LABORATORY FOR MASSACHUSETTS
INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

Maximum Pipelining of Array Operations
on Static Data Flow Machine

Computation Structures Group Memo 233
September 1984

Jack B. Dennis
Gao Guang Rong

This rescarch was supported by the Department of Energy under contract number
a%éx%tl)gz?%lom and the National Science Foundation under grant number

—),

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

L

Maximum Pipelining of Array Operations on Static Data Flow Machine

JACK B. DENNIS
GAO GUANG RONG

Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, MA 02139
Sept. 1984

Abstract
Data flow computers are a radical departure from conventional computer architectures, and new

methodologies are required for generating efficient machine-level programs from high-level user
programming languages. In this paper we show that, for certain programs in the Val language, it is possible to
construct machine-level data flow programs that support fully pipelined computation. A Val program in the
class considered consists of blocks of code each of which defines a new array value either by a forall
expression in which each element may be computed independently, or by a for-iter expression that defines

array elements by a first-order recurrence relation.

1. Introduction

Research on the structure and programming of highly parallel computer architectures based on data
flow principles has shown data flow architecture to be a promising approach for future generations of high
performance machines. Because data flow computers are a radical departure from conventional architectures,
new concepts and methodologies are required for translating high-level programs into efficient machine level
program structures.

A major part of large-scale scientific computation is the construction of arrays of numerical values from
arrays of values computed by other portions of the algorithm. In this paper we concentrate on the principal
program structures used to express these computations in the programming language Val, a user functional

programming language designed for expressing computations to be executed by computers capable of highly

1. This research was supported by the Department of Energy under grant number DE-AC02-79ER10473 and
the National Science Foundation under grant number MCS-7915255.

concurrent operation. The two program structures studied are the forall expression which expresses the
independent computation of all elements of an array; and the for-iter expression, which specifies successive
array elements by a recurrence relation.

We begin in Section 2 with a brief review of the architecture proposed for high performance data flow
computers : the static data flow architectures. In section 3 we int.roducc; the concept of pipelining as it is
embodied in the operation of machine level data flow programs, and point out how the generation and
consumption of array values lends itself naturally to pipelined implementation on a data flow processor.

In Section 4 we introduce the class of Val programs considercd which consist of blocks of code each of
which defines a new array value either by a forall expression or a for-iter expression. The program blocks
form an acyclic directed graph by virtue of their roles as producers and consumers of array values. The main
loops of several benchmark programs we have studied have this general form and we are hopeful that our
methods can be extended to a significantly broader class of programs.

In Section 5§ we show how primitive expressions— the expressions allowed as components of forall and
for-iter program blocks —may be implemented as fully pipelined data flow machine code. Then in Sections 6
and 7 we show how this construction may be used to create fully pipelined code structures for certain forall
blocks and for-iter blocks. In Section 8 we point out that these results imply that a useful class of
pipe-structured Val programs mz;ny be automatically translated into data flow machine code capable of fully
pipelined operation.

Section 9 concludes with a summary and suggestions for further research,

2. An Overview of The Static Data Flow Supercomputer

A data flow computer is a form of stored program computer in which instructions are activated by the
data on which they operate. The organization of data flow computer that appears most attractive to us for high
performance compulation is the static data flow supercomputer described by Dennis [3] which has evolved
from the architecture originally presented by Dennis and Misunas [4). This kind of data flow computer, as
shown in Figure 1, is composed of four types of units: processing elements (PE), function units (FU), array
memories (AM), and routing networks {RN). The whole system is a packet communication architecture [5]
using two kinds of packets: operation packets that represent instructions ready for execution, and result
packets that contain result valucs destined to become operand values of target instructions.

The memory in the processing elements is divided into instruction cells which hold the instructions of a

data flow program. Each instruction cell has fields for the operation code, the operand values, and the

destinations of the instruction it holds {16][6][7].

——pd PE 1 FU > —
—
»{ AM »4 Distribute
Memory
P RN RN =
4 AM >
—> 1
L PE T FuU T > _
operation result
packet packet

PE : processing element

AM : array memory

FU : functional unit

RN : routing network

Figure 1. A Static Data FLow Architecture

Once the operand values of an instruction are in place, (and certain additional conditions are satisfied),
the instruction is enabled. An enabled instruction may be executed within its processing element, sent to a
function units if, for example, a floating point arithmetic operation is called for, or to any of the array memory
units if the instruction calls for building or accessing an array clement.

Instruction execution in a functional unit or array memory unit vields result packets each of which
consists of a data value and a destination field that'speciﬁes the target instruction for the result packet. It is

suggested that the routing netwerks be built as packet switched networks so the necessary throughput capacity

may be obtained at low cost [2].
A machine level data flow program, regarded as a collection of instruction cells, is essentially a directed

graph, with nodes corresponding to instructions and an arc for each instruction destination field, We will use
such diagrams to present data flow machine code structures in the remainder of this paper.

We call this sort of computer a static data flow architecture because the instructions of machine level
programs are loaded into specific memory locations in the machine before computation begins, and at most
one instance of each instruction is active at any time.

The rest of the paper addresses the issue of how a certain class of Val programs composed of blocks that
consume and produce array values can be translated into machine level programs for efficient operation on
static data flow superéomputers. We will see that these array values are generally nof stored in the array
memory units. Rather, it is better to treat arrays as sequences of values that are transmitted in succession from
one instruction to another. The array memories are used only for data that must be held for a long time
interval before being consumed by further computational blocks, for example, the data produced by one time
step of a physics simulation which will not be used until the computation for the next time step begins. In this
way, the primary packet traffic in the data flow machine is the flow of result packets between processing
elements through the distribution network. In the case of application codes we have analyzed, one eighth or

less of the operation packets would be sent to the array memories.

3. Pipelined Execution of Data Flow Programs

One approach to achieving high levels of concurrent operation in a computer system is by
parallelism — replicating a function many tmes. High performance is attained by arranging for all copies of
the function to be executed independently by separate parts of the computer system. Another approach is
pipelining— splitting the function to be performed into a cascade of simpler functions or stages. The system is
arranged so each stage is executed independently. Each stage is kept busy processing units of data, one after
another, as they flow through successive stages of the "pipeline.”" A nice feature is that the computation rate of
a pipeline is not dependent on the number of stages, but is determined by the processing rate of the slowest
stage,

Pipelined execution of computations is very natural on the static data flow computer. Each stage of a
pipeline is a group of instruction cells that act on their operands concurrently. The connections between stages
are the destination fields that direct result packets from one instruction to its successors. Figure 2 illustrates
this for the following code fragment.

lety:real:=a*b
in(y+2)%y-3.)

CELL 2
ADD
CELL 1 ~ . CELL4
MULT MULT
a —p > SR
b . CELL3 .
| suB]
| = |
| | |
| | |
stage 1 l stage 2 | stage 3 |

Figure 2. An Example of Pipelined Execution of Data FLow Program

endlet

When values of a and b arrive, cell 1 fires and sends results to cells 2 and 3. Once celis 2 and 3 fire and
acknowledge receipt of their operands, cell 4 may fire, and cell 1 may fire again on new data. Thus data may
flow continuously through the three-stage pipe made up of the four cells. To ensure proper coordination of
data flow, it is necessary to arrange for each instruction to signal its predecessor indicating readiness to receive
a new packet. This is done by providing in the instruction format for specifying destinations to which
acknowledge packets must be sent. The mechanisms for doing this have been described [16][6][7).

For simplicity, in drawing data flow machine programs we will use a single arc to indicate both the
forward path taken by a result value, and the reverse path taken by the acknowledge packet

The computation rate of this pipeline is no greater than the rate of repeated execution of any instruction
in the pipe. This rate is determined by the time from the moment of enabling to the time acknowlcdge packets
are received from all successor instructions— about two instruction times for the data flow machine. If a data
flow machine code structure is able to support pipelined computation at this rate, we say that the code
structure is filly pipelined (or maximally pipelined). For an instruction graph to be fully pipelined, it is
necessary that each path through the graph pass through exactly the same number of instruction cells. For

programs generated from simple unconditional expressions, such as the above example, the pipeline may be

balanced by inserting identity operators [14]. Other program structures require more ¢laborate treatment and
are discussed in later sections.

This form of pipelined computation is like the "systolic” computation of H. T. Kung [13] except that the
set-up of the pipeline is represented here by the stored data flow program instead of by fixed hardware
structures.

The power of pipelined computation in the data flow computer lies in the possibility of machine level
programs that form one very large pipeline in which thousands of instructions in hundreds of stages are in
concurrent execution.

To apply pipelined processing to computations involving array values requires a radical change of view
regarding the role of arrays. For the purposes of the present study, for example, we regard an array as simply a

sequence of values passed in succession from one block of code (producer) to another (the consumer).

4. Array Operation Constructs in Val Programs

Two constructs in the Val programming language are of major importance in expressing scientific

computations,
A forall expression can be used to express the construction of an array where each element of the array

is specified by the same computational rule, and all elements may be computed independently. The following

is an example of a Val forall expression which defines an array C.

Example 1. A Val forall Construct

A : array[real] : =
forall iin [0, m+1] % range specification

P:real:= % definition part
if (i = 0)|(i = m+1) then CJi]
else .
0.25 * (C[i-1] + 2.*C[i] + Cli+1])
endif;
construct
Bli}*(P*P) % accumulation
endall

This forall expression takes as input two arrays B and C, and constructs a new array A. The index range
of the constructed array is specified by the range specification, which gives the set of index values taken on by

identifier i. The definition part gives values for several local variable names (only P in this example}. The

definitions are executed once for each value of i. The accumulation part is also evaluated independently for

each array index value; each evaluation yields the value of the corresponding element of the constructed
array.
The for-iter expression in Val is the construct used to express iteration — the computation of sequences

of values in which the value produced in one cycle depends on the value or partial results produced by the

proceeding cycte.

The following is an example of a for-iter loop which constructs an array X.

Example 2. A Val for-iter Construct

X : array [real] : =

for
i:integer:=1; % loop initialization
T : array[real} : = [0: 0]
do
let P : real : = A[i]*Tli-1]+ Bi] % definition part
in
if i < mthen % loop body
iter
T:=Df1:P]
ir=i+1
enditer
else T
endif
endlet
endfor

The loop loop initialization part binds initial values to each of the loop names (i and T in this case). In
each cycle of the iteration, the definitions part are executed and then the conditional expression that makes up
the loop body is evaluated. If the chosen arm of the conditional is an iter clause, the loop names are bound to
new values and evaluation of the body is repeated. Otherwise the iteration terminates with the value of the
conditional arm expression as its result. In this example, two input arrays A and B are consumed, and the
array T accumulates the elements of the result array which is named X outside.

The Val programs of interest in this paper are those made up of program blocks, each of which is a
forall or a for-iter block. Each block may be thought of as a "producer’ of an array value, and a "consumer’ of
other array values produced by other blocks. This simple structure matches the main body of many practical

programs of computational physics. [f cach such producer-consumer pair can handle array in a pipelined

-8-

fashion and appropriate buffers are included to implement proper interconnection between them, we may

achieve high throughput for the whole computation on a data flow machine.

Definition A pipe-structured program is a Val program in which all array constructions are defined by
non-nested blocks such that: {1) each block is either a forall block or a for-iter block, (2) the index ranges of
the arrays generated by those blocks are fixed.

Due to the applicative nature of the Val language, the overall structure of a pipe-structured program can
be described by an acyclic directed graph (called the flow dependency graph [8]) in which each node denotes a
forall or for-iter block and each arc represents a link over which the elements of an array value flow from a
producer block to a consumer block.

The combination of the two example program blocks forms a simple pipe-structured program, as shown
in Figure 3. In a substantial application code the number of blocks in a pipe-structured program may amount
to several hundred blocks

Pipe-structured programs are attractive candidates for implementation as fully pipelined machine code
structures for data flow computers. However, obtaining fully pipelined machine code may not be possible for
all programs in this class. Thus to obtain a class of programs for which fully pipclined implementations may
be constructed, it is necessary to further restrict the structure of programs. This we will do in subsequent

sections as we consider the forail' and for-iter constructs and the simpler expressions of which they are built.

c
e s & |
forall code A
B . of
Example 1
»{for-iter code
of X
———
» Example 2

Figurc 3. An Example of A Pipe-Structured Program

5. Pipclined Mapping of Primitive Expressions

We next introduce the pipelined implementation of a restricted class of Val expressions. These will be
used later to define classes of forall and for-iter expressions that can be translated into fully pipelined machine
code. The restricted class of expressions contains no nested forall or for-iter expressions, and no array
constructor operations. We consider two kinds of primitive expressions—those that contain references to

array elements selected by an index variable and those that do not.
Definition Let i be an identifier called an index variable. Then a primitive expression (PE) on i is any Val
expression which may be constructed using only the following rules:
{1) A scalar literal constant is a PE.
{2} An idenuifier of a scalar value is a PE.
(3)YIf E! and E2 are PEs, then (Ef op £2) is a PE, where op is an arithmetic or relational operator.
(4) If A is an identifier that denotes an array, then Afi+m] is a PE, where m is an integer constant.
(5) Let E be a Val let-in construct expressed as Let <definition> in EQ endlet. If <definitior>, the
definition part, contains only PEs and E0 is also a PE, then E is a PE.
(6) If Ef, E2, E3 are PEs, then if E/ then E2 else £3 endif is a PE.
If rule (4) is not used in the construction, the resulting expression is a scalar primitive expression.

If a primitive expression is formed using only rules (1), (2), (3), and (5), its implementation as an acyclic
data flow instruction graph is straightforward, and the methods developed by Montz{14] and by Gaof8] may
be used to balance the instruction graph so it supports fully pipelined computation.

Next we show that PEs containing array access operations (rule (4)) may be fully pipelined. For this we
assume that each of the arrays being accessed arrives as a sequence of result packets sent to a particular
instruction cell; the first result value to arrive is for the least element of the array’s index range. Two matters
must be addressed to make pipelined operation work out correctly: (1) The elements of the incoming array
not used in the computation must be discarded so they do not cause jams; and (2) Buffering must be inserted
to introduce any skew needed to balance the pipeline.

As an example, consider the expression

025 *(Cli-1] + 2. *C[i] + Cli+1])
from the body of Example 1 of Section 4. The result required is the sequence of values of this expression for
values of i in the set [1,..., m].

The corresponding fully pipelined instruction graph is shown in Figure 4. Here we suppose the array C
is represented by m+2 result packets for the index set [D...., m+1]. The boolean control sequences select just
those array elements nceded for the computation. The two FIFOs balance the pipeline by holding values of
array elements between their arrival at the identity instructions and when they must enter the arithmetic

pipeline. Other examples are given in [6]{7]; we hope the generalization is clear.

-10-

D
> > FIFO (@)
ADD
’ —
—
T..TFF
D
R T ADD MULT
" > > S
F—D 25
c 1 eFr.T
_ MULT
iD
n—.’. -
> T FFO (2 -
FT.TF

Figure 4. Pipelined Mapping for Array Selection Operations

The final case is that of conditional expressions. The general technique is illustrated in Fig. 6 for the
following example:
if C[i}
then
~ (Al+BlD
else
5.*(A[i]*Bfi] +2.)
endif
This instruction graph makes use of instruction cells {identity operations in this case) in which a boolean
operand directs a result packet to destinations according to a tag (T or F) on the destination arc. The merge
instruction deserves further mention: it has two data inputs (I1 and I2) a merge control M. If a true value is
present at M and a data value is present at I1, the instruction fires and the value on I1 is sent forward as the
result packet, leaving the second operand on 12, if any, untouched. Coenversely, if the merge control value M
is false, the second operand value, if present, will be used and gated to the result arc. Thus the merge control
operand dircets the merge instruction to forward one or the other of its data operands.

Note that since data may be switched back and forth between the subgraphs corresponding to the two

-11 -

chl

> FIFO (4)

I ADD

Ali}

> FIFO (2)

) 4

MERG

¥y ¥

bive
!

MULT ADD MULT
Bli] 1D —> P l——-

h 4

Figure 5. Fully Pipelined Instruction Graph for an if-then-else expression

arms of the conditional, fully pipelined operation is guaranteed only if all paths through the instruction graph
are of equal length; it may be necessary to add FIFO buffering to one subgraph to match the length of the
other. Furthermore, the path over which control values flow to the merge instruction cell must include a
FIFO of correct length.

This discussion and examples lead us to the following theorem which provides a basis for the

constructions presented in the next two sections.
Theorem 1 For any primitive expression, a fully pipelined data flow instruction graph can be
constructed.

-12-

6. Pipelined Mapping of forall Constructs

Two general schemes for mapping primitive forall expressions into data flow instruction graphs that can
exploit the potential concurrency of the static data flow architecture: the parallel scheme and the pipeline
scheme. In the parallel scheme, a separate copy of the forall body expression is used for each element of the
constructed array. In this scheme, all copies of the forall body may execute concurrently. This scheme is of
limited interest in the present discussion, as it does not take advantage of our choice to implement array
values as the sequence of result packets sent to an instruction cell.

In the pipeline scheme the array ¢lements are generated in sequence by implementing the body of the
forall construct as a pipelined instruction graph. A class of forall expressions for which we can construct fully

pipelined instruction graphs is specified by the next definition:

Definition. A primitive forall expression is a forall expression in which: {1) The index range is specified
as [p,q] where p and q are integer constants. (2) The right hand side of the definitions and the expression in
the accumulation part are all primitive expressions in i, where i is the index variable of the forall expression.

The fully pipelined implementation of a primitive forall expression (Example 1 from Section 4) is
shown in Figure 6. It is essentially the instruction graph obtained by cascading the instruction graphs for the
definition expression and the accumulation expression. We suppose the input arrays B and C are fed to the
instruction graph e¢lement by element for the index set [0,..., m+1], The identity instructions select from the
input arrays those eiemenrs needed for the computation, and the merge instruction combines results
computed by different rules into the sequence of values that represent the constructed array. The sequences
of boolean control values can be generated by straightforward arrangements of data flow instructions, as have

been developed by Todd[15].
The example and the generalization of its construction show that all primitive forall expressions can be

effectively pipelined.
Theorem 2 For any primitive forall expression, a corresponding fully pipelined data flow instruction
graph can be constructed,

Further details of this implementation scheme can be found in [8].
7. Pipelined Mapping of for-iter Construct

In this section, we study the pipelined mapping of Val for-iter array operation construct.

To define a class of for-iter constructs which can be successfully mapped, we restrict our attention to

those built on primitive expressions,
Definition A primitive for-iter construct is a for-iter cxpression with two loop variables — let them be i

and X—such that: (1) Loop variable i takes on successive integer values p, p+1..., q for successive

-13-

D
g T ™ FIFO (4)
_I ADD
—’ -
» L
— FT..TF
T..TFF L
1D
- . ADD MULT MERG
l—.) 25 >
o - FFT...T
— MULT
- [In]
_-..’ el
> T FIFO (2)
’_. 2.
FT..TF
1D MULT ADD
P T »- FIFO {5) I__i > >
A
B
> FIFO ()

Figure 6. Pipelined Mapping of A Primitive forall Expression

evaluations of the for-iter body, and the loop terminates after i = q. (2) The loop variable X is initialized by
X := [r; E] for some integer r and some primitive scalar expression E. Each iteration appends to the array by
X := X [i: E] for some primitive expression on i. (3) The result expression on loop termination is X which
will be the array constructed by the for-iter expression.

This definition restricts the structure of both the definition part and the conditional expression that

makes up the body of the for-iter expression. Obviously, Example 2 given in scction 4 is a primitive for-iter

construct.

Several researchers have studied the translation of for-iter constructs into pipelined instruction graphs.

-14 -

A scheme of mapping for-iter constructs has been developed by Todd ‘[IS]. Figure 7 shows the
implementation of Example 2 using Todd’s scheme. To understand how the scheme works we necd explain
the role of the merge instruction. The results of the merge are sent by the merge to two destinations. The first
(the lower one in Figure 7) is forwarded as the output of the loop unconditionally. The second (the upper
one in Figure 7} is fed back under the output switch control values, i.e. {T..TF>. It is obvious that the last
element of array will be forwarded to the output arc without being fed back.

Due to the existence of cycles, the instruction graph produced by such scheme, in general, can not be
fully pipelined, More specifically, the feedback link between the input of cell 1 and the output of cell 3
prevents the whole graph from being fully pipelined. This is because the value of X[i] depends on the value
of X[i-1]. As a result, the calculation of X[i} can not start until the computation of X{i-1] is finished and the
value of X[i-1] is available at the input of cell 1. Since there are 3 stages between the input and the output, the
initialization rate of the pipeline can not be higher than 1/3. The difficulty we meet here is that the balancing
algorithm developed in [14] does not apply to the case where the graph is not acyclic. To further classify the
problems we restate them in a more formal context.

The most common problems involving for-iter array operations are recurrences, which define the
sequence of elements of the ouq?ut array X in term of a sequence of input values a, a,..a, as follow :

x; = Fla; x;,) 1)

Mathematically, we have the following definition.

Definition : The function F in (1) is called a first order recurrence function, and a; is called parameter

veclor.

MULT
All's FT.T
CELLA ADD L IMERG
Bli's > e
: 0. X[i]'s
CELL 2
CELL3

T..TF
Figure 7. A Translation Scheme of for-iter Constructs

-15-

The recurrence function can be expressed using Val for-iter constructs. The for-iter code in Example 2
shows the general form of a first order recurrence function expressed in Val. In fact, it is exactly the Val code
for the following mathematical notation,

x; =Appp+ B;
=afx.;+ af2)
= Fla,x.p) (2)
where the parameter vector a; is the ordered pair (4,B)), and the function F is an add and a multiply. The
parameter vector of this example has length 2. Note we chose to use a boldface letter to denote the parameter
vector a, and a(i) will denote its ' element for it. Similar notation will be used through the rest of this
section.

A pipeline to solve the recurrence problem would ideally accept each new input a; and feed it into the
pipeline as soon as it is available. Many authors have studied this problem, yet no general scheme is known
that works for an arbitrary recurrence relation. In this section, we suggest a solution for a certain class of
recurrence relations which has been first proposed [11]){12] for conventional computers. We will apply this
approach to the construction of fully pipelined data flow machine code.

The key observation is that, the recurrence function F has a companion function which makes an elegant
solution possible. Let us first introduce the concept of companion function.

Definition If F is a first order recurrence function, and has the property that there exists some function
G such that for all parameter vectors a, b, and ail x of the proper domain, the following holds :

F(a,F(b,x)) = F(G(a,b),x)
then the function G is termed a companion function for F,

Now let us consider the example (2) which is a first order recurrence relation, and show how to apply
the above scheme to it. If we assume the function F has an execution delay of 2 (p=2), then it can be
transformed aﬁ follows :

X; =Ax+ B
=afl)x; ; + af2)
=a Dla; (x5 + a_ (D + af2)
= afDa; ()x;, + (a(Da. ;(2) + af2))

We can see that the function F of (2) has companion function G, where

G(a, b) = (a(1)1), a(1)2) + a(2))
As aresult, F can be expressed as :
x; = Flaux.p
= Fla, Fa..x:)

- 16 -

= F(G(a; a;. . x;.)
= Flepx;.9)
where ¢; is computed from the a’s using only the G function,

The above transformation is interesting to us because x; now depends on X;.2 instead Xips and we know
from Figure 7 that the function F has an execution delay of 3. Therefore we can compute F by adding an
additional pipeline that computes ¢; from a; using companion function G. Note that an ID instruction is
inserted as a buffer so the loop has an even number of stages, which is necessary for maximum pipelining [10].
Figure 8 shows this implementation scheme for Example 2, where

cz(l) = AA; '

-
cz{2) = Ajd g + B,-

This added pipeline (see the dashed-line block in Figure 8) will be named the companion pipeline in the
rest of this paper. By constructing the companion pipeline properly, it is possibie to keep the whole pipeline
running at maximum throughput.

We note that if the function G is associative, we may have a tree-like arrangement. That is, if the
number of stages in F is p, we can construct a companion pipeline consisting of log,p levels of G.
Fonunately; it can be proved that the companion function G is indeed associative. Furthermore, if a

recurrence function F has a companion function G then any x;can be expressed in terms of x 5 where0 <j <

|
Alijs I pipeline I
~ MULT
Bil's | | R °c°;:;;°' | | FFFT...T
I I ADD . D L IMERG]
| . | > > N
r code for | | - X(ir's
I » c@ !
| initial values
|___ [T..TFFF

Figure 8. Pipeline Mapping of A Simple for-iter Expression

-17 -

iand x; = Fa(i, i-j), x J) where a(i, i-j) can be expressed by G. The above.r- ' canz¢ proved easily from
the definition of the companion function. N |

As we can see from the above analysis, one important factor~:-«ppiying-the new scheme is the
introduction of the companion pipeline. The previous work in this aivs has been to concentrate on its
implementation in the context of a conventional machine. There the pipeline is mainly implemented in
hardware, such as the pipelined arithmetic and logic unit, with some additional hardware support. The
introduction of a hardware companion pipeline is not flexible in such a context. In fact, many different
recurrence relations may be used in various computations, and the exact form of the companion pipelines
needed for a particular problem is hard to predict. Therefore it is impos=ic 9 construct a separate hardware
companion pipeline for each possible recurrence relation in the compuration. Even if it is possible, the
overhead would be very large. On the contrary, the pipeline in the architecture of a data flow machine is
software implemented. As a result, it is more flexible to design a piece of data flow program which acts as a
particular companion pipeline. This can be performed at compile time, based on an analysis of program
structure. Hence, it is much more attractive to apply the new scheme on a data flow machine.

There are some trade off considerations in using this strategy. First, there are many recurrence
functions for which no companion function is known. Furthermore, the overhead of backing up of
companion functions will grow.considerably when the p is big. The complexity of a compiler to analyze the
code is also a factor which should be considered.

Now let us return to the problem of classifying Val for-iter constructs which have good mapping

schemes.

Definition A simple for-iter expression is a primitive for-iter expression such that (1) the recurrence
function it denotes has a companion function, (2) the Val expression which computes the companion function
is aPE.

Obviously, the code of Example 2 is a simple for-iter construct. Consequently, from the results

presented in this section, we have the following theorem :
Theorem 3 A simple for-iter expression can be mapped into a fully pipelined instruction graph.

8. Fully Pipelined Pipe-Structured Programs

A pipe-structured program in which each forall expression is primitive and each for-iter expression is
simple has an elegant structure; each component is a consumer and producer of array values and has an
implementation as a fully pipelined data flow instruction graph. Due to the applicative nature of the Val
programming language, the data dependencies among the forall and for-iter expressions define an acyclic

directed graph in which cach edge represents a path over which an array value is sent from producer to

-18 -

consumer. If the instruction graphs for the constituent cxpressions are connected together according to the
acyclic pattern defined by data dependencies of the pipe-structurcd program, the result is an instruction graph
that implements the Val program. Since the component instruction graphs are fully pipelined, the balancing
algorithm may be applied to the acyclic interconnection to produce a fully pipelined instruction graph for the

complete pipe-structured progrém.
Theorem 4 For any pipe-structured program in which cach forall expression is primitive and each

for-iter expression is simple, a fully pipelined data flow instruction graph can be constructed.

We have developed a formal model of pipe-structured programs for use in studying algoerithms for
balancing and optimizing corresponding data flow instruction graphs for fully pipelined operation. Interested
readers will find a rigorous formulation and analysis of flow dependency graphs in [8]. Some conclusions of
this study are:

{1} If the flow dependency graph is acyclic, then a polynomial time balancing algorithm exists and can

be constructed. Extra FIFO buffers are usually required for such balancing,

(2) It is possible to reduce the amount of buffering needed to balance a given flow dependency graph,

An polynomial time algorithm is presented which can effectively reduce the buffering in many
cases.

(3) The optimum balancing of a graph (using minimum number of buffer stages) is equivalent to the

linear programming dual of the min-cost flow problem which is known to be solvable in

polynomial time [10).
9, Conclution

We have shown how a certain class of programs expressed in the Val programming language can be
mapped into machine level programs that operate in a fully pipelined mode, allowing efficient utilization of
the units of a high-performance, static data flow computer.

Programs in this class may be thought of as blocks of code connected in an acyclic graph, where each
edge represents a producer-consumer relationship between two blocks—one block, the producer, generating
the sequence of elements making up an array value, and the other block, the consumer, receiving the elements
for use in its computation. Each block corresponds to either a forall expression or a for-iter expression in the
source program that defines a single array value of manifest subscript range. Moreover, we require that each
program block be constructed using only primitive expressions — nesting of forall and for-iter expressions and
use of certain array constructor operations of the Val language are disallowed.

For programs having this structure, we have shown that machine code can be constructed that performs

the specified computation in a fully pipelined mode, The demonstration encompasses all forall expressions

-19-

that satisfy the structural conditions, but we have only shown how to fully pipeline certain for-iter expressions
for which a companion function for the recurrence relation is known,
Some other techniques for pipelining the implementation of iteration expressions are known — generally

involving trading off delay in exchange for achievement of computation at the maximum rate. For example, a

- recurrence having a cyclic dependence of four operators may be implemented at the maximum rate by

introducing a delay (via a FIFO buffer) of length equal to the number of elements in the array being
generated.

The extension of this work to array values of muitiple dimension is straightforward.

The few benchmark programs we have analyzed carefully all fall into the class of pipe-structured
programs. Thus we are hopeful that the extension of these ideas will apply successfully to a large portion of
the codes for which execution of a static data flow supercomputer is attractive. Investigating these extensions,
and exploring the design of a compiler that will automatically construct fully pipelined code for a large class

of Val programs are subjects for further study,

10. References

{1l ~Ackerman, W. B. and J. B. Dennis. “Val—A Value-Oriented Algorithmic Language Preliminary
Reference Manual.” Technical Report 218, Laboratory for Computer Science, MIT, Cambridge, MA,
13 June 1979.

[2] Dennis, J. B., Boughton, G. A., and Leung, C. K. C. “ Building Blocks for Data Flow Prototypes”
Proceedings of the 7th Annual Symposium on Computer Architecture”, May, 1980, pp. 1-8.

[31 Dennis, J. B. “Data Flow Supercomputers” IEEE, Computer, Nov, 1980,

[4] Dennis, J. B. and D. P. Misunas. “A Preliminary Architecture for a Basic Data-Flow Processor.” The
Second Annual Symposium on Computer Architecture Conference Proceedings, January 1975, pp.
126-132. Also Computation Structures Group Memo 102, Laboratory for Computer Science, MIT,
Cambridge, MA, August 1974,

[S1 Dennis, J. B. “Packet Communication Architecture” Computation Structure Group Memo 130,
Laboratory for Computer Science, MIT, Cambridge, MA, Aug. 1975.

[6] Dennis, J. B, Gao, G. R., and Todd, K. “A Data Flow Supercomputer” Computation Structure Group
Memo 213, Laboratory for Computer Science, MIT, Cambridge, MA, Jan 1982.

[71 Dennis, I. B., Gao, G. R., and Todd, K. “Muodeling the Weather with a A Data Flow Supercomputer”
1EEE Trans. on Computer, C-33, No. 7, July, 1984,

[8] Gao, G. R. “An Implementation Scheme for Array Operations in Static Data Flow Computer” M$
Thesis, Laboratory for Computer Science, MIT, Cambridge, MA, June 1982,

[9)

{10]

1]

(12]

[13]

(4]

[15]

[16]

-20-

{‘J

Gao, G. R. “Homogeneous Approach of Mapping Data Flow Programs" Procecding o A
International Conference of Parallel Processing. o

Gao, G. R. “Maximum Pipelining Linear Recurrence on Stcu. 1; R Compweers”, paper mr -
preparation, 1984.

Kogge, P. M. *“A parallel Algorithm. for Efficient Solution of a General Class of Recurrence
Equations.” IEEE Trans. Comput., Vol. ¢-22, no. 8, Aug. 1973,

Kogge, P. M. “Parallel Solutions of Recurrence Problems™ IBM J. Res. Develop., Vol. 18, no. 2, March
1974,

Kung, H. T. “Why Systolic Architectures?” IEEE Computer, Jan 1982,
Montz, L. B. “Safety and Optimization Transformations for Data'i'f'.:uw Programs.” Technical Report
240, Laboratory for Computer Science, MIT, Cambridge, MA, January 1980.

Todd, K. W. “High Level Val Constructs in A Static Data Flow Machine” Technical Report 262,
Laboratory for Computer Science, MIT, Cambridge, MA, June 1981.

Todd, K. W. *“An Interpreter for Instruction Cells,” Computation Structure Group Memo 208,
Laboratory for Computer Science, MIT, Cambridge, MA, Aug. 1982,

