 
determines the state of the storage module, and hence 
the results of subsequent operations. This example 
illustrates that the constraints imposed by the 
scheduler model rule out executions that seem 
acceptable according to our intuitive notion of 
"atomicity," and that are permitted by dynamic 
atomicity. Our model imposes no interpretation on the 
order in which operations are scheduled, and thus is 
less restrictive than the scheduler model. 

Since the scheduler model does not expose the 
timing of commit events relative to other events, it is 
impossible even to state the dynamic atomicity 
property in this model. This problem partially motivated 
our use of a different model. We are also interested in 
studying online implementations of atomicity. Our 
model incorporates both commit and abort events in 
part to support this study. The scheduler model, since 
it does not expose commit or abort events, cannot be 
used to study online implementations. The formal 
models introduced in [Bernstein & Goodman 82] and 
[Kanellakis & Papadimitriou 82] to study multi-version 

schemes have similar problems. 

The scheduler model was intended to be used to 
study the concurrency control problem, which is but 
one aspect of the more general problem of ensuring 
atomicity. Our model was designed to be used to study 
atomicity in as general a setting as possible; thus, we 
needed to make our model as abstract as possible, and 
in particular could not fix our model of recovery. This 
means that we avoid the limitations of the scheduler 
model illustrated above, but also means, since our 
model incorporates less fixed structure, that it may be 
more difficult to verify implementations. 

5.2. Using Semantic Information 
One view of the results presented in this paper is that 

we have explored ways of using user-specified 
semantic information about the behavior of a system to 
achieve greater concurrency while staying within the 
bounds of atomicity. Atomicity is particularly useful 
since it allows one to reason about the partial 
correctness of an individual activity without regard to 
other activities. This makes systems easier to modify 
and extend. In addition, our focus on local atomicity 
properties means that programmers of activities need 
not be concerned with maintaining atomicity, and that 
programmers of objects can verify that atomicity is 
preserved without knowing what other objects are in 
the system; they need know only what local atomicity 
property is used throughout the system. 

All three local atomicity properties presented in this 
paper make use of user-specified semantic information 
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about the objects in a system. Hybrid atomicity also 
makes use of user-specified semantic information 
about activities. Whether an activity is read-only 
depends on the specifications of the objects used by 
the activity; this information will probably be supplied 
by the programmer. The read.only property is local, 
however: it is a property of an individual activity that 
can be verified given the specifications of all objects 
used by the activity. 

Lamport's solution to the audit problem in [Lamport 
76] similarly makes use of semantic information. His 
solution, however, makes use of global information 
about all activities. In addition, it is not clear how to 
apply his solution to new situations. Hybrid atomicity, 
in contrast, makes use of purely local information, and 
does so in a systematic fashion that makes it clear 
when it is applicable. 

6.  C o n c l u s i o n s  

The results presented in this paper were developed 
as part of the Argus project at MIT. We have been 
exploring a methodology, based on atomic actions, for 
the construction of reliable, distributed programs. The 
methodology requires the design and implementation 
of objects that ensure atomicity of activities using 
them. The results presented in this paper and in [Weihl 
83] represent a first step toward a precise 
understanding of the requirements on such objects. 

This paper makes two primary contributions. First, 
we have presented a model of computation for 
studying atomicity that is more general than those 
found in the literature. Our model exposes events 
relevant both to serializability and to recoverability, 
permitting them to be studied together. In addition, our 
model permits the specification of non-deterministic 
operations, something not permitted by models 
previously used for studying atomicity. Second, we 
have.presented a formal definition of atomicity. As 
discussed in Section 1, our treatment is novel in three 
important respects: it is integrated, it is data- 
dependent, and it supports modular design. No 
previous work that we know of has dealt with all three 
of these issues. 

The local atomicity properties presented here are all 
optimal. The significance of these results is that no 
other property can allow strictly more concurrency 
given the same level of information about the system. 
Hybrid atomicity, in a sense, allows more concurrency 
than dynamic atomicity, but does so using additional 
information (namely that certain activities are read- 
only) and at the expense of a more complicated 
protocol (timestamps must be generated for all 
activities, and multiple versions of objects must be 
retained). It is important to note, however, that these 

properties represent only upper bounds on the 
concurrency that an object may permit. An object's 
specification need not include all sequences 
permissible given a local atomicity property and a 
specification of the object's sequential behavior. In 
many applications, for example, the locking protocols 
discussed earlier will be more than adequate as 
implementations of dynamic atomicity. 
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