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ABSTRACT

I-structure storage is a new type of random access storage for
multi-processor systems. By employing extra "status bits,” data slots
can be tagged as "data-present” or "data-absent,” allowing reads which
precede writes to be remembered until the data arrives. In order to im-
plement an I-structure Memory (ISM) in hardware, a sophisticated con-
troller is required. An I-structure Memory Controller (ISMC) for the
Tagged Token Data Flow Machine is developed using the IDL (Interactive
Design Language) design system. The design of the controller and a dis-
cussion of the IDL System, as well as suggestions for future
controllers, will be presented in this paper.
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1.0 INTRODUCTION

The Data Flow Machine, [Arvind 82] and [Arvind and Iannucci 81}, employs
several novel ideas in support of its unconventional architecture. One
of these ideas, the Incremental Structure (I-structure) [Arvind and
Thomas 81], is a high level memory abstraction that requires a sophisti-

cated control mechanism for direct hardware implementation.

A micro-code implementation of an I-structure memory controller was de-
veloped by Brian Williams [Williams 81}. Because the number of memory
related instructions for a Processing Element (PE) of the Data Flow Ma-
chine had been increased, and existing instructions had been modified, a

need existed for a new design of the I-structure memory controller.

;n addition to a hardware design language, the IDL System [Maissel and
Ostapko 82] provides a simulation, verification and documentation sys-
tem for VLSI design. IDL contains several high level constructs:
IF-THEN-ELSE, for example, makes it particularly well suited for the de-
velopment of control mechanisms. Furthermore, the output of the IDL

system can be implemented directly in hardware.

This project comprises all stages of the design of an I-structure memory
controller in the IDL design system. It includes detailed design spec-
ifications, IDL code, suggestions for an improved I-structure memory

controller, and discussion of the IDL Design system.






1.1 BACKGROUND INFORMATION ON I-STRUCTURES AND IDL

To provide some background in the areas of I-structures and IDL, a rep-
resentative picture is described here from which the reader can extrapo-
late details. Additional information about I-structures and the
Dataflow Machine can be found in [Arvind 82), [Arvind and Iannucci 81],
and [Arvind and Thomas Blj; and about IDL, in [Maissel and Ostapko 82].
Any reader already familiar with I-structure memory or IDL may wish to

skip the rest of this chapter.

1.1.1 INTRODUCTION TO I-STRUCTURES

A data structure known as I-structures have been proposed by Arvind and
Thomas to efficiently manipulate arrays in functional languages.
I-structure storage, or simply I-store, and associated operations, form
an implementation model for I-structures. I-store is an integral part
of the Tagged Token Dataflow Machine being developed by the MIT Labora-
tory for Computer Science by the Functional Languages and Architectures
group. This machine will be an embodiment of the U-interpreter devel-
oped by Arvind and Gostelow at the University of California, Irvine.
After we have described I-store, it will become clear that storage based

on these ideas will be useful for any multiprocessor machine.

1.1.1.1 Software Motivation for I-Structures

Functional and applicative languages (in particular the dataflow lan-
guage, Id, that will execute on our machine) are free from side effects.
That is, the result of an operation depends solely on its inputs (as op-

posed to its input and the state of the machine).



In Id, variables are used to name partial results (as opposed to memory
locations) and follow the single assignment restriction: a variable can
only be assigned once. However, we can still have loops. Consider the

folliowing code fragment:
BEGIN-Loop
NEW.x <- ft¥,<other variables>)
END;Loop

The % on the left hand side of the assignment statement refers to & dif-
ferent "copy" of x than does the x on the right. In functional lan-
guages, all structures (e.g. arrays) are treated as if they were values.
Thus, the APPEND array operation is used to modify one element of an ar-
ray. APPEND (x,i,v) conceptually generates a completely new copy of ar-
ray x, which differs from x only on selector i. Several methods to
implement structures have been suggested that reduce copying without
affecting the meaning of the program [Dennis 73] and [Ackerman 77].
However, none of these methods work well for one level structures such

as arrays.

While copying may be tolerable for scalars, we can not afford to make
unnecessary copies of large arrays in many applications. Consider the

following code fragment:



FOR i = 1 TC 10 BY 1 DO

x[i] <~ f(x[i-1",<other variables>)

END-FOR

In the above code, we assign each position (i.e. selector) of x only
once. Hence, it is not necessary to make a new copy of x each time we
execute the body of the loop. If the compiler can detect this condition

for a structure, it can avoid a lot of unnecessary copying.

I-structures can be informally defined as follows: a piece of code is
an I-structure producer if it assigns the array position associated with
any given array selector at most once. When this condition is met, un-
necessary copying which may otherwise be implied when assigning into an
array can be avoided. Furthermore, the same condition is sufficient to
allow the computation to proceed in parallel on the various elements of

the structure.

Thus an I-structure can be viewed as an array of slots, where slots can
be filled in any order, and each slot is filled at most once. The array
name can be treated as the address of the first slot (i.e. a
descriptor), not unlike the name of an array in FORTRAN. The Semantics
of I-structures however, permit passing the name (description) of an ar-
ray to other parts of the code even before all the slots have been
filled. A read request (i.e. x[i]) to a slot is processed whenever the
slot is filled. If the slot is never filled, then the read request nev-

er gets an answer.
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The Id compiler tries to detect if an array is being generated as an
I-structure, and if it can make such a determination, the code generated
avoids unnecessary copying. The compiler also uses I-structures to pass

parameters to procedures and to receive results from functions.

1.1.1.2 Kinds of I-Structures

When compiling a high level language, two types of structures arise:
structures whose elements are all of the same type, and structures whose
elements are all of different types. If all of the elements are of the
same type, it would be wasteful to store the type along with each ele-
ment, but if all of the elements are of different types, type informa-

tion must be associated with each element.

There are two kinds of I-structures: uniform and mixed. Associated
with each I-structure is an I-structure descriptor (ISD). The ISD pro-
vides information about the length (number of elements), width (size of
an element), and other characteristics (uniform or mixed, starting ad-

dress, etc.) of the structure.

Each element of a uniform structure has the same type and hence length.
Since the type can be easily stored in the 18D, type information does
not need to be stored with each entry. Uniform I-structures are stored
in a format called u-fix (untyped fixed-length); they are written into
using a *store-u-fix operation and read from using a
#fetch-notype-stored operation. Since no type information is stored

with each entry, a type must be provided when reading a u-fix.

11



In a mixed I-structure, each element can be a different type and length.
We have developed two formats for storing mixed I-structures. The t-fix
(typed fixed-length) format allocates to each element as much storage as
the largest element requires. The t-var (typed variable-length) format
allocates a minimum amount of space to each element, and if a value
doesn't fit, an internal pointer points to a larger slot where the value
has actually been stored. This use of invisible pointers was inspired
by LISP machines. The ty;e is stored along with each element in the
t-fix and t-var formats. The *store-t-fix and ¥*store-t-var operations

are used to write into t-fix and t-var formats respectively, and both

formats can be read from using the *fetch-type-stored operation.

1.1.1.3 A Peek at the Implementation of J-Structures

The implementation of an I-structure Memory (ISM) is fundamentally dif-
ferent from that of a conventional memory in two ways. Locations are
tagged as data-present or data-not-present; and if data is not present
and a read occurs, the read is "deferred" until the data arrives. The
information required in order to monitor the "status" of a location is

stored in a hidden status field.

Deferred reads must be allowed in the Dataflow machine because the tim-
ing of read and write requests may not have any inherent order. A read-
er and writer are synchronized at the I-structure memory through their

data dependency.

The ISMC will assist memory managers by providing additional status in-

formation and accommodating variable length data. While the presence

12



bit and the deferred bit are the only status bits required for a minimal
implementation of I-structures, additional status information is used
to assure consistency against possible compiler bugs and physical hard-
ware boundaries. The variable length data facility abates the problem
of storing amorphous arrays (using the t-var format). We can think of

the t-fix and t-var formats as hardware assisted constructs.

All status information other than the presence bit and the deferred bit
could be migrated to runtime software support. If we wish to carry the
current analysis to an extreme, presence and deferred information could
be maintained through the use of semaphores, but the runtime support

would start to get out of hand.

Thus a datum stored in I-structure storage can be thought of as a node
in a dataflow graph with one arc leading in, and several arcs leading
out. The write request is the incoming token, and the read requests

combine with the written value to form the outgoing tokens.
1.1.2 INTRODUCTION THE IDL DESIGN SYSTEM

IDL, developed by Maissel and Ostapko, is the hardware design environ-
ment in which the ISMC is implemented. This section provides a high
level overview of the IDL system, and a brief description of the base

language.

1.1.2.1 High Level Overview of the IDL Design System

The IDL design system allows a designer to explore, design, simulate,

13



verify, document, and modify a VLSI design. The system includes an in-
teractive user interface, a file manager, a language (IDL, a register
transfer level language), a compiler, an assembler, several simulators,
minimization programs, and several other logic manipulation tocls. The
system outputs both a canonical form of the logic designed and a self
documenting specification of the design. The IDL system is particularly

well suited for designing Finite State Machines (FSMs).

The specification in IDL (the language) identifies two subsections of a
design: the logic box, and the external world. The executable portion
of the code describes the logic box and its effect on the external
world. The non-executable portion of the code describes the structure
of the external world: Executable statements indicate state transi-
tions, as well as the register, bus, memory, black box (functional de-
scription), and other actions that should occur in a given state. These
actions are emulated by the simulators in order to provide a complete
simulation environment. The declarative statements indicate the sizes
of registers, busses, memories, and other external objects; organize
inputs, outputs, and feedbacks into more easily usable groups; indicate
connections between the controller and external objects; and allow the

user to specify strings for textual substitution.

The compiler makes certain syntax and comsistency checks as it trans-
lates code into an intermediate form. This intermediate form, called

regularized IDL, can be interpreted by the "High Level Simulator." Reg-
ularized IDL can be further assembled into two-level logic. This canon-

ical sum of products form can be manipulated in a number of ways

(including minimization a la MINI [Hong, Cain, and Ostapko 74]), and can
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be simulated by the "Fast Simulator.'

The sum of products result comes in the form of PLA (Programmable Logic
Array) personality and can be translated to other forms for conversion
into random logic or for various manipulations. Synthesis of a PLA from
IDL output is trivial, and paths to other embodiments of the logic can
take advantage of the minimized two level form.

1.1.2.2 The IDL Language

An IDL designer specifies both the details of the logic being designed

and its interaction with other objects (registers, busses, etc.).

The first part of an IDL program consists of declarations which indicate
the structure of various objects. The following IDL fragment demon-
strates two declarative IDL statements.

DIM MAR 16/ MDR 32 (1)
FIX CHAIN <- CNTL[4] {(2)

(1) declares registers MAR and MDR to be 16 and 32 bits respectively.
(2) indicates that input CHAIN is obtained from the value last latched

into the fourth bit of register CNTL.

IDL GROUPs, which are similar to RECORDs in programming languages, allow
the designer to refer to several objects at once. IDL STRINGs allow the
designer to create mnemonics for less easily understood constructs. The
mnemonic may represent a hairy condition of the inputs, a value to com-
pare against inputs, or any other textual entity the designer wishes to
abstract. STRINGs are resolved by textual substitution before the rest

of the program is processed.
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The main part of an IDL program is the executable code. An executable
statement has the following syntax:

label: IF <condition> THEN <actions> [ELSE <actions>]
A label can be thought of as a precondition. <condition> may be any
boolean function of the inputs. <actions> involve changing state and
controlling the external world, and thus include setting outputs, feed-
backs, and contrel lines. ‘The following fragment transfers the contents
of REG1 to REG2 (sets a control line to make a transfer) if IN1 is true
and if IN2=IN3.

IF (IN1 AND (IN2=IN3)) THEN REG1<- REG2
IDL also provides a mechanism (called dot notation) for building deci-
sion graphs. A regular label is the root of a decision graph, and dot-
ted labels are the descendants. To activate any label, the ->label

construct can be used.

The novice IDL user should be careful in dealing with the left arrow or

assignment symbol. In IDL, left arrow is used for many purposes:

Declarations:
GROUP declarations: GRP foobar <- foo, bar
external connections to the PLA: FIX input <- one-bit-register
string declarations: STRING boom <- x=1 AND y=0
Executable Code:
register transfers: regl <- reg?
setting outputs: control <- 1

IDL syntax clearly distinguishes between the above cases, but none the

less the left arrow is heavily overloaded.
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2.0 I-STRUCTURE MEMORY OPERATIONS

L

After I-structure memory is initialized (using the ¥initialize instruc-
tion), normal operation proceeds. Regions of memory are allocated using
the *allocate operation, read from and written into using the *fetch and
*store operations, and deallocated using the *clear operation.

As various operations touch a word, the ISM keeps track of the status of

the word by setting status bits which are invisible to the user. A Sta-

tus Transition Diagram can be found in Figure 1 (next page).

ISM operations fall into two categories: normal operations and service
operations. This chapter describes hardware organization of the ISMC,
the error-free cases of the operations, and the error recovery

technique.

17



Status Transitions in the |-Store Section

*initialize

!

*clear *fetch-
not-aliocated notype-

stored
*clear
*allocate clear
*store- *fetch-

t-var notype-stored
g empty-nowait
notype-deferred

*allocate

untyped-data

stored

*fetch- type-deferred

All omitted arrows are branches to error

- Figure 1

D
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2.1 ORGANIZATION OF THE I-STRUCTURE MEMORY CONTROLLER

The ISMC is built using 288K bytes of Random Access Memory (RAM), regis-
ters, a Finite State Machine (FSM), and some random logic. This section

describes the organization of these components.
2.1.1 PHYSICAL MEMORY

The ISM is divided between two physical memories: a 256K byte data mem-
,ory, and a 32K byte status memory.. The data memory has 16 address bits
and has a 32 bit wide word. The status memory also has 16 address bits,
but has a 4 bit wide word. Together they store 64K words of 32 bits

each, with 4 bits of hidden status associated with each word.

The 64K words are divided into two sections: the i-store and the free
list. The location at which the i-store ends and the free list begins
is system programmable and can be changed whenever the system is ini-

tialized.

2.1.1.1 The I-Store Secticn

Each word (32 bits of data and 4 bits of status) in the i-store section
is initialized with a status of not-allocated. When a block is allo-
cated, the first word is tagged, i.e. the status field is changed to,
empty-nowait, and the other words are tagged middle. When data arrives,
the first word of the block is marked. If the data is stored in place,
the data is tagged typed-data or untyped-data. The invisible (pointer)

status is used if the data is stored indirectly on the free list. If
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fetches arrive before the data, the first cell in a block is tagged
type-deferred or notype-deferred corresponding to the

*fetch-type-stored and *fetch-notype-stored instructions.

If an error occurs at any location in the i-store, the high order bit of
a status field is set to one. Information is thereby preserved about
the structure of a data element that must be untangled when an error oc-
curs. The three lower ordér bits of the status field are used to enu-

merate the values of the status field.

The details of the i-element structures can be found in the high level

code declarations. A status transition diagram is given in Figure 1.

2.1.1.2 The Free-List Section

When the free list section is initialized, a linked list of double words
(free-links) is created. The status field of the second word is used to
indicate a cell at the end of the list, and the second half of the second

word is used to peint to the next free-link.

When & fetch is deferred, a free-link is taken from the free list and
stores a destination as a deferred-link. The last two bytes are used to

point to other destinations.

If a large datum is stored in an amorphous array (using *store-t-var), a
free-link is converted into a data-cell. If the datum is large enough
to require two free-cells, one is converted into a data-link, and the

other is converted into a data-cell.

20



The details of the free list structures can be found in the high level

code declarations (Appendix A).

2.2 NORMAL OPERATIONS

All of these operations require the ISMC to check the status of a word
before proceeding; *stores, *fetches, *allocates, *clear, and *reset

are included in this category.

2.2.1 STORE AND FETCH OPERATIONS

The *store-t-fix, *store-t-var, and *store-u-fix operations are used to
store data of types t-fix, t-var, and wu-fix respectively; the
*fetch-type-stored operation retrieves data of type t-fix or t-var (da-
ta stored along with its type); and the *fetch-notype-stored operaticn

retrieves data of type u-fix (data stored without its type).
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A *store-t-fix operation creates the following data structure when

storing a n-byte datum and its type at location i:

STATUS VALUE

[rom—mmmmmm————aa- oo $ommmm- FREp o 1
i-1 -> | | | ! | I

T 4ommm- Fonmnns dommman foammem- +
i -> | typed-data | type | <data begins>

O TR mmmmen 4--- /

| middle (if k>1) | /

e ST Y e — fomema- +

/ <data ends> |

I S RS U ERE. pommmm- +
itk -> | ! | l I |

I e T T T +=---=- +-=-e- +-=-=-=- e 4

r a3

| n+l | 7 R

k= | ==--- ! (13.2] = &4; [4.0| = 4)
I 4 |

n refers to the size of the data which follows the type field.
If n=5, 6 bytes are required to store the information.
The Oth byte is the type, and the 1lst - 15th bytes are data.

When storing a n-byte datum and type at location i, the *store-t-var op-
eration uses only one word at location i. If more space is required, a
pointer is stored, and the overflow is placed in cells from the free

list.

The following data structure is created if data of length 3 or less is

stored (along with its type) using the *store-t-var operation.

STATUS VALUE

[remmmmmmmm—m—————- T —— $umman- Fommmn- $ommmm- 1
i-1 -> | | | I I |

Fommemme i - T TR Fomm- +
i => | typed-data | type | data |

R S AR fonmnn- 4o +
i+l -> | | | I I !

I LT TR T TP R Y etk 4
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The following data structure is created if data of length greater or
equal to 4 and less than or equal to 9 is stored (along with its type)

using the *store-t-var operation.

STATUS VALUE
[emmmmmm—mmemmooe- FURE TR feeaom- $oemmmm »
i-1 => | | | | | I
B fucmm-- TR $oommm- TR +
i - | invisible | type | data | pointer ==
fmmmmmmmmmee e 4omemoe $ommmm- 4o R + |
i+l > | | | l ||
S L L T fommam- R e D 4
[emmm === eemememecsosesmsseo-o—ss-eo-os 4
|  STATUS VALUE
| fmmm——————- o FRE— daemme- focmenn -
free cell: L-->| | 2nd through 5th bytes |
Hmmmm - dmmm——- fommee- 4o fommmm- +
i i 6th through 9th bytes {
R ittt 4==a-== Fm--=== et +-emm- 4

. = this space not used in this operation
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The following data structure is created if data of length greater than
or equal to 10 and less than or equal to 15 is stored (along with its
type) using the *store-t-var operation. The data-length part of the
type field distinguishes the following data structure (with two linked
cells) from the previous one (with one linked cell). A more elegant im-

plementation would have used the status bits too.

STATUS VALUE
[m-me—mmmmm—————— TR Focaans U R 1
i-1 => | | | | | |
4mmmmame—cmmcaaea- R SR AU Hmmmmme +
i - | invisible | type | data | pointer i--1
S —— Hommaan demema-n FE— Homeman + |
i+l > | ; | l t ||
R T P T e +emmmm- Fmm——— Fommmmm 4]
[mmmm = o e mm e e —eemammme—e—caa- ]
| STATUS VALUE
} [ee===em=== tummm-- s Fomme=- +--=--- 1
free cell: Ll-->| . | 2nd through 5th bytes |
dmmmmm e Hommmnn 4acancs FRIpE R +
| | 6th and 7th { pointer |--
beceeeem = fommmmmn +------ e el +----=- SN
T S LCCTETEFEEE 1
| pmmmmmm---- TR FRE fmmmmm- FURE 1
free cell: L-->| . i 8th through 11th bytes |
dommmmemeen FRR. 4ommen- ¥ NI ommmam +
| | 12th through 15th bytes |
R ik S $emomen R Fmmmm = 4
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The *store-u-fix operation operates in a similar manner as the
*gtore-t-fix operation. When storing a n-byte datum at location i, a

*store-u-fix operation creates the following data structure:

STATUS VALUE
[rm—mmmmm—— e foomam- Fomemn- TR 4o-nmm- 1
i-1 => | | I | ! |
4ommmmmemm—mem—aan- 4o n 4ommmm- $oomen- 4ommm-- +
i -> | untyped-data | <data begins>
Hommmmemmmmm e oo tomm- /
| middle (if k>1) | /
R 4o = Foeo-m-- +
/ <data ends> |
Foemmmmmmmmmamama- R fmmmmm- O Hommmmn +
itk > | | E | { I
I L +------ Fommm- Fmemm—- Fo=---- 4
r 1
| n |
k=] --- |
{4 |

Befo?e the *fetch operations can be explained, the concept of a destina-
tion must be understood. In our model, a destination (48 bits) is asso-
ciated with each *fetch instruction, and indicates to which computation
the fetch is to be sent. The destination is used by the token switching
network to route tokens to their "destinations.” Other multiprocessor
systems that wish to use an I-store might simply combine a processor
number with a locally unique computation identifier to form a destina-
tion. A computation identifier is needed since processors should expect

to send many requests for data before the first response is recieved.
When fetching data which has already been stored, the data structure is

not modified. However, when fetching data which has not yet been

stored, the destination must be remembered. The destination can be
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CONSed into (added to the head of) an existing destination list, or the

current destination will form a new list. Each destination is stored in

a cell taken from the free list.

If a *fetch-type-stored is encountered for location i, no data has been

stored, and no fetches have been previously deferred at this location, a

new destination list is created:

STATUS VALUE
[rmmmmm———mmmmmeo fmmm——— Fomnmm- Fmmmme- fmmmmm- -
i-1 -> | l | | | I
4omeorm—mmmmmm—man 4o-mcua F R AR 4ommmm- +
i > | untyped-pointer | - | pointer ==
Fmmm e - Fommmm- +------ el e + |
i+l > | | I | | |
b e - - Fommmm e fmmmmmm t------ N b 4
............................................. A

] STATUS VALUE
| oeemmmm--- 4ommmma Fmmmm- fommem- Hememe- a
free cell: t-->| | <the destination goes |
fommmmmmee- + fm-—m-- o +
| last | here> | |
R bt e Y Y L -

The untyped-pointer status implies deferred destinations.
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If a *fetch-type-stored is encountered for location i, no data has been

stored, and fetches have been previously deferred at this location, the

destination is CONSed into the existing destination list:

STATUS VALUE
B e Fommmn- ommmm- FRR ommme- 1
i-1 -> | l | | | |
N s 4onmmm- $ocmmn- FRE g +
i > | untyped-pointer | | ~pointer | ==
s $om—me- NI 4--e-- FRI— + |
i+l -> | | | l bt
T L e E P L Fommmmmferm— - Fmmm——- N bl 4]
_____________________________________________ J
| STATUS VALUE
| peemmmmmee- fmmmmmm TR FRE R .
free cell: L-=>| . . . | <new destination goes i
Fmommmmmm- + pmmm——- FRRR +
| not-last | here> | pointer 1--1
Lo meeem tomemam e fmmmm- - 4
[emm=mmemmm—moeeme—mm-mo—ee-——ssmoess—oooo-ssss o
|

L--><pld destination list>

Note that destinations are stored LIFO style,
in this operation as well as in *fetch-notype-stored.
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If a *fetch-notype-stored is encountered for location i, no data has
been stored, and no fetches have been previously deferred at this lo-
cation, a new destination list is created (similar to the

*fetch-type-stored):

STATUS VALUE
B LT s SLTET fameman TR Hommme- q
i-1 > | | ! | ! |
$omommmecmmma———a- FR fonmcen I focmaen +
i - | typed-pointer | type | | pointer | ==
T goomman fecacon $ommmme FRRP. + |
i+l -> | | | | | Pl
R L T e e fmm———- dmmmmm 4
[m=m=memmemeeeemeememmmeso-—emsm—seo-—eossoeoo J
[ STATUS VALUE
| pemmmmm--- KRR omnme- FUMp FRS—— q
free cell: L-->| | <the destination goes |
N L GEETT T + s R +
| last { here> | |
b +ommr-- e b R L 4

The typed-pointer status also implies deferred destinatioms.
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If a *fetch-type-stored is encountered for location i, no data has been
stored, and fetches have been previously deferred at this location, the

destination is CONSed into the existing destination list:

STATUS VALUE
[mememmmmmmmaaam Foooa- FUE FRRRR $ommmm- 1
i-1 > | | | i | |
Fommemmmmmm e 4omemm- Hmmmme- 4oammm- R +
i > | typed-pointer | type |. . | pointer | ==
B dommem- Hommmmm 4omnmmn Hommem + |
i+l > | | | ! .
T e L temm--- +em-=-- +--=--- Fmm-m—— 4
[rem=m=mm=me—m——emememmemcooom--os-oo—smmoeoos J
|  STATUS VALUE
| pmmmmmmmm- dommmn- $omeme- Hommm—- R 1
free cell: b-->{ | <new destination goes |
D e + [pem———- TR +
| not-last | here> | pointer |-
O +=---== +--am- +-==c- t--om=- +
4

L.-><gld destinatiom list>

Again note that destinations are stored LIFO style.
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2.2.2 ALLOCATE AND CLEAR OPERATIONS

The *allocate operation is used to prepare an array of locations for
stores and fetches. The *clear operation is used to recover a sequence

of locations, and return them to the unallocated state.

The *allocate operation creates the following data structure when allo-

cating b blocks each of size w words starting with locatien i.

STATUS VALUE
prmmmm—mmmmmm oo fmmmmm- - 4mmmmmm $ommme- .
i-1 > | | | I 1 I
dommmmemmm——— o Hmmm——— R e fomm——- +
i > | empty-nowait | <block 1 begins>
$mmmmmem—mmmm————— Hommmmm N +--- /
| middle (if w>1) | /
4mmmmmmme— e Fmmmm- ;. ------ foemnn- +
B / block 1 ends> |
Fammmmccicemem--- R fo-o-- F-mme- $omoen- +
itw -> | empty-nowait | <block 2 begins>
T - Foemmam $--- /
| middle (if w>1) | /
fmmmmemmmmmm e $ommm- J —m---- Fovona- +
/ block 2 ends> |
focmmmmmmrmmmmm—- PR oo fommm- ommmm- +
i+2w -> | empty-nowait ] <block 3 begins> |
e memmee 4ommme Hommeme fmmmmm- Frmmmm- +
i+ e 4mommen TR $ommmmm TR +
(b-1)w ->| empty-nowait | <block b begins>
ommmmemrmmm————ae 4ommmmm 4eommman - /
| middle (if w>1) | /
O fommm- = Fommmm- +
/ block b ends> |
Fommmmmmmmr— - PR ——— Fomm——- fommmm- 4ommnm= +
itbw -> | | !
L LR e T tmm——-- Fommm-- fommmmm tm--—-- J
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The *clear operation creates the following data structure when clearing

b words starting with location i.

STATUS VALUE
[rmmmmmmmomeemee tomenn- $eooma- foomnn- fommmn- 1
i-1 -> | | | I | I
$rmmammm—mm—— e fmmmmm- Y T 4o $ommmmm +
i -> | not-allocated | . |
R Hmmmm-- $oemon- R 4memmmm +
| not-allocated | . |
B fmmemm- $omemee Hmmmmmm $ommmmn +
focemmcmsmmrm——ea- ommman 4o TR foeomnn +
i+b-1 -> | not-allocated | - |
ommmmmememmem—a-- TR — $ommmmn Fommmm- Fomocm- +
i+b -> | I l | | |
L LT P TR N ettt Femmmm- +----- $----- d

2.2.3 RESET OPERATION

The *reset operation is used to recover a word from an error state. The
word in error is returned to its previous status. If no error is indi-
cated in the status field, the error bit is set, and an error message is

sent.

2.2.4 ALLOCATE-FREE-SPACE OPERATION

This operation increases the size of the free list by allocating a space

in the i-store section for free cells. This space can be returned only

by reinitializing the entire ISM.
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The *allocate-free-space operation creates the following data structure

given base b and number of cells c.

STATUS VALUE
[rom—mmmmm————— PR FRRR foneonn toemmm- »
b-1 -> | | | i | |
mmmmmemm—mmmm—ma- AR 4o 4ommmm- $ommm- +
b -> r->| | !
R S s 4omnme- TR SR 4ocmme- +
b+l ->| | stat | . | pointer |----
| Lle-memermmmemoe- o mmm-- tmmm——- $mmm--- feom-- 4 |
bemeermmem oo e oo s o m o m o m oo m s mmmm e 1|
frmmmmemmmmm— e foonmn- Hommmm- TR 4oemme- 1 1
bt2 ->->| | |
| dmmmemmmmmmeoee- 4emmna- 4omomm- TR $rnmeen + ||
b+3 ->| | not-last | | pointer |--4 |
| Le--ememmmmmemaas +------ +------ fmmmm e +----== 4 |
| I < |
|
<=m--- 1
frommmmmmmmm———e - fommme- 4romme- TR T _
b+ ->p->] | .o 1!
2(c-1)| 4-==m=mmmmm—mmm--- TR 4o temmam- FRREP + ]|
b not-last | | pointer |--1 |
| Ammmemmmmmemmmee ISP Hmmmee mmmm- 4ommmae + |
b+2c->| | | | | | l |
| Llemmemmmemceeooee - Lt Femm—e- R et 4 [
| |
| premmeeemmmmmmemmmmmeoooensooneooeecoeooeoaees J
||
j L--> <old top of the free list>
|
| p-==--- 3 pro=====--essomms g
L--{ RTOP | | FREE-SIZE <- j |
leccmee J L cmmmemm———— e
j = <old free-size>tc stat = IF <list was empty>

THEN last
ELSE not-last
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2.3 SERVICE OPERATIONS

With the exception of the *initialize operation, service operations are

not normally used by the Data Flow machine during error free operation.

2.3.1 READ AND WRITE ABSOLUTE OPERATIONS

These operations fetch and store a word directly. Both the status and
the value fields are manipulated. No type checking is performed. These
absolute operations are not intended for use during normal, error free
operation; they are to be used for debugging the base system and for er-

ror recovery (by managers).

2.3.2 INITTALIZE OPERATION

The *initialize operation reinitializes the ISM. Two parameters are
provided: the boundary between the data section and the free list sec-
tion (stored in register BOUND); and the size at which the free list
should spawn a warning message. The data section is initialized as un-
allocated, and the free list is linked. The contents of the status and
value fields of all words are ignored. The *initialize operation clears

the entire memory.
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The *initialize operation creates the following data structure given

boundary b and warning size w.

STATUS VALUE
[fremmmmmmmmemm— o fommmm fommmm- o Hommmm- 1
0 -> | not-allocated | .. |
Fommmemc—mmme————- $ommmm- NRR— 4omemm- fommmm- +
1 -> | not-allocated | .. |
4ommmmmcmmmm———ees TR famemm- fmmmmm- Hommmm- +
T $oammmm TR SR fommen- +
b-1 -> | not-allocated | .o |
$mmmmer s Hommmmn T FI Hrmmmm- +
b -> > | - |
| A==emmmmemmmeemon TR Hrmmmm- Hommmm- $ommmm- +
b+l ->| | last | C .. |
| Lemmememmemmmmeees fommm-- R demmm = Y 4
L o e e e r e cmwr—demc-mmmmm oG mEmE—mmmE - A EEm—————— 1
[ememmmmmmmm————— TR TR FREI FRR 1
b+2 =>r->| | S (.
| #--—mmmmmmm e TR TR TR TR +
b+3 ->| | not-last | . - ] pointer |-~
| Lesmememmme—ooenmoe- Y Fe----- +------ +------ 4
I .
C===== 1
[emmmmmmm—mm e fomemm- 4omemm- Fommam- FREE 1
k-2 ->->| | - |
| #---emmrmememmmees +--=--- +omm-—- +eomm--- it + |
k-1 =>| | not-last | .. - | pointer |-~
| Lees-mmmrmmmemmmm R Fom———- Frmmmm- Fmmmmm— 4
i
| === T ettt iintatueb .
Lo | RTOP | | FREE-SIZE <- j |
L mmmm J lccecrrccmemm—— =
16 k-b
k =2 j= --=-- -w
2
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2.3.3 LOAD ERROR DESTINATION OPERATION

A six byte register, called the error destination register contains the
address of the manager to which all errors are sent. The
*load-error-destination operation loads the contents of the error des-

tination register.

2.3.4 GET FREE SIZE OPERATION

This operation sends the contents of the FREE-SIZE register to the spec-
jfied destination. The true size of the free list can be determined
given the wvalue stored in FREE-SIZE and a constant (provided the last

time the ISM was initialized).

2.4 ERROR HANDLING IN THE I-STRUCTURE MEMORY CONTROLLER

Since the ISMC operates at a fairly high level, it is possible to detect
certain errors. For example, any attempt to write intc a location that
is already occupied will be caught. Several error handling mechanisms

were considered for the ISMC.

In our analysis, we assumed the existence of an error manager which can

be thought of as a piece of runtime software that deals with errors and

inconsistencies as they occur.

When an error is detected in the ISMC, several pieces of information
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must be preserved. All of this information will be found in the token

being processed, or in the location being addressed.

2.4.1 TYPES OF ISMC ERRORS

There are three types of errors that can occur in the ISMC: status er-

rors, data type errors, and free-list errors.

2.4.1.1 Status Errors

A status error indicates that the operation being performed is incon-
sistent with the status of the addressed word. Classified within this

category are BOUNDS errors, and status inconsistency errors.

A BOUNDS error indicates that the address provided is an illegal one.
The ISM has 16 bit addresses, but not all addresses are legal arguments
to operations. In particular, an address pointing to a location which
is part of a free cell (or was part of a free cell and is now part of a
deferred destination list or the tail of a long piece of data) is an il-
legal parameter; these locations must be accessed only through internal
indirect references. Also, locations tagged as the middle of an element

are illegal parameters to operations.

All other status errors are status inconsistency errors. Overwrite er-
rors, inconsistent deferred fetch requests, and many others fall into
this category. Most of the possible ISMC errors are of this type; see

the status transition diagram for details (Figure 1).
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2.4.1.2 Data Type Errors

A LENGTH error indicates that data is being forced into a slot which is
too small to contain it. A DATA-TOO-LARGE error indicates that someone
is trying to read more data from a location than it contains. Another
kind of data type error is called DEFERRED-TYPE-COLLISION. When a fetch
arrives with a type (*fetch-notype-stored) and discovers that there is
already a deferred destinééion list, and the imbedded type is different

from the one arriving on the fetch, there is a type inconsistency.

2.4.1.3 Free List Errors

A FREE-LIST-EMPTY error indicates that the free list is out of space.
Also included in this category is the FREE-LIST-LOW warning message.
While this is not actually an error condition, it indicates to a manager
that a potential problem situation is arising.

The free list errors will be useful tools in the emulation of the first
dataflow machine. However, it is not clear how much space should be al-
located to the free list or what should be done upon reaching free list
space problems. When a free list error occurs, the ISM can be left in a

consistent state, and operations can continue.

2.4.2 ERROR RECOVERY

When an error is detected in the ISMC, several pieces of information are
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sent to a manager: all important information from the incoming token,
and additional information depending on the brand of error. In
addition, an error flag is set at the head of the implicated element (if
there is one), except for the *allocate, *clear, and
*allocate-free-space operations which set the error bit at the location

where the error was actually encountered.

Three bits are reserved for status information under normal (error free)
operation. An additional status bit is reserved to indicate that an er-
ror has occurred at a given location. When an error occurs, the error
bit is set and the other three bits are left untouched. Hence the ISMC

can detect the previous status of a word directly during error recovery.

When a free list error occurs, the partially completed operation is un-
done, and the active token is returned to the communication network.
The process of undoing an operation may give rise to the returning of a
free cell to the free list. Hence we will be sending a
free-list-overflow error when the free list is not actually empty. If
we don't complain to someone and delay the token a bit, a livelock situ-

ation (discussed below) may arise.

A better solution is to send all important information both about the
error and the token involved. Then, a manager can take any action that

it sees fit.

The following livelock should be considered. Certain errors may cause &

token to be ejected (presumably untouched) back into the communication

network. If the free list is empty and we need to defer a destination,
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for example, we might not want to mark the location being addressed. If
the ejected token returns before the error is handled, (a possibility if
the communication is "intelligent") another error token is generated,
and the process repeats. To deal with this situation, several possibil-
ities arise. We could mark the tokens so that the communication network
sends them on a slower path. We could store tokens locally. If the free
list is not full, we could put them on the free list. We could redirect

the tokens to a manager. Embedding all important information in the er-

ror message being sent to a manager is the most promising compromise.

Block commands (allocate and clear) involve several groups of words in
memory. If an error occurs while executing a block command, follow the
scheme as outlined above, tell a manager how much of the block command

has been completed, and cease processing the block command.
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3.0 IMPLEMENTATION

3.1 APPROACH TO IMPLEMENTATION

In designing the ISMC, several stages of the design were developed in

succession. An informal paper design describing the function and struc-
ture of the ISMC was the first step. Then a formal high level design in
the form of non-executable ALGOL-like code was drawn up (Appendix A).
Detailed descriptions of the algorithms were specified, and all of the
data structures were then presented. The final stage of the design was
the IDL code. The IDL description can be implemented in hardware, and

both algorithmic and bookkeeping details are present. Since this code

is executable, it can be simulated and verified.

The evolution of the ISM is a continuous process. By the time this pa-
per had been completed, the design had become outdated. The goal of
this project was to present a consistent model of the ISMC as it existed

around Fall 1982,

For several reasons, the IDL code for the ISMC was mnot simulated. The
functionality of the design was being verified by PASCAL programs de-
rived from the High Level Code in Appendix A. Also, the ISNC design
severly stressed the IDL system. Simulation using the current implmen-
tation of IDL would have been quite difficult. Since the goal of this
project was to develop an ISMC design and to study the IDL design
system, and since the ISMC design had already become obsolete, IDL simu-

lation became a less important part of the project.
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3.2 RUN TIME FLEXIBILITY

Because some of the details of the design are not known at design time,
the prototype may be the vehicle most appropriate for determining the
values of these parameters. Thus, in order to allow some flexibility in
the design of the I-structure memory controller, several design con-

straints were left as parameters.

3.2.1 SIZE OF THE FREE-LIST

It is unclear how memory should be divided between the i-store and free
list sections. If the free list becomes empty, deferred fetches cannot
be accommodated, and large elements of amorphous arrays cannot be
stored. It is not even clear whether a given split will be adequate
across differing applications, or across the lifetime of a single pro-
gram. Hence in order to allow flexibility in the prototype engine, se-
veral techniques have been employed which allow dynamic monitoring,

error checking, and recovery.

When the memory is initialized, the size of the free list section is
provided as a parameter. Since a manager does not have time to wait for
the adjoining section to clear in order to enlarge the free list, the
boundary between the i-store and free list sections cannot be easily
changed on the fly. If free space becomes scarce, the
*allocate-free-space operation can convert i-store space into space for
the free list. Only after a manager flushes all structures from this

ISM can the space be returned by re-initialization.
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The size of the free list is tracked by an up-down counter in the ISMC.
The value maintained in this counter is offset from the size of the free
list by an amount specified at the last initialization. This technique
allows a free-list-low warning to be sent to a memory manager at a pre-
determined list size. In addition, the value of the counter can be mon-
itored dynamically by any manager. The actual end of the free list is

marked in the status bits of the last free-link of the list.

3.2.2 SPEED OF THE MEMORY

In an attempt to provide flexibility for the implementation and a possi-
bility for upgrading the design by plugging in a faster FSM or RAM, the
relative speeds of the FSM (presumably a PLA) and the slave RAM have
been made a programmable option. By setting dip switches, the memory
may operate in less then one, two, three, or four PLA cycles without im-

pacting the design.
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3.3 HANDSHAKING PROTOCOLS

Three handshaking ports have been set up to allow the ISMC to communi-
cate with the outside world: one at the source of tokens, one at the re-
ceiver of newly formed tokens, and one for the hard interrupt line.
Handshaking is accomplished through the use Set Reset {S8R) latches; the
sender sets the SR l&tch,—and the receiver resets it. In order to avoid
clumsiness in the IDL design, these SR latches have been modeled as sim-
ple one bit registers, each with two sources of information. By conven-
tion, the sender only sets a register when it contains a zero, and the

receiver only resets a register when it contains a one.

3.4 REGISTERS

The registers can be separated into four categories: input registers,

transaction registers, output registers, and system registers.

The input registers are used to receive tokens, two bytes at a time.
Once a token has been accepted, it can be transferred all at once to
transaction registers. A one-bit register is used to synchronize the
supplier of data with the input section, and a feedback is used to syn-

chronize the input section with the transaction section.
The transaction registers are used to interact with physical memory.

This category includes registers to hold the active token, a Memory Ad-

dress Register (MAR, 16 bits), and a Memory Data Register (MDR, 36 bits,
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4 for status and 32 for value).

The output registers are used to output tokens one at a time. Once a to-
ken is ready to be exported, it can be transferred all at once from the
transaction registers to the output registers. A feedback is used to
synchronize the output section with the transaction section. I have as-
sumed that a token buffer exists between the ISMC and the communication

network.

The system registers hold the value of certain ISM variables. BOUND (16
bits), which points to the first word in the free list section, is load-
ed each time the ISM is initialized. RTOP (16 bits) points to the top of
the free list. ERRDEST (48 bits) contains the destination to which er-
ror messages are sent. This register is loaded explicitly with a
*)oad-error-destination operation. FREE-SIZE (16 bits) is related to
the size of the free list. When the ISM is initialized, FREE-SIZE is
set to the size of the free list minus a constant (a parameter of in-
jtialization). When FREE-SIZE reaches zero, a warning is sent to the
error destination. The end of the free list is marked in the status
field of the last free cell. FREE-LIST-STATUS (1 bit) indicates whether
or not the free list is empty. PE-NUMBER (10 bits) contains the envel-
oping PE's number. IEXTRA (16 bits) is an extra register for pointer

manipulation.

3.5 HARDWARE REQUIRED

The ISMC design required about 1500 lines of IDL code. This design

stressed the IDL system to the limit, even when IDL operated in a four
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megabyte virtual region (under APL). We were able to compile and assem-
ble the ISMC to PLA personality (two level logic). The following sta-

tistics were gathered:

Controller:

Product terms: 887

Inputs (no feedbacks): 151

Outputs (no feedbacks): 316

Feedbacks: 91

Registers: 718 bits

Comparators: 40 bits

3.6 SUGGESTIONS FOR FUTURE ISMCS

The ISMC presented is a consistent model. Since this project included
implementing the ISMC, at some point the design had to be frozen and

completed. The following considerations were not included at freezing.

3.6.1 REALIZABLE MODEL

The controller presented in this thesis, while realizable, is not a re-
alistic design. A realistic design, for example, would have one or more
busses. Without bussing, the number of control lines and data wires is
too large. Some binary counters were included in the controller that
(as it turns out) are better placed as external objects. Enough has

been learned from this design, however, that the next generation can
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claim feasibility.

3.6.2 SIZE OF THE I-STRUCTURE VIRTUAL ADDRESS SPACE

At a late point in this design, we decided that each ISM could have up to
24 bits of address space. Anywhere between 16 and 24 bits could be im-
plemented. The number of free cells, however, was not to exceed 32K so

that the present data structures would not need to be modified.

The ISMC presented here assumes a 16 bit address space. Several concep-
tually simple modifications would accommodate this change. The only de-
licate matter is dealing with two different length pointers, a full
length pointer (16-24 bits, depending on the implementation) for ex-
ternally generated references, and a short pointer (16 bits) for inter-

nally indirected references.

3.6.3 DYNAMIC REFRESH

This ISMC does not support the refresh cycle required for a dynamic mem-
ory. With the current design, only static memories are supported. Sup-

port for dynamic memories may become important at some time in the

future.
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3.6.4 END-OF-BLOCK STATUS

A new status code indicating the end of an allocated block can be as-
signed, allowing us to avoid reading an additional word in the case of a
size mismatch. Overhead that did not impact error free operation was
considered secondary in this design.

3.6.5 INTERNALLY DELAYED TOKENS

An additional register could be added to the system registers that
pointed to a list of internally delayed tokens. It may be desirable to
temporarily swallow some tokens that are causing errors. If this is
done, a more complicated structure than a list might be desirable (for

example, a tree).

3.6.6 FREE-LIST-LOW WARNING

A warning is sent to a memory manager every time the free list size re-
aches zero (the free list may or may not be empty). If the size oscil-
lates around zero, many warning messages might be sent; perhaps only one

is needed.

47



3.6.7 STATUS OVERLOADING

The statns bits identify the structure of the associated word. If the
i-store and free list sections were physically disjoint, the address
would provide additional status information implicitly. This allows us

to overload the assignments of the status bits.

The two sections are not physically disjoint. Once an
*allocate-free-space operation has occurred, there is no way to use ad-
dress information to imply structure. The current design fully utilizes
the encodings for the i-store section. We camn minimize the effects of
overloading by assigning all list status codes in such a way that they

overlap with error codes of the i-store section.

In the next generation, all possible status possibilities should be enu-
merated differently, either by adding a status bit, or by modifying the
error handling mechanism. In the current model, one bit indicates if an
error has occurred, allowing us to preserve information about the previ-
ous structure. If we relax this model and assign a single code to "ER-

ROR," we will have plenty of room for the other assignments.
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4.0 CRITIQUE OF IDL

4.1 PROBLEMS WITH USING A HIGH LEVEL LANGUAGE

When using IDL, two types of problems related to language arose: IDL is
at too high a level to notice certain details, and IDL is at too low a

level to conveniently express certain constructs.

4.1.1 1IDL AT TCO HIGH A LEVEL

4.1.1.1 The Semantics of IDL Assignment

The following code fragment involving two inputs and a latched feedback

is translated into PLA perscmality:

Code Fragment 1 PLA 1
IF [-<-=<=q
THEN f <- x Xy f f
ELSE f <-y  =mem=e-=c--a-
0-1 || R (PO)
1-1 || 8 (P1)
-00 || R (P2)
-10 || 8 (P3)
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And the following similar code fragment is translated into PLA personal-

ity:

Code Fragment 2 PLA 2

IF £ AND (NOT x) [-<=-<=q
THEN £ <- 0 xy f f

IF (NOT f) AND ¥ 0-1 |} R (P4)
THEN f <- 1 -10 || 8 (P5)

In any programming language, if f, x, and y were booleans, code frag-
ments 1 and 2 would have identical semantics. In IDL, these fragments
are only equivalent when the fedback term is latched with certain latch-
es, ones that hold their values between cycles unless otherwise in-
structed. In addition, the fragments are taken out of context. If the
context contains statements with overlapping conditions, they may in-

terfere in such a way as to make the fragments distinguishable.

In code fragment 1, product terms (P1) and (P2) assert that f is set (or
reset} to its current value. If f is fedback through a SET DOMINANT
latch, a common and typical latch for feedbacks, and if there is no in-
terference from other terms, as discussed below, (P1) and (P2) are not

needed. When (P1l) and (P2) are removed from PLA 1, PLA 2 results.
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Interference caused by overlapping product terms is demonstrated below:

Code Fragment 3 PLA 3
IF £ AND g ' [m=<mmmaCany
THEN f <- x xyfgh f
IF f AND b c-11- || R (P6)
THEN f <- y 1-11- 14| s (P7)
-01-1 ]} R (P8)
-11-1 || 8 (P9

Assume that f is fedback through a a SET DOMINANT latch. A SET DOMINANT
tatch holds its value unless otherwise instructed, and the SET command
dominates over the RESET command. If f, g, and h are all true, there is
a parallel assignment to f. This type of parallel assignment is re-
solved in a PLA by the "natural" pairwise ORing of x and y; f receives
the value (x OR y). While product terms (P7) and (P9) both have the pro-
perty that they set f to one based on the precondition that it is al-
ready set to one, we cannot eliminate (P7) and (P9). If the condition
(f AND g AND h AND (x # y)) arises and we only test terms (P6) and (P8),
f will be set to zero. The terms which were previously redundant are

now needed to explicitly override the RESET terms.

The confusion arises primarily because we are looking at IDL as if it
were a conventional programming language such as ALGOL. In ALGOL, vari-
ables (analogous to feedbacks) maintain their value unless explicitly
assigned. Hence, the ALGOL analogies of code fragments 1 and 2 are
equivalent. In addition, ALGOL has no notion of parallel action. The
confusion demonstrated by code fragment 3 would simply not arise in AL-

GOL.
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IDL uses assignment to directly describe PLA personality (setting bits
in the OR plane in the column corresponding to the output recieving a
value) rather than the abstract notion of value transferal. While IDL
assignment is frequently equivalent to value transferal, this is not al-
ways the case, as demonstrated above. The direct analogy in programming
involves expressing single ideas partly in machine language. Consider.
the following line of PASCAL code:
X := <contents of machige register number 8>

Although this would be a severe violation of modern programming
ideclogy, it might not be such anathema in a hardware design language

such as IDL. In fact, this mixed level notation may be necessary in or-

der to generate an efficient implementation.

In order to avoid the confusion caused by IDL assignment, we could aban-
don the mixed level notation in favor of a purely abstract language. We
5till would be able to specify the hardware and types of latches, but
the algorithms for automatically generating an efficient implementation
are not obvious. It is easy to generate an implementation in hardware
that uses whichever latch we desire, but cleverly using a given latch is

not an easy process to automate.

As long as the IDL user realizes the difference between IDL assignment
and ALGOL-like assignment, he can avoid much difficulty. Detecting pos-
sible problems due to overlapping assignments is not difficult, and the
automatic reporting of such potential errors may be g useful addition to

the IDL system.
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4.1.1.2 Hidden Contrel Signals

The IDL system allows the designer to indicate register transfers in
"assignment-like" statements, generates control signals for these
transfers, and simulates the transfers automatically. This high level
abstraction does not permit the user to talk about the control signal

directly.

At a particular place in the IDL code (let's sat point x), the MDR al-
ready contained the data present in a particular register; call it R1.
In other parts of the code, similar conditions caused MDR to be assigned
Rl. At point x, it does not matter if the control signal "MDR<-R1" ris-
es; in fact, we would like to indicate this don't care situation in the
IDL code. All we can do is indicate that the transfer occurs, or it

doesn’t. All system generated control signals have this weakness.

If we say "MDR<-R1", a one will be placed in the OR plane in the column
corresponding to the "MAR<-R1" control signal. If we don't say

"MDR<-R1", a zero is implicitly placed in the OR plane.

The problem occurs because we cannot talk about control signals
directly. We would like to be able to express the idea that the control
signal "R1<-R2" (transfer the contents of R2 to R1) is a valid output

and can be manipulated. The following action should be expressible:

"R1<-R2" <- <don't care>
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4.1.1.3 The Counting Constructs

IDL will automatically generate PLA personality to perform some arith-
metic functions such as incrementing and decrementing a set of feedbacks

which are collectively treated as an integer.

Part of the ISMC design includes "switch programmable"” inputs which spe-
cify the relative cycle times of the PLA and the physical memory. The

architect is thus allowed to specify the number of PLA cycles the con-

troller should wait between memory accesses.

There are basically two approaches in accommodating this flexibility:
load a constant initial value (such as zero) and cocunt (up or down) un-
til the count matches the value of a set of inputs, or leoad a value from
inputs and count (up or down) while testing for a match with a predeter-
mined constant value. These two approaches will be referred to as the
set-and-compare paradigm and the load-and-test paradigm respectively.

The following code fragments demonstrate the approaches.

Code Fragment 4 Code Fragment 5
Load-and-Test Paradigm: Set-and-Compare Paradigm:
L1: IF <memory access”> L1l: IF <memory access>
THEN count <- memtime THEN count <- 0
=> L2 -> L2
L2: IF count = 0 L2: IF count = memtime
THEN <continue> THEN <continue>
ELSE count <- count-1 ELSE count <- count+l
% remain in this state % remain in this state
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In my first design of the variable memory speed feature, I first trans-
ferred the incoming switch settings to feedbacks, and then counted down
to zero (load-and-test). While the load-and-test pa?édigm would be the
obvious choice in micro-programming (due to the jump-on-zero instruc-
tion), the set-and-compare paradigm turned out to be superior in a this
design. The considerations which effect the choice of paradigms are
discussed below. Unfortunately the code segments for the two prototypes
are similar, and it is nofiat all obviocus at the high level which one is

desirable.

The cost of incrementing is the same as the cost of decrementing, and
either one could be applied te both paradigms. Although testing for ze-
ro is unit cost, the cost for comparing two inputs for equality and the
cost for transferring a value from inputs to feedbacks depend on the de-

tails of the PLA implementation.

The cost of testing two n-bit quantities for equality is different from
the cost of testing for inequality. If we have a PLA with ome bit de-
coded inputs, testing for equality takes two raised to the power n prod-
uct terms (n is the number of bits in the counter), and testing for
inequality takes two times n product terms. We have a PLA with two bit
decoded inputs: testing for equality takes one product term, and test-
ing for inequality.takes n product terms. We may or may not be able to

trade off the true and complement tests.
The cost of transferring a n-bit value from inputs to feedbacks also de-

pends on the PLA. If we use sophisticated latches, it takes two times mn

product terms. (A trick allows us to load SR latches from inputs using
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only n+l terms.) If we use simple polarity-hold latches (D type), the
cost of the transferal drops to n product terms. Simple latches,
however, make the counting process more expensive. If the condition

<memory access> is complex, counting becomes even more expensive.

Since, the discussion has only addressed the microscopic picture, the
most serious issue has noﬁ yet been addressed. We shall assume for the
remainder of this discussion that we have two bit decoded inputs, and
that the cost of a test for equality is therefore one product term. Ev-
ery time we count up or down in some given state we require several
lines of PLA personality (three lines for unlatched (D type) feedbacks,
and two for many complex latches). If the condition associated with the
state is complex, we must multiply by the number of conjuncts. We need
approximately 5 product term for EACH memory access. There are more
than 150 reads and writes in the ISMC code. We cannot afford to devote

so0 many product terms to counting.

Fortunately, there is another technique similar to the set-and-compare,
force-and-compare, which allows us to solve the counting problem much
more efficiently. We can set up an independent process in the PLA, a
counter which runs continuously, with the provision that its value may
be overridden at any point. The new model involves forcing the count to
3 (binary 11) at memory access, and counting until the count matches a
set of inputs. Setting the counter to all "ones" is possible because of
the way a PLA operates. By performing a parallel assignment of all

"ones" to the count variable, we can override any other value.
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The following code fragments demonstrate this approach:

Code Fragment 6
Force-and-Compare Paradigm:
Universally: count <- count+l
Ll: IF <memory access>
THEN count <- '111...1'
-> L2
LZ: IF count = memtime

THEN <continue>
ELSE % remain in this state

This solution demonstrates the set-and-compare paradigm. One product
term is required to force the count, and another to compare the count

with inputs, giving a total of two product terms for each memory access.

We have been able to decouple the details of counting from the business
of memory access. Unfortunately, we are relying on a PLA trick which
allows us to override any assignment with the all ones value. Hence, a

solution analogous to load-and-test is not possible.

Several interesting points stem from this analysis.

1. There is no difference between incrementing and decrementing. In

fact the details of counting become fairly unimportant if we can

arrange for the code to occur only once.

2. The solution chosen was not drawn from microprogramming. We have

employed a technique which has no analog in programming.
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3. All three paradigms are applicable in different domains, and the
designer must know about the details of the implementation in order
to make an intelligent choice. Unfortunately, the difference be-
tween the techniques are not obvious in the IDL code. Also, auto-
matic translation of one paradigm to another does not appear easy.
If an efficient implementation is to be obtained, it must be de-

signed that way.

4. In our analysis we assumed that the counting was done inside the
PLA. All three techniques become similar if we count and
compare/test external to the PLA. This new solution is as effi-
cient as force-and-compare, and it does not depend on two bit de-
coding or parallel assignment. What it does is remove from the PLA
a chunk of logic (arithmetic) which we can implement efficiently

externally.

4.1.2 IDL AT TOO LOW A LEVEL

4.1.2.1 Dot Notation Imitates Nested Conditionals

The IDL language has made an important leap in the direction of struc-
tured language. The best example is IDL's use of the IF-THEN-ELSE con-
struct. Unfortunately, IF-THEN-ELSE was not carried far enough to
include nested decision trees. IDL deoes have a dot-nmotation construct

however, which can be used to imitate nested IF-THEN-ELSE:
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Code Fragment 7 Code Fragment 8

Dot-Notation ‘ Nested IF-THEN-ELSE
Ll.: IF ¢l L1: IF cl
THEN -> L1.2 THEN IF c2
ELSE ~> L1.3 THEN al
L1.2: IF c2 ELSE a2
THEN al ELSE IF c3
ELSE a2 THEN a3
L1.3: IF c3 ELSE a&4
THEN a3
ELSE ai4

The above dot mnotation is only slightly more clumsy than the
IF-THEN-ELSE version. A more complex decision structure, however, ag-
gravates the situation. The reader may wish to compare the High Level
code presented in Appendix A with the IDL code presented in Appendix B.
For example, compare the first few statements associated with the *store
operations in the two versions of the code. Although the comparison is
not quite fair, it is indicative of the difficulty. Dot notation has
the full power of the IF-THE-ELSE construct, but it loses the advantage

gained by positional association.

4.1.2.2 Dot Notation Represents Decision Graphs

Dot notation does have the interesting property that it is more general
than nested IF-THEN-ELSE. While nested IF-THEN-ELSE is used to embody a
decision process representable by a tree, dot notation can be used to
embody any decision process representable by a Directed Acyclic Graph
(DAG, the class of trees are a proper subset of the class of DAGs). Al-
though DAGs can be "converted" into trees by replicating decision nodes,
this conversion tends to clutter the code. Consider the following code

fragments and corresponding graphs:
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Code Fragment 9 Code Fragment 10

Dot -Notation Nested IF-THEN-ELSE
Ll1.: IF cl Ll: IF ¢2
THEK -> L1.2 THEN IF c2
ELSE -> L1.3 THEN S84
L1.2: IF c2 ELSE al
THEN -> L1.4 ELSE IF c3
ELSE al THEN S84
L1.3: IF c3 ELSE a2
THEN -> L1.4
ELSE a2
L1.4: S4&
DAG (dot notation) TREE (nested IF-THEN-ELSE)
cl -> ¢3 -> a2 cl ------- > ¢c3 ->» a2
\Y Vv v A%
c2 -> 54 c2 -> 54 S4
1 Vv
al al

While the nested IF-THEN-ELSE may appear more elegant, it repeats a
statement. The statement itself may be a graph of decisions with many
conditions and actions. Unfortunately, a linear-textual language can-
not represent DAGs while taking advantage of the positional adjacency of

nesting.

4.1.2.3 Extending Dot Notation

The generality of dot notation can be carried a step farther. Under the
current syntax, & dotted label consists of a root name and an intermedi-
ate node name. In the above example, Ll is the rcot name and 2, 3, and &
are the intermediate node names. The tie of intermediate nodes to any
particular root can be lifted by naming intermediate nodes independent-

ly. The following code is a relaxed version of Code Fragment 9.
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Code Fragment il

Ll: IF ¢l
THEN -> .2
ELSE -> .3
.2: IF c¢2
THEN -> .4
ELSE al
.3: IF ¢3
THEN -> .4
ELSE a2
4 84

While this change may not appear dramatic, one can imagine situations
(frequent in the IDL code for the ISMC) in which several roots could
lead to a common intermediate node. Unfortunately, the syntax dupli-
cates the entire decision each time. This idea has no parallel in

structured programming.

4.1.2.4 Cleaning up Dot Notation

There is an apparent inconsistency in IDL's view of dot notation. The
. research report on IDL [Maissel and Ostapko 82] describes the use of dot
notation on pages 23 through 26. Code fragments 12 and 13 (below) are

viewed as equivalent.

Code Fragment 12 Code Fragment 13
Ll.: IF cl1 Ll: IF ¢l / c2

THEN x <- 1 / ->L1.2 THEN x <- 1 f y <=1
1.1.2: IF c2

THEN y <- 1
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And code fragments 14 and 15 (below) are viewed as equivalent.

Code Fragment 14 Code Fragment 15

Li: IF cl Ll1.: 1IF cl
THEN x <- 1 THEN x <- 1
Li: IF ¢l / c2 L1.: IF cl
THEN y <- 1 THEN -> L1.2
L1.2: IF c2
- THEN y <- 1

But code fragments 12 and 14 are not viewed as equivalent.

In order to have some action take place at an intermediate node in a
tree, the action must be isclated. Similarly, unisolated actions may or
may not occur, even when the conditions up to this point in the decision
structure have been met. Additional conditions may impact actions which
seem to occur higher in the tree. The historical reasons for this ap-

parent inconsistency are no longer applicable.

There is a strong analogy between dot notation and nested IF-THEN-ELSE,
and GOTOs and conditionals. Since the IF-THEN-ELSE construct is not
supported by the same complement of structured constructs as the pro-
gramming version is, one can make a very strong case for dot notation.
I am confident that a more usable system can be developed (without sac-

rificing power) by moving toward structure and away from dot notation.

62



4.2 THE ENUMERATION ASSIGNMENT PROBLEM

The problem of state assignment (discussed extensively in the litera-
ture, [Marcus 75], [Ward 68], [Miller 65}, and many others) is well

known and difficult.

A similar problem arose iﬁ my study of the ISMC. In the design of the
i-store section, eight distinct structures arose for the data word:
not-allocated, empty-nowait, typed-data, untyped-data, middle, invisi-
ble, type-deferred, and notype-deferred. The actual assignment of bi-
nary values to the various enumerations of the status bits have no
intrinsic significance. The assignment will, however, have a signif-

icant impact on the logic required to operate on these bits.

This Enumeration Assignment Problem is common to the designer of digital
systems. The designer must collect all decisions that will be asked of
these bits and make an assignment that optimizes the decision. In prac-
tice, it is not particularly difficult to make some reasonably efficient
assignment. In a design language such as IDL, however, we would like to
defer the assignment as much as possible, and allow the assignment to

change (automatically perhaps) as we modify the decisions made.

In the design, we wish to operate conceptually in a multiple valued log-
ic. All decisions represent two valued predicates in the larger logic.
When the time comes to implement our design in [boolean] hardware, we
wish to use the list of predicates to make an assignment that yields the

simplest realization of these predicates.
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The problem is slightly more complex than presented so far. Various
variables may be related to each other in such a way that the best enu-

meration assignment cannot be found independently.

4.3 THE DON'T CARE INPUT ASSIGNMENT PROBLEM

When certain combinations of inputs arise, we may not care which branch
of a decision to follow. There is no way of indicating in IDL that a
don't care should be associated with a decision rather than an output.
Even if we express this fact using some construct, the minimization
problem generated by this kind of an input don't care is different from

the problem of minimizing several functions of several variables.

Consider the following Karnaugh Map, which should be considered a boole-

an function on two variables, and the code fragment that uses it.

Karnaugh Map 1 Code Fragment 16
a

b ol 1] IF (Map 1} (a b)
===} --=] THEN x <- 1 / y <= 0
o]0 7| ELSE x <- 0 / y <- 1
-=|-=-]-=-|
1] 1] 1]

The don't care at the ab=10 position means that both the THEN and the
ELSE branch provide an acceptable assignment of values to x and y. If
we expand the statement into maps for x and y, propagating the don't

care, the following Karnaugh maps result:
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Karnaugh Map 2 Karnaugh Map 3

X y
a ’ a
b |01} b | 0] 1]
e e
| ? | o]1]7?]|
--| === |- i
I 1] 1 jofol

e e R R
The don't cares at the ab=10 positions have been decoupled. There are
four ways of assigning the two don't cares, but only two of those as-
signments preserve the sémantics of the decision structure. If the
don't cares at ab=10 on Map 1 and Map 2 are both assigned the same value
(either 1 or 0), we encounter a peculiar situation. When ab=10, the va-
lues of outputs x and y will be equal to each other. These values are

inconsistent with both the THEN and ELSE branches of code fragment 16.

1f we want to move the input don't cares to the output side, we must also
carry along some constraints on their assignments. In the example above
we must assert that the assignments of the don't cares for x and y must

be opposite values.

This problem would never have arisen if we could not express don't cares
of the input variety. In fact, code fragment 16 cannot be expressed us-
ing only output don't cares. Another syntax for expressing input don't

cares is the IF-EITHER-OR statement:

IF <condition>
EITHER <actions>
OR <actions>

We can compress logic to two levels and preserve the semantics of our

decision structures as follows. Uniquely label all input don't cares.
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When we multiply out the multiple level logic, the don't cares are
linked by their labels (some will be in inverted form). Whenever we as-
sign a don't care, all instances of the don't care must be assigned the
same value. This is by no means a minimization algorithm. This problem

is clearly a superset of "classical minimization."

Even though we don't know‘how to solve the input don't care assignment
problem precisely, we can try applying a few heuristics. Boolean maps
can be minimized locally. We might also consider the sizes of the THEN
and ELSE branches if we are working on a decision tree. Consider the

following Karnaugh maps.

Karnaugh Map 4 Karnaugh Map 5
AB BE

c [ 00 | 01 | 11 | 10 | FG | 60 | 01 | 11 ] 10 |
el Rt EECRI EESETEENEY Gl Il RS B CEe
cjJo Jo {7 |1 | cojJo o |2 |? |
i IR L By e et B BERI Bty
11?2 10 |1 |1 | o1 o |2 |1 [? |
e R BRI PR PR el el LRI EEERI BEE)
11?2 1 |1 |7 |
we assign so that: Rl RETEY EEE RS EEETY Ty
ON SET = A 1077 |2 {2 1?2 |
OFF SET = not A et EEEEY EEET TP ETE |

In the case of Karnaugh map 4, the best assignment seems to be assigning
the don't cares in such a way that the ON SET = A, and the OFF SET = not

A,

The most promising assignment for Karnaugh Map 2 is assigning the 0101
spot to one boolean value, and assigning the rest of the spots to the
other value. If 0101 is assigned 0, then the OFF SET requires the sin-
gle term (NOT F)(NOT D)} and the ON SET requires the terms F and D, If

0101 is assigned 1, then the ON SET requires the single term EG and the
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ON SET Requires the terms (NOT E) and (NOT G). Depending on the com-
plexity of the THEN and ELSE branches, one of the two choices can be
made. If the THEN branch is "heavier," we assign the spot to 1. If the
ELSE branch is "heavier," we assign the spot to 0. In any case, assign-

ing all zeros or all ones is probably non-optimal.

4.4 A PASCAL-LIKE LANGUAGE MODELS A HARDWARE DESIGN

During the course of this project, I wrote a version of the ISMC in PAS-
CAL-1like pseudo code, and subsequently in IDL. Also, our group under-
took an effort te translate my pseudo code into PASCAL for use in a
simunlator for our dataflow machine. In this section, I will discuss se-

veral points where the designs were dissimilar.

The IDL code tended to be non-reentrant. When copying code to a similar
section of the design, extreme caution had to be used in changing all
references to state (labels). The PASCAL did not suffer from this prob-

lem, and it is not inherent in the hardware.

PASCAL data structures could not be used to directly model the hardware,
that is, without loosing the advantages of having the data structure in
the first place. When a VARIANT-RECORD is used in PASCAL, there is im-
plied storage (to discriminate the cases). The very bits which are be-
yond our control are the most critical ones. Those are the bits by
which decisions are to be made. We must have close control over them or
know that the compiler will do a particularly good job in dealing with

them.
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The PASCAL code does not have any sense of time (other than sequences).
This issue is of particular concern in IDL as it must be in any hardware
design system. As a direct result of this problem there was no way to

express the idea of a hard reset in PASCAL.

Many important details (from the hardware point of view) were glossed
over in PASCAL. One of these issues involve passing tokens to the sys-
tem, and transferring valﬁ;s within it. When we say x:=y in software,
no one asks how the value travels. The details of value transferal can-

not be ignored in hardware.
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A.0 HIGH LEVEL CODE

% Memcry Operations

F2 52 39 20 30 B0 5@ Q20 3R a0

2 32 32 22 22 32 39 39 3R 30 2@ 3¢ 3O 30

Normal Operations;:

*store-t-fix (i: address, t: data-type, data: <0..119>)
store one, two, three, or four words
depending on t
store type information in first word

*store-t-var (i: address, t: data-type, data: <0..119>)
store one word
use invisible pointer if necessary
store type information in first word

*store-u-fix (i: address, data: <0..119>)
store one, two, three, or four words
depending on type
don't store type information

#fetch-type-stored (i: address, dest: destination)
follows *store-t-var
or *store-t-fix
fetch as indicated by stored type

*fetch-notype-stored (i: address, t: data-type,
dest: destination)
follows *store-u-fix
fetch as indicated by t

*allocate (base: address, blocks <0..7>, element-size: <0.

allocates blocks element-sized words
starting at address base

*clear (base: address, block-size <0..11>)
clears blocksize words
starting at address base

*reset (i: address)
used to recover from the error state.
if the ith word has an error status, the status
is changed to it's previous value.

.3>)

if the ith word doesn't has an error status, the status

is changed to error.

*allocate-free-space (base: address, cells: <0..15>)
adds "cells" cells to the free list from the
contiguous unallocated block beginning at base
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Service Operations:

*read-absolute (i: address, dest: destination)
read the status and data memories directly
perform no type checking

*write-absolute (i: address, data: <0..35>)
write the status and data memories directly
perform no type checking

#initialize (boundary: address, warning: <0..15>)
set the boundary between the data section and
the free list section to boundary. initialize
the data section as unallocated, and set up a
free list in the free list section. ignore the
status or value of any word. this operation
clears the entire memory.

*load-error-destination (dest: destination)
sets the error destination to dest

*get-free-size (dest: destination)
sends the size of the free list to dest
(actually, the quantity sent is offset from
the true size by the amount specified when
the memory was last initialized)
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% Internal I-Structure Controller side-effects (operations):

read (i: address)
returns (word)

reads the internal status and data memories
and returns the contents at address i.
write (i: address, status: <0..3>, data: <0..31> )
stores status in the status memory at location 1.
stores data in the data memory at location i.
output-token (dest: destination, data: <0..??> )

forms a token consisting of a destination and typed data
the data may be of length 0 to 16 bytes (including type).

¢ 59 3% 59 3¢ 2R 59 32 32 59 22 3% 3R B¢ 22 Q22 3¢

%

%

% resubmit-token ()

%

% forms a token consisting of the one currently being operated
% on and dumps it back into the communication network.
%

%

% signal (error: error,

% address: address,

% status: status)

%

% indicates that an exceptional condition has

% occurred. each operation signals a subset of

% the possible errors. see the source code

% for details concerning a particular operation.

% error~destination and pe-number are not arguments

% since they are always found in the same place.
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% Organization of Memory

i-structure-memory = RECORD
[i-store: i-store,
free-list: free-cells]

i-store = array [i-element]

free-cells = array [free-cell]
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i-element = MULTITYPE TAGGED ON status.type

[not-allocated: <0, .31>, % not allocated

empty-nowait: <0..31>, % empty, no defers

typed-data: typed-value, % typed data present
untyped-data: untyped-value, % untyped data present

middle: untyped-value, % middle of an element
invisible: indirect-pointer, % invisible pointer
type-deferred: untyped-defer, % *fetch-type-stored deferred
notype-deferred: typed-defer)] % *fetch-notype-stored deferred

status = RECORD
[error: (occurred => 1, none => 0),
type:
(not-allocated => 000, % not allocated
empty-nowait => 001, % empty, no defers

typed-data => 010, % typed data present
untyped-data => 011, % untyped data present
middle => 100, % middle of an element
invisible => 101, % invisible pointer

untyped-defer => 110, % *fetch-type-stored deferred
typed-defer => 111)] % *fetch-notype-stored deferred

% If the following enumerations of status do not

% differ in more than one bit, a more minimal

% controller is likely to emerge. Other such pairs

% probably exist, but they are not ocbvicus at this point.
% typed-data and untyped-data
% type-deferred and notype-deferred

typed~value = RECORD
[type: data-type, % data type
value: <8..31>] % data value

untyped-value = <0..31> % data value

indirect-pointer = RECORD
[type: data-type, % type associated with object pointed to
value: <0..7>, % first byte of data
pointer: address] % pointer to a data-cell or data-link

untyped-defer = RECORD
[unused: <0..15>,
pointer: address] % pointer to a data-cell

typed-defer = RECORD
[type: data-type, % type associated with object pointed to
unused: <0..7>,
pointer: address] % pointer to a data-cell
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free~-cell = MULTITYPE

[free-link,

deferred-link,

data-cell,
data-link]

%
%
%
%

link of the free list

link in a deferred read list

data
data and link to more data

free-link = RECORD % link of a free list

[status0: <0..3>,

statusl: list-status,
not-used: <0..47>,
pointer:; address]

list-status =

{not~last => ---0,

% not used

% indicates list position
% not used

% pointer to next cell

% not the last free-cell in a list

last => -=--1) % last free-cell in a list
% not-last and last are defined loosely so
% that a coder can play all sorts of tricks
% if he already knows that the status field
% satisfies the given constraints

deferred-1link = RECORD

% link in a deferred read list

% indicates list position
% destination of deferred read

[status0: <0..3>, % not-used
statusl: list-status,
destination: destination,

pointer: address]

% pointer to mnext link

% list position is indicated in the same word as pointer
% information as we need both to cdr down the list

data-cell = RECORD
[status: <0,.7>,
value: <0..63>]

data-link = RECORD
[status: <0..7>,
value: <0..47>,
pointer: address]

% 8 bytes of data
% status field is not used

% data value

% 6 bytes of data and a link to more data
% status field is not used

% data value

% pointer to more data
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address = <0..15> % address pointer

destination = <0..47> % destination

data-type = RECORD [length: <0..3>, class: <&4..7>]

blank = (unused-space => 33 HEX) % distinguished pattern 00110011
mini-blank = (unused-space => 3 HEX) % distinguished pattern 0011

blank-peinter = (unused-space => 3333 HEX)
% distinguished pattern 0011001100110011

data-element = <0..31>

word = RECORD [status: status,
value: data-element]

error =
(store-t-fix-error => 0 HEX,
store-t-var-error => 1 HEX,
store-u-fix-error => 2 HEX,
fetch-type-stored-error => 3 HEX,
fetch-notype-stored-error => 4 HEX,
allocate-error => 5 HEX,
clear-error => 6 HEX,
reset-error - => 7 HEX,
allocate-free-space-error => § HEX,
data-too-large => 9 HEX,
free-list-overflow => A HEX,
free-list-low => B HEX,
length-error => C HEX,
deferred-type-collision => D HEX)

% errors 0-8 should be enumerated in the same way as opcodes
% are assigned to the corresponding operations.

% the savings does not show up in this document;

% it appears at a lower level.
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System Variables

rtop : address % points to the top of the free list

bound : address % points to first word in the free-list section

% except those sections of the free list which
% came about from *allocate-free-space.

error-destination : destination % destination to send all errors

free-size : <0..15> % (size of the free list) - (warning size)
% when free-size reaches zero, a warning
% is sent to the error destination.
% if the free list is actually empty when
% free size hits zero, an error is sent.
% a warning may or may not be sent.

free-list-status: {(cells-remain => 0,
list-empty => 1)
% it may be most efficient to assure that free-list-status
% agrees with the last bit of list-status
pe-number : <0..9> % this PE's number (hard-wired somewhere)

rtemp0 : address Y% temporary register for address manipulation

rtempl : address % temporary register for address manipulation
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A.1 *STORE-T-FIX OPERATION

*store-t-fix (i: address, t: data-type, data: <0..119>)
% data-too-large
% store-t-fix-error

% store one, two, three, or four words
% depending on t
% store type information

r0: i-element <- read (i)

IF rO0.status.error = none
THEN TAGCASE ON r0.status.type

= empty-nowait % not present, no reads deferred
% store the data

write (i, % write the first word
present, % status
t, % save type information
data[0..23] ) % first 3 bytes of data

IF t.length > 3
THEN % check if the next word was properly allocated
stat: status <- (read (i+1))[0..3]
IF stat # middle
THEN signal (data-too-large % type of error
i, % address
empty-nowait) % status at this word
write (i, [['l',empty-nowait] % new error
r0.value]) % status, retain value
ELSE
write (i+1,
middle, % status
data[24..55] ) % 4th - 7th bytes of data
IF t.length > 7
THEN % check if the next word was properly allocated
stat: status <- (read (i+2))]0..3]
IF stat # middle
THEN signal (data-too-large % type of error
i, % address
empty-nowait) % status at this word

write (i, [['l',empty-nowait] % error status

r0.value]) % retain value
ELSE

write (i+2,
middle, % status
data[56..87} ) % 8th - 11th bytes
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IF t.length > 11
THEN % check if next word properly allocated
stat: status <- (read (i+3))[0..3]
IF stat # middle
THEN
signal (data-too-large % err type
i, % address
empty-nowait)} % status here
write (i, [['1l',empty-nowait] % err stat
r0.value]) % retain value

ELSE
write (i+3,

middle, % status
data[88..119] ) % 12th - 15th

END-IF

END-IF
END-IF
END-IF
END-IF
END-IF

= type-deferred % not present, *fetch-type-stored deferred
% send a token to each deferred destination
% return links to the free list
% store the data starting at locatiom i
rtemp0 <- r0.pointer

UNTIL stat: list-status = last
% fetch the next destination
rl: data-element <- (read (rtemp0))[4..35]
(stat, r2: data-element) <- read (1+rtemp0)
% send the data to it's destination

output-token (rl, % 4 bytes of destination
r2{0..15], % 5th & 6th bytes of destination
t, % type carried on value
data)

% return this link to the free list
% the following test only needs to be made
% on the first time through the UNTIL
IF free-list-status = cells-remain
THEN write (l+rtempO,

not-last, % status
[blank, blank, % this field left blank
rtop] ) % pointer to old top
ELSE write (l+rtempO,
last, % status
[blank, blank, % this field left blank

blank-pointer} ) % no pointer needed
free-list-status <- cells-remain
ENDIF
rtop <- rtempQ
free-size <- free-size + 1
rtemp0 <- r2 [16..31]
END-UNTIL
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% now store the data

write (i, . % write the first word
present, % status
t, % save type information

data[0..23] ) % first 3 bytes of data
IF t.length > 3
THEN % check if the next word was properly allocated
stat: status <- (read (i+1))[0..3]
IF stat # middle
THEN signal (data-too-large % type of error
i, % address
type-deferred) % status at this word
write (i, [['l',type-deferred] % new error

r0.value]) % status, retain value
ELSE
write (i+1,
middle, % status
data[24..55] ) % 4th - 7th bytes of data
END-IF

END-IF
IF t.length > 7
THEN % check if the next word was properly allocated
stat: status <- (read (i+2))[0..3]
IF stat # middle
THEN signal (data-too-large % type of error
i, % address
-type-deferred) % status at this word
write (i, {['1l',type-deferred] % new error

r0.value]) % status, retain value
ELSE
write (i+2,
middie, % status
data{56..87] ) % 8th - 11th bytes of data
END-IF

END-IF
IF t.length > 11
THEN % check if the next word was properly allocated
stat: status <- (read (i+3))[0..3]
IF stat # middle
THEN signal (data-too-large % type of error
i, % address
type-deferred) % status at this word
write (i, [['1",type-deferred] % new error

r0.value]) % status, retain value
ELSE
write (i+43,
middle, % status
data([88..119] ) % 12th - 15th bytes of data
END-IF

END-IF
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OTHERWISE % signal an error
signal (store-t-fix-error, % type of error

i, % address
rD.status) % status at this word
write (i, [['1',r0.status.type] % new error status
r0.value]) % retain value

END-TAGCASE

ELSE % an error has already occurred at this location
signal {store-t-fix-error, % type of error
i, % address
r0.status) % status at this word

END-IF +
END *store-t-fix
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A.2 *STORE-T-VAR OPERATION

*store-t-var (i: address, t: data-type, data: <0..119>)
% error signals:
% free-list-overflow
% free-list-low

% store-t-var-error
% store one word
% use invisible pointer if necessary
% store type information in word

r0: i-element <- read (i)

IF r0.status.error = none
THEN TAGCASE ON rO.status.type
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empty-nowait % not present, no reads deferred
% store the data
IF t.length < 3

THEN
write (i, % store the data in place
present, % status
t, % type
data[0..23] ) % data
ELSE

% put the data in the free list
IF free-list-status = list-empty

THEN
signal (free-list-overflow, % type of error
blank-pointer, % this information
mini-blank) % is not necessary
resubmit-token () '
ELSE
write (4, % point to data-cell
invisible-pointer % status
[t, % save type informatiom
dataf0..7], % first byte of data
rtop] ) % invisible pointer
% store next 4 bytes of data in free list
write ( rtop, % store data in free list
mini-blank, % status not used

data[8..39] ) % 4 bytes of data
% save a pointer to the rest of the list
(stat: list-status, rtempd)
<- (read (l+rtop)) [0..3,20..35]
IF stat0 = last
THEN free-list-status <- list-empty
ENDIF
free-size <- free-size -~ 1
IF free-size = 0
THEN signal (free-list-low, % type of error
blank-pointer, % these fields
mini-blank) % not used .
END-IF
IF t.length < 9
THEN % the data will fit with only one free cell
write (l+rtop, % store data in second half
mini-blank, % status not used
data[40..71] ) % 6th - 9th bytes
rtop <- rtemp0 % cdr down the list
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% IF t.length € 9 continued
ELSE % another free cell is required
IF stat = last % the free list is empty
THEN % the list hasn't been cdr'd so it doesn't
% need restoration; simply erase all trace
% of the token at leocation i
write (i, % restore location i
empty-nowait, % status
[blank, blank, % data field
blank, blank} ) % blanked out
free-size <- free-size + 1
signal (free-list-overflow, % type of error
blank-pointer, % this information
mini-blank) % 1s not necessary
resubmit-token ()
ELSE % store the rest of the data
% store 2 more bytes and a pointer

write (l+rtop, % store the data
mini-blank, % status not used
data[40..55], % 6th - 7th bytes
rtemp0 ) % 6th - 7th bytes

% store the next four bytes in second free cell

write (rtempO, % store the data
mini-blank, % status not used

data[56..87] ) % 8th - 1lth bytes
% get the new top of the free list
(stat0: list-status, rtop)
<- (read (l+rtemp0)){0..3,20..35]
IF stat0 = last
THEN free-list-status <- list-empty
ENDIF
free-size <- free-size - 1
IF free-size = 0
THEN signal (free-list-low, % error type
blank-pointer, % these fields
mini-blank) % not used
END-IF
IF t.length £ 11
THEN % the data is already written
ELSE % we must write the last word

write (l+rtempQ, % store the data
mini-blank, % status not used
data[8B8..119] ) % 12th - 15th bytes
ENDIF
ENDIF
ENDIF
END-IF

END-IF
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[ 4

= type-deferred % not present, *fetch-type-stored deferred

% send a token to each deferred destination

% return links to the free list

% store the data using a free cell if necessary
rtemp0 <- r0.peointer

UNTIL stat: list-status = last
% fetch the next destination
rl: data-element <= (read (rtempQ)) [&..35]
(stat, r2: data-element) <- read (l+rtemp0)
% send the data to it's destination
output-token (rl, % 4 bytes of destination

t,
data)

% type carried on value

% return this link to the free list
% the following test only needs to be made
% on the first time through the UNTIL
IF free-list-status = cells-remain
THEN write (l+rtempO,

not-last, % status
fblank, blank, % this field left blank
rtop} ) % pointer to old top
ELSE write (l4rtemp0,
last, % status
fblank, blank, % this field left blank

blank-pointer] ) % no pointer needed
free-list-status <- cells-remain
ENDIF
rtop <- rtempO
free-size <- free-size + 1
rtemp0 <- r2 [16..31]
END-UNTIL

r2[0..15], % 5th & 6th bytes of destination
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% now store the data
% if the data is £ 3 bytes, store directly
IF t.length € 3
THEN write (i, % store the data in place
present, % status
t, % type
data{0..23] ) % data
ELSE % we need at least 1 free-cell (must exist)
% put a byte in place and point
% to the rest of the data

write (i, % point to the top free-cell
invisible-pointer % status
[t, % save type information
data[0..7], % first byte of data
rtop] ) % invisible pointer
% now store 4 bytes in free cell
write (rtop, % store in the free-cell
mini-blank, % status

data [8..39] ) % 2nd - 5th bytes
% obtain cdr information
(stat: list-status, rtemp0)
<- read (l+rtop) [0..3,20..35)]
IF stat = last
THEN free-list-status <- list-empty
ENDIF
IF t.length £ 5
THEN % the data is written, pop the free list
rtop <- rtemp0
ELSEIF t.length £ 9
THEN % the data fits in the second word
write ( l+rtop, % store the 1lst word
mini-blank, % status not used
data{40..71] ) % 6th - 9th bytes of data
% pop the free list
rtop <- rtemp0
free-list-size <- free-list-size - 1
IF free-size = 0
THEN signal (free-list-low, % type of error
blank-pointer, % these fields
mini-blank) % not used
END-IF
END-ELSE-IF



ELSE % we need another free cell
IF free-list-status = cells-remain
THEN % store a couple of bytes and a pointer

write (l+rtop, % store in the free-cell
mini-blank, % status
data [40..55], % 6th - 7th bytes
rtemp0 ) % pointer to rest of data
% store & more bytes in next free cell
write (rtempO, % store in the free-cell
mini-blank, % status

data [56..87] ) % 8th - 11th bytes
% obtain cdr information
(stat: list-status, rtemp0)
<~ read (l+rtop) [0..3,20..35]
IF stat = last
THEN free-list-status <- list-empty
ENDIF
IF t.length < 11

THEN % the data is written, pop the free list
rtop <- rtempl

ELSE % write the final word
write (l+rtempQ, % store in free-cell

mini-blank, % status
data [B8..119] ) % 12th - 15th bytes

% pop the free list
rtop <- rtemp0

END-IF

“free-size <- free-size - 1
IF free-size = 0
THEN signal (free-list-low, % type of error
blank-pointer, % these fields
mini-blank) % not used
END-IF
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ELSE % we must undo the operation

% get the pointer to the free cell we must replace

rtemp0 <- read (i) [20..35]

% restore location i .

write (i, % restore location i
empty-waiting, % status
[plank, blank, % data field
blank, blank] ) % left blank

% cons the free cell back into the free list

write (l+rtempO, % top cell of free list
last, % last cell in list
[blank, blank, % this slot left blank
rtop] ) % pointer to old top

rtop <- rtemp0
free-list-status <~ cells-remain
signal (free-list-overflow, % type of error

blank-pointer, % this information
mini-blank) % is not necessary
. resubmit-token ()
END-IF
END-IF

END-IF
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OTHERWISE % signal an error
signal (store-t-var-error, % type of error

i, % address
r{.status) % status at this word
write (i, [['1',r0O.status.type] % new error status
r0.value]) % retain value

END-TAGCASE

ELSE % an error has already occurred at this location
signal (store-t-var-error, % type of error
i, % address
r0.status) % status at this word
END-IF

END #store-t-var
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A.3 *STORE-U-FIX OPERATION

*store-u-fix (i: address, t: data-type, data: <0..119>)
% error signals:
% data-too-large
% store-u-fix-error

% store one, two, three, or four words
% depending on type
% don't store type information

r0: i-element <=~ read (i)

IF rO.status.error = none
THEN TAGCASE ON rO.status.type

= empty-nowait % not present, no reads deferred
% store the data
write (i, % write the first word
present, % status
data[0..31} ) % first 4 bytes of data
IF t.length > &
THEN % check if the next word was properly allocated
stat: status <- (read (i+1))[0..3]
IF stat # middle
THEN signal (data-too-large % type of error
i, % address
empty-nowait) % status at this word
write (i, [['1l',empty-nowait] % new error status
r0.value]) % retain value
ELSE
write (i+1,
middle, % status
data[32..63] ) % 5th - 8th bytes of data
IF t.length > B
THEN % check if the next word was properly allocated
stat: status <- (read (i+2))[0..3]
IF stat # middle
THEN
signal (data-too-large % type of error
i, % address
empty-nowait) % status at this word
write (i, [['1l',empty-nowiat] % new error status
r0.value]) % retain value
ELSE
write (i+2,
middle, % status
data[64..95] ) % 9th - 12th bytes
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IF t.length > 12
THEN % check if next word properly allocated
stat:; status <- (read (i+3))[0..3]
IF stat # middle
THEN
signal (data-too-large % err type
i, % address
empty-nowait) % status here
write (i, [['1',empty-nowiat] % err stat

r0.valuel) % retain value
ELSE '
write (i+3,
middie, % status
- [data[96..119], % 13th - 15th bytes
blank] )
END-IF
END-TF
END-IF
END-IF
END-IF
END-IF

= notype-deferred % not present, *fetch-notype-stored deferred
% send a token to each deferred destination

% return links to the free list

% store the data starting at location i

rtemp0 <- rO0.pointer

UNTIL stat: list-status = last

% fetch the next destination
rl: data-element <~ (read (rtemp0))[4..35]
(stat, r2: data-element) <- read (l+rtemp0)

% send the data to it's destination

output-token (rl, % 4 bytes of destination
r2[0..15], % 5th & 6th bytes of destination
r0.type, % type carried on fetch
data)

% return this link to the free list
% the following test only needs to be made
% on the first time through the UNTIL
IF free-list-status = cells-remain
THEN write (l+rtemp0,

not-last, % status
[blank, blank, % this field left blank
top] ) % pointer to old top
ELSE write (l+rtemp0,
last, % status
[blank, blank, % this field left blank

blank-pointer] } % no peinter needed
free-list-status <- cells-remain
ENDIF
rtop <- rtemp0
free-size <- free-size + 1
rtemp0 <- r2 [16..31}
END-UNTIL
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% now store the data
write (i, . % write the first word
present, % status
data[0..31] ) % first 4 bytes of data
IF t.length > 4
THEN % check if the next word was properly allocated
stat: status <- (read (i+1))[0..3]
IF stat # middle
THEN signal (data-too-large % type of error
i, % address
notype-deferred) % status at this word
write (i, [['1',notype-deferred] % error status

r0.value]) % retain value
ELSE

write (i+l,
middle, % status
data[32..63] ) % 5th - 8th bytes of data
IF t.length > 8
THEN % check if the next word was properly allocated
stat: status <- (read (i+2)){0..3]
IF stat # middle
THEN
signal (data-too-large % type of error
i, % address
notype-deferred) % status here
write (i, [['1l',notype-deferred] % error status

r0.value]) % retain value
ELSE

write (i+2,
middle, % status
dataf[64..95] ) % 9th - 12th bytes
IF t.length > 12
THEN % check if next word properly allocated
stat: status <- (read (i+3))[0..3]
IF stat # middle
THEN
signal (data-too-large % err type
i, % address
notype-deferred) % status here
write (i, [['1l',notype-deferred]
r0.value]) '
% set error status and retain value

ELSE
write (i+3,
middle, % status
[data[96..119]}, % 13th - 15th bytes
blank] )

END-IF

END-IF
END-IF
END-IF
END-IF
END-IF
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OTHERWISE % signal an error
signal (store-u-fix-error, % type of error

i, % address
r0.status) % status at this word
write (i, [['1',r0.status.type] % new error status
rd.value]) % retain value

END-TAGCASE

ELSE % an error has already occurred at this location
signal (store-u-fix-error, % type of error
i, % address
r0.status) % status at this word
END-IF

END #store-u-fix
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A.4 *FETCH-TYPE-STORED QPERATION

*fetch-type-stored (i: address, dest: destination)
% error signals:
% length-error
% free-list-overflow
% free-list-low
% fetch-type-stored-error

follows *store-t-var
or *store-t-fix
fetch as indicated by stored type

32 2 2t

r0: i-element <- read (i)

IF r0.status.error = none
THEN TAGCASE ON rO.status.type

= empty-nowait % not present, no reads deferred
% establish a deferred read list:
IF free-list-status = list-empty

THEN
signal (free-list-overflow, % type of error
blank-pointer, % this information
mini-blank) % is not necessary

resubmit-token ()-
ELSE % defer the fetch

write (i, % point to the new link
untyped-pointer, % status
[blank, % type is not saved
blank, % left blamk
rtop] ) % pointer
% put destination in a link
write (rtop, % put first part of destination
mini-blank, % status

dest[0..31] ) % & bytes of destination
% save the pointer to this deferred link
rtemp0 <- rtop % this value actually remains in the MAR
{stat: status, rtop) % pop the free list
<- (read(rtop+1))[0..3,20..35]

write (l+rtempO, % put second part of destination
last, % status field not used
[dest[32..47], % 5th & 6th bytes of destination

blank-pointer] } % old deferred list pointer
IF stat® = last
THEN free-list-status <- list-empty
ENDIF
free-size <- free-size - 1
IF free-size = 0
THEN signal (free-list-low, % type of error
blank-peinter, % address
mini-blank) % status at this word
END-IF
END-IF
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typed-data % typed data has been written
IF r0.type.length £ 3
THEN output-token (dest, r0.type, r0O.value)
ELSE % read ancther word
rl: word <- read (i+l)}
IF rl.status # middle
THEN signal (length-error, % type of error
fa

i, address
typed-data) % status at this word
write (i, [['1',typed-data] % new error status
r0.value]) % retain value

ELSE % check if data is formed
IF r0.type.length € 7
THEN output-token (dest, t, r0.type,
r0.value, rl.value)
% r0 includes type
ELSE % read another word
r2: word <- read (i+2)
IF r2.status #¥ middle
THEN signal (length-error, % type of error

i, % address
typed-data) % status at this word
write (i, [['1l',typed-data] % error status
r0.value]) % retain value

ELSE % check if data is formed

IF r0.type.length £ 11
THEN output-token (dest, rO.type, rC.value,
rl.value, r2.value)

ELSE % the data reguires four words to store
r3: word <- read (i+3)
IF r3.status ¥ middle
THEN signal
(length-error,% type of error
i, % address
typed-data) % status at this word
write (i, [['1',typed-data]
r0.value])
% new error status, retain value

ELSE output-token (dest, r0.type,
r0.value, rl.value,

r3.value)
END-IF
END-IF
END-IF
END-IF
END-IF
END-IF
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= invisible % present, invisible pointer
% fetch data from the free list
rl : untyped-value <- (read (r0.pointer))[&..35]
IF r0.type.length £ 5

THEN output-token (dest, r0.type, r0.value, rl)
ELSE % read another word
r2 : data-element <- (read (l+r0.pointer))[4..35]
% check if the indirect store required only one free cell
IF rO.type.length £ 9
THEN output-token (dest, r0.type, r0.value,
rl, r2)
ELSE % get .data from next cell
r3: data-element <- (read (r2[16..31])){4..35]
IF r0.type.length £ 11
THEN output-token (dest, rQ.type, r0.value,
rl, r2[0..15], r3)
ELSE % fetch the last word
r4: data-element <- (read (1+r2[16..31]))[4..35]
output-token (dest, r0.type, r0.value,

rl, r2[0..15], r3, r&4)
END-IF
END-IF

END-IF
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= type-deferred % not present, *fetch-type-stored deferred
% add to the deferred read list
IF free-list-status = list-empty
THEN signal (free-list-overflow, % type of error
blank-pointer, % address
mini-blank) % status at this word
resubmit-token ()}
ELSE % point to the new link

write (4, % point to the new link
type-deferred, % status
[blank, % first byte left blank
blank, % second byte left blank
rtop] ) % pointer
% put destination in a link
write (rteop, % put first part of destination
mini-blank % status

dest[0..31] } % 4 bytes of destination
% save the pointer to this deferred link
rtemp0 <- rtop % this value actually remains in the MAR
(stat: status, rtop) % pop the free list
<- (read(rtop+1))[0..3,20..35]
write (l+rtempO, % put second part of destination
not-last, % status field not used
[dest{32..47], % 5th & 6th bytes of destination
r0.pointer] )} % old deferred list pointer
IF stat0 = last
THEN free-list-status <- list-empty
ENDIF
free-size <- free-size -~ 1
IF free-size = 0
THEN signal (free-list-low, % type of error
blank-pointer, % address
mini-blank) % status at this word
END-IF
ENDIF

OTHERWISE % signal an error
signal (fetch-type-stored-error, % type of error

i, % address
r0.status) % status at this word
write (i, [['1',r0.status.type] % new error status
r0.value]) % retain value

END-TAGCASE

ELSE % an error has already occurred at this location
signal (fetch-type-stored-error, % type of error
i, % address
r0.status) % status at this word
END-IF

END *fetch-type-stored



A.5 *FETCH-NOTYPE-STORED

*fetch-notype-stored (i: address, t: data-type, dest: destination)
% error signals:
% deferred-type-collision
% length-error
% free-list-overflow
% free-list-low

% fetch-notype-stored-error

% follows *store-u-fix
% fetch as indicated by t

r0: i-element <~ read (i)

IF rG.status.error = none
THEN TAGCASE ON rO.status.type

= empty-nowait % not present, no reads deferred
% establish a deferred read list:
IF free-list-status = list-empty

THEN
signal (free-list-overflow, % type of error
blank-pointer, % this information
mini-blank) % is not necessary

resubmit-token () -
ELSE % defer the fetch

write (4, % point to the new link
typed-pointer, % status
[t, % type is saved

. blank, % left blank

rtop] ) % pointer

% put destination in a link

write (rtop, % put first part of destination
mini-blank, % status

dest[0..31] ) % 4 bytes of destination
% save the pointer to this deferred link
rtemp0 <- rtop % this value actually remains in the MAR
(stat: status, rtop) % pop the free list
<- (read(rtop+1)){0..3,20..35] :
write (1+rtemp0, % put second part of destination

last, % status field not used
[dest[32..47], % 5th & 6th bytes of destination

blank-pointer] ) % no old pointer exists
IF stat0 = last
THEN free-list-status <- list-empty
ENDIF
free-size <- free-size - 1
IF free-size = 0
THEN signal (free-list-low, % type of error
blank-pointer, % address
mini-blank) % status not needed
END-IF
END-IF

39



untyped-data % untyped data has been written
IF t.type.length £ 4
- THEN output-token (dest, t, rO0.value)
ELSE % read another word
rl: word <- read (i+1)
IF rl.status # middle
THEN signal (length-error, % type of error
i, % address
untyped-data) % status at this word
write (i, [['1',untyped-data] % new error status
r0.value]) % retain value
ELSE % check if data is formed
IF r0.type.length £ 8
THEN output-token (dest, t, r0.value, rl.value)
ELSE % read another word
r2;: word <- read (i+2)
IF r2.status # middle
THEN signal (length-error, % type of error
i, % address
untyped-data) % status at this word
write (i, [['1',untyped-data] % err status
r0.value]) % & retain
ELSE % check if data is formed
IF rO0.type.length £ 12
" THEN output-token (dest, t, r0.value,
ri.value, r2.value)
ELSE % the data requires four words to store
r3: word <- read (i+3)
IF r3.status # middle

THEN signal
(length-error, % type of error
i, % address

untyped-data) % status at word
write (i, [['1l',untyped-datal,
r0.value])
% error stauts, retain value
ELSE ocutput-token (dest, t, r0.value,
rl.value, r2.value,
r3.valuef0..23])
END-IF
END-IF
END-IF
END-IF
END-IF
END-IF
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= notype-deferred % not present, *fetch-notype-stored deferred
% add to the deferred read list
% first check if the previously deferred fetches
% carried the same type information
IF rO.type # t
THEN signal (deferred-type-collision) % type of error
i, % address
notype-deferred) % status at this word
write (i, [['1',notype-deferred] % new error status
r0.value]) % retain value
ELSE % point to the new link
write (i, % point to the new link
notype-deferred, % status
ft, - % type saved here
blank, % second byte left blank
rtop] ) % pointer
% put destination in a link
write (rtop, % put first part of destination
mini-blank, % status
dest[0..31] ) % 4 bytes of destination
% save the pointer to this deferred link
rtemp0 <~ rtop % this value actually remains in the MAR
(stat: status, rtop) % pop the free list
<- (read(rtop+1))[0..3,20..35]
write (l+rtempO, % put second part of destination
not-last, % status field not used
[dest{32..47], % 5th & 6th bytes of destination
r0.pointer] ) % old deferred list pointer
IF stat0 = last
THEN free-list-status <- list-empty
ENDIF
free-size <- free-size - 1
IF free-size = 0
THEN signal (free-list-low, % type of error
blank-pointer, % these fields
mini-blank} % not used
END-IF
ENDIF

OTHERWISE % signal an error
signal (fetch-notype-stored-error, % type of error

i, % address
r0.status) % status at this word
write (i, [['1',r0O.status.typel % new error status
r0.value}) % retain value
END-TAGCASE

ELSE % an error has already occurred at this lecation
signal (fetch-notype-stored-error, % type of error
i, % address
r0.status) % status at this word
END-IF

END *fetch-notype-stored
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A.6 *ALLOCATE OPERATION

#allocate (base: address, blocks <0..7>, element-size: <0..1>)
o7

% error signals:
% allocate=-error

% allocates blocks element-sized words
% starting at address base.

FOR i: INTEGER <- 0 TO (blocks - 1) BY 1 DO
r0: i-element <- read (baseti(element-size))
IF r0.status.error = none
THEN TAGCASE ON rO-.status.type
= not-allocated % not allocated
write (base+i, % set status bits to allocated

empty-nowait, % status
[blank,blank, % data field blanked out

blank,blank]
OTHERWISE % signal an error
signal (allocate-error, % type of error
base+i, % address
r0.status) % status at this word
write (i, [['1',r0.status.type] % new error status
r0.value}) % retain value

END-TAGCASE
ELSE % an error has already occurred at this location

signal (allocate-error, % type of error
base+i, % address
r0.status) % status at this word
END-IF

FOR j: INTEGER <- 1 TO (element-size - 1) BY 1 DO
r0: i-element <- read (base+i(element-size)+j)
IF rO0.status.error = none
THEN TAGCASE ON rO.status.type
= not-allocated % not allocated
write (base+j, % set status bits to middle
middle, % status
[blank,blank, % data field blanked out
blank,blank] )
OTHERWISE % signal an error

signal (allecate-error, % type of error
base+j, % address
r0.status) % status at this word
write (base+j, [{'l',r0.status.type] % new error status
r0.value]) % retain value

END-TAGCASE

ELSE % an error has already occurred at this location
signal (allocate-error, % type of error

base+j, % address
r0.status) % status at this word
END-IF
END-FOR
END-FOR

END *allocate
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A.7 *CLEAR OPERATIGN

%*clear (base: address, blocksize: <0..9>)
% error signals:
% clear-error

% clears blocksize words
% starting at address base.

FOR j: INTEGER <- 0 TO (block-size - 1) BY 1 DO

r0: i-element <- read.(base + })
IF r0.status.error = none
THEN TAGCASE ON rO.status.type

write (basetj,
not-allocated, % status

[blank, blank, % data field blanked

blank, blank] )

= typed-data % typed data is present
% set status bits to

write (baset+j,
not-allocated, % status

{blank, blank, % data field blanked

blank, blank] )

= untyped-data % untyped data is present
% set status bits to

write (baset),
not-allocated, % status

[blank, blank, % data field blanked

blank, blank] )

= middle % middle of an element
write (basetj,
not-allocated, % status

[blank, blank, % data field blanked

blank, blank] )

% set status bits to

empty-nowait % not present, no reads deferred
% set status bits to allocated

out

allocated

out

allocated

out

allocated

out
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= invisible % present, invisible pointer
% return cells to the free list RPLACA style
rtempd <- rtop
rtop <- rO0.pointer % set the new top
IF rO0.type.length £ 9 7% determine size of chain
THEN % omne cell in chain
IF free-list-status = cells-remain

THEN write (l+rtop, % REPLACA !1!
not-last, % status
[blank, blank, % this field left blank
rtemp0] ) % pointer to old top
ELSE write (l+rtop, % REPLACA
last, % status
[blank, blank, % this field left blank

blank-pointer} } % no pointer needed

free-list-status <- cells-remain
ENDIF
ELSE % two cells in chain
% get pointer to next cell
rtempl <- (read (l+rtop)) {20..35]
% write list status in first cell
write (l+rtop,

not-last, % status
[blank,blank, % this field left blank
rtempl] ) % pointer to next cell

% write list status in second cell
IF free-list-status = cells-remain

THEN write (l+rtempl, % REPLACA 1!
not-last, % status
[blank, blank, % this field left blank
rtemp0] ) % pointer to old top
ELSE write (l+rtempl, % REPLACA 11!
last, % status
f{blank, blank, % this field left blank

blank-pointer] ) % no pointer needed
free-list-status <- cells~-remain
ENDIF
free-list-status <- cells-remain

% now reset the status
write (base+j, % set status bits to allocated

clear, % status

fblank, blank, % data field blanked out

blank, blank] )

OTHERWISE % signal an error

signal (allocate-error, % type of error
base+j, % address
r0.status) % status at this word
write (base+j, [['1',r0.status.type] % new error status
r0.value]) % retain value
END-TAGCASE

104



ELSE
sign

END-IF
END-FOR
END #*clear

% an error has already occurred at this location

al (allocate-error, % type of error
base+j, % address
r0.status) % status at this word
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A.8 *RESET OPERATION

*reset (i: address)
% error signals:
% reset-error

% used to recover from the error state.

% if the ith word has an error status, the status

% is changed to it's previous value.

% if the ith word doesn't has an error status, the status
% is changed to error.

r0: i-element <- read (i)
IF rO0.status.error = occurred
THEN % an error has occurred at this location
write (base, [['0',r0O.status.type] % reset error bit

r0.valuel) % retain value
ELSE % we are trying to reset when no error has occurred
signal (reset-error, % type of error
i, % address
r0.status) % status at this word
write (base, [['1',r0.status.type] % set error bit
r0.value]) % retain value
END-IF
END *reset
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A.9 +*READ-ABSOLUTE OPERATION

*read-absolute (i: address, dest: destination)

% read the status and data memories directly
% perform no checking

output-token (dest, read (i})
END *read-absolute .
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A.10 “#WRITE-ABSOLUTE OPERATION

*yrite-absolute (i: address, data: <0..35>)

% write the status and data memories directly
% perform no checking

write (i, % write the data directly
data[0..3), % status
data[4..35], % data

END *write-absolute
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A.

11 +*INITIALIZE OPERATION

*initialize (boundary: address, warning: <0..15>)

% set the boundary between the data section and
% the free list section to boundary. initialize
% the data section to unallocated, and set up a
% free list in the free list section. Ignore the
% status or value at any word. this operation

% clears the entire memory.

% set the boundary register
bound <- boundary

% initialize the data section
FOR i: address <- 0 TO (bound-1) BY 1 DO
write (i, % initialize each word
empty-waiting, % status
[blank, blank, % data field left blank
blank, blank] )
END-FOR

% initialize the free list

% set up the tail of the list
rtemp0 <- bound

i: address <- bound + 1

write (4, % initialize each word
last, % status for end of list
[blank, blank, % this field not used

blank-pointer] } % no pointer here

% set up the middle elements of the list
UNTIL 4 = 0 DO
rtempl <- rtemp0 % save the pointer to the last cell
rtemp0 <- i % save the pointer to this cell
% note that only one extra is really necessary
% if we allow the MDR to hold information
i<-i+1

write (i, % initialize each word
not-last, % status
[blank, blank, % this field not used
rtempl] ) % pointer to next free-cell in list
i <- i+ 1 % point to next word
END-UNTIL

% store the top of the list
rtop <- rtempl

END #initialize
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A.12 *LOAD-ERROR-DESTINATION OPERATION

*)load-error-destination (dest: destination)
% sets the error destination to dest

error-destination <~ dest
END *load~error-destination
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A.13 *ALLOCATE-FREE-SPACE OPERATION

*allocate-free-space (base: address, cells: <0..15>)
% adds "cells" cells to the free list from the
% contiguous unallocated block beginning at base

r0: i-element <- read (base)
IF r0.status.error = none
THEN TAGCASE ON r0.status.type
= not-allocated % not allocated (already clear)
% check next cell
rl: i-element <- read (base+l)
IF rl.status.error = none
THEN TAGCASE ON rl.status.type
= not-allocated % not allocated (already clear)
% add to the free list
IF free-list-status = cells-remain
THEN write (base+1,

not-last, % status
[blank, blank, % this field left blank
rtop} J % pointer to old top
ELSE write (base+l,
last, % status
[blank, blank, % this field left blank

blank-pointer] ) % no pointer needed
free-list-status <- cells-remain
ENDIF
rtop <- base
OTHERWISE % signal an error
signal (allocate-free-space-error, % type of error

base+l, % address
r0.status) % status at this word
write (base, [['l',r0.status.type] % new error status
r0.value]) % retain value

END-TAGCASE
ELSE % an error has already occurred at this location
signal (allocate-free-space-error, % type of error
base+1, % address
r0.status % status at this word
END-IF
OTHERWISE % signal an error
signal (allocate-free-space-error, % type of error

base, % address
rQ.status) % status at this word
write (base, [['1l',rC.status.type] % new error status
r0.value]) % retain value

END-TAGCASE
ELSE % an error has already occurred at this location
signal (allocate-free-space-error, % type of error
base, % address

r0.status % status at this word
END-IF
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% set up middle elements for the rest of the list
i: address <- base + 2
IF i < base + cells
THEN % there are more cells tc add te the list
rtemp0 <- base
WHILE (i £ base + cells) DO
rQ: i-element <- read (i}
IF rO.status.error = none
THEN TAGCASE ON rO.status.type
= not-allocated % not allocated (already clear)
i<-1i+41
ri: i-element <- read (i)
IF rl.status.error = none
THEN TAGCASE ON rl.status.type
= not-allocated % not allocated (already clear)
rtempl <- rtemp0 % save a pointer to the last cell
rtempl <- i % save the pointer to this cell
% note that only one extra is realy necessary
% if we allow the MDR to hold informatiomn

write (i, % initialize each word
middle, % status
[blank, blank, % this field not used
rtempl] ) % pointer to next free-cell

i <- i+ 1 % point to next word
OTHERWISE % signal an error
signal (allocate-free-space-error, 9% type of error

base+i, % address
r0.status) % status
write (base+i, [['1l',r0.status.type] % error status
r0.value]) % retain value

END-TAGCASE
ELSE % an errcr has already occurred at this location
signal (allocate-free-space-error, % type of error
base+i, % address
r0.status % status
ERD-IF )
OTHERWISE 9% signal an error
signal (allocate-free-space-error, % type of error

base+i, % address
r0.status) % status at this word
write (base+i, [['1',r0O.status.type] % new error status
r0.value]) % retain value

END-TAGCASE

ELSE % an error has already occurred at this location
signal (allocate-free-space-error, % type of error

base+i, % address
r0.status % status at this word

END-IF

END-WHILE
END-IF
END *allocate-free-space
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A.14 “GET-FREE-SIZE OPERATION

*get-free-size (dest: destination)

% sends the size of the free list to dest

% (actually, the quantity sent is offset from
% the true size by the amount specified when
% the memory was last initialized)

output-token {dest, free-size)
END *write-absolute
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B.0 IDL CODE

% I-STRUCTURE MEMORY CONTROLLER - IDI CODE
% 04/08/83 11:50:26 % SKH

% PRIMARY INPUTS:

%  OPERATIONS:

GRP OPCODE <-QOPCODE<3 2 1.0>
% NORMAL OPERATIONS

% <*STORE-T-FIX <=0 HEX>

% <#STORE-T~VAR <=1 HEX>

% <*3TORE-U-FIX <=2 HEX>

% <*FETCH-TYPE-STORED <-4 HEX>

% <*FETCH-NOTYPE-STORED <-5 HEX>

% <#ALLOCATE <-6 HEX>

% <*CLEAR <-7 HEX>

% <*#RESET <=3 HEX>

% <*ALLOCATE -FREE-SPACE <-8 HEX>

% SERVICE OPERATIONS

% <*READ-ABSOLUTE <-9 HEX>
% <*WRITE-ABSOLUTE <=-A HEX>
% <*INITIALIZE <-B HEX>
% <*LOAD-ERROR-DESTINATION <-C HEX>
% <*GET-FREE-SIZE <=0 HEX>
% *GET-FREE-SIZE IS NOT IMPLEMENTED
%

% LENGTH: <3..0>

GRP LENGTH <-LENGTH<3 2 1 0> LENGTH FROM INTERNAL MEMORY

% LENGTH-IN: <3..0>

GRP LENGTHIN <-LENGTHIN<3 2 1 0> LENGTH FROM INCOMING TOKEN
%
% STATUS-IN: STATUS-TYPE

GRP STIN <-STIN<3 2 1 0> STATUS FROM INTERNAL MEMORY

%

% STATUS-TYPE: CODES FOR STATUS STCRED INTERNALLY

% I-ELEMENT STATUS

% <NOT-ALLOCATED <~ 0 HEX>

% <EMPTY-NOWAIT <- 1 HEX>

% <TYPED-DATA <- 2 HEX>

% <UNTYPED-DATA <- 3 HEX>

% <MIDDLE <- 4 HEX>

% <INVISIBLE <- 5 HEX>

% <TYPE-DEFERRED <- 6 HEX> #*FETCH-TYPE-STORED DEFERRED
% <NOTYPE-DEFERRED <- 7 HEX> *FETCH-NOTYPE-STORED DEFERRED
% <ERROR-NOT-ALLOCATED  <- 8 HEX>

% <ERROR-EMPTY~-NOWAIT <- 9 HEX>

% <ERROR-TYPED-DATA <- A HEX>

% <ERROR-UNTYPED-DATA <- B HEX>

% p <ERROR~-MIDDLE <- G HEX>

% ' <ERROR-INVISIBLE <- D HEX>

% <ERROR-TYPE-DEFERRED <- E HEX>

% <ERROR-NOTYPE-DEFERRED <- F HEX>
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%

72 32 39 32 5% 29 3 39 32 39 32 20 39 3P 59 B0 32 50

&2

%

<ERROR <-1 = = => AN ERROR HAS OCCURRED HERE
<NO-ERROR <=0 - - ~> NO ERROR HAS OCCURRED HERE
<SET-TO-NDO-ERROR <-0> SET ERROR BIT OFF
<SET-TO-ERROR <=1> SET ERROR BIT ON
LIST-STATUS

<NOT-LASTI <-=- - - 1>

<LASTI <== = = 0>

<NOT~-LASTO <-? 7 7 1>

<LASTO <=? 7 7 0>

I-STRUCTURE HANDSHAKING INPUTS:  TOKIN, LASTIN, TOKOUT, INT

<INPUT-SECTION-REQUEST <-TOKINI=1>
<LAST-TOKEN-PART-IN <-LASTINI=1>
<IS-QUTPUT-SECTION-FREE <~-TOKOUTI=0>
<INTERRUPT-REQUEST <-INTI=1>
<NO=-INTERRUPT-REQUEST <-INTI=0>

MEMORY-TIME-CONSTANT:  MEM1,MEMO
{ONE => 11, NUMBER OF PLA CYCLES THE CONTROLLER MUST
TWO => 00, WAIT BETWEEN INTERNAL MEMORY ACCESSES
THREE => 01, ONE => A MEMORY OPERATION CAN
FOUR => 10) BE ISSUED EVERY CYCLE.

ALLOCATE-BLOCK-8IZE:  ABIN1,ABINO

GRP ABSIZE<-ABRSIZE<1 0>

%
%

32 39 32 59 39 39 59 39 3¢ 32 39 3T Y 39 59 30

(ONE => 00, THE NUMBER OF CELLS IN AN ENRTY DURING
T™WO => 01, THE *ALLOCATE OPERATION.

THREE => 10, ONE => EVERY WORD IS A HEADER.

FOUR => 11) THREE => EVERY THIRD WORD IS A HEADER.

RESET-I-STRUCTURE: <0>  PORESET POWER-ON RESET
<8TOP <-PORESET 1>
<0K <-PORESET 0>

EXTERNAL HARDWARE TESTS
<MAR-EQUALS <-EQUALQI=1>
<MAR = FBR <-<MAR-EQUALS>>
<WRAP <-<MAR-EQUALS>>
<ALLOCATION-COMPLETE <-<MAR-EQUALS>>
<ALLOCATE-FREE-SPACE-COMPLETE <-<MAR-EQUALS>>
DEPENDING ON THE CONTENTS OF COMPARE (16 BIT REGISTER),
THIS TEST DETERMINES
IF WE ARE IN THE FIRST PART OF THE INITIALIZE OPERATION
=> IF MAR HAS REACHED THE FREE-LIST SECTION
IF WE ARE IN THE SECOND PART OF THE INITIALIZE OPERATION
=> IF MAR HAS WRAPPED AROUND THE MEMORY
IF WE ARE IN THE ALLOCATE OPERATION
=> IF MAR HAS REACHED THE LAST WORD TO ALLOCATE
CHECK IF TYPE CHECKS FOR WRITE: TYPEQI
<TYPE-CHECKS <-TYPEQI=1>

PRIMARY OUTPUTS:
INTERNAL-MEMORY-OPERATION:
CS,WEI - CHIP SELECT, WRITE ENABLE INVERT
<WRITEQ <-CS<~1/WEI1<-0/<SET-MEMORY-COUNT>>
<READO <-CS<-1/WEI<-1/<SET-MEMORY-COUNT>>
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INC-MAR:  INCREMENT INTERNAL MAR
<INC-MAR <-MAR <-INC MAR>

FREE-CHECK: TEST FOR FREE LIST BOUNDARY
<CHECK-FREE <-COMPARE<-BOUND> FREE LIST BOUNDARY
<CHECK-WRAP <-COMPARE<-CLEARREG> WRAF AROUND
<CHECK-END-ALLOCATE <-COMPARE<-MDRD2T3> END OF ALLOCATE

STATUS-OUT: STATUS-TYPE
GRP STOUT <-STOUT<3 2 1 0> STATUS TO INTERNAL MEMORY

I-STRUCTURE HAND SHAKING OUTPUTS: TOKIN, TOKOUT, INT
<INPUT-REQUEST-ACKNOWLEDGE <-TOKIN<-ZERO>
<QUTPUT-SECTION-REQUEST <-TOKOUT<-0ONE>
<INTERRUPT-ACKNOWLEDGE <-INT<-ZERO>

ERROR-5IGNALS: ERROR<3..0>

GRP ERRCODE<-ERROR<3 2 1 0>

%
%
%
%
%
%
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<STORE-T-FIX-ERROR <-<*3TORE-T-FIX>>
<STORE-T-VAR-ERROR <-<*5TORE-T-VAR>>
<STORE-U-FIX-ERROR <=-<*8TORE-U-FIX>>

<FETCH-TYPE-STORED-ERROR <-<*FETCH-TYPE-STORED>>
<FETCH-NOTYPE-STORED-ERROR <-<*FETCH-NOTYPE-STORED>>

<ALLOCATE -ERROR <=<*ALLOCATE>>
<CLEAR-ERROR : <-<*CLEAR>>

<RESET-ERROR <-<*RESET>>

<ALLOCATE -FREE-SPACE-ERROR <-<#ALLOCATE-FREE-SPACE>>
<DATA-TOO-LARGE <-9 HEX>
<FREE-LIST-0OVERFLOW <-A HEX>

<FREE-LIST-LOW <-B HEX>

<LENGTH-ERROR <-C HEX>

<DEFERRED-TYPE-COLLISION <=-D HEX>

ERRORS 0-8 USE THE SAME CODES AS DO THE CORRESPONDING
INSTRUCTIONS.

GRP OPERR<-GPREG,ERRORS
%<OPREG-ERRCRS<-0OPERR>

% FEEDBACKS:

%
%

MEMORY-TIME: MEMTIME1,MEMTIMEO

GRP MEMTIME <-MEMTIME<]1 0>
UNLATCH MEMTIME

%
%
%
%
%
%
%
%
%
%
%

(ONE => 11, CURRENT VALUE REPRESENTS THE NUMBER OF PLA
TWO => 00, CYCLES THE CONTROLLER HAS ALREADY WAITED
THREE => 01, SINCE ISSUING THE LAST MEMORY REQUEST.
FOUR => 10) ONE => A REQUEST TCGOK PLACE LAST CYCLE.

MEMORY-TIME: MEMTIME1,MEMTIMEO
<INCREMENT~MEMORY-COUNT <-#*MEMTIME<-INCR2Z2 MEMTIME>
<SET-MEMORY-COUNT <-MEMTIME <-1 1>
<MEM-FINI <-MEMTIME1=MEM1 / MEMTIMEO=MEMO>

ALLOCATE-BLOCK-COUNT: ABCNT
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GRP ABCNT<-ABCNT<1 0>

% (ZERO => 00, CURRENT VALUE REPRESENTS THE NUMBER OF WORDS
' ONE => (1, THE CONTROLLER MUST WRITE '"MIDDLE' BEFORE
TWO => 10, WRITING THE NEXT HEADER.

THREE => 11) ZERO => ELEMENT HEADER CAN BE WRITTEN NOW.

]

ALLOCATION-TIME:  ABCNT1,ABCNTO
<COUNT-ALLOCATION <=-%*ABCNT<-DECR2 ABCNT>
<SET-ALLOCATION-COUNT <-ABCNT <-ABSIZE>
<HEADER-TIME <-ABCNT = 0 0>

LIST-EMPTY => NO MORE CELLS ARE AVAILABLE IN THE FREE LIST.
ANY OPERATION REQUIRING SPACE ON THE FREE LIST WILL
CAUSE A FREE-LIST-OVERFLOW ERROR.

CELLS-REMAIN.=> AT LEAST 1 MORE CELL IS IN THE FREE LIST.

<IS-LIST-EMPTY <-LASTCELL=1> '

<LIST-IS-EMPTY <-LASTCELL<-1>

<DO-CELLS-REMAIN <-LASTCELL=0>

<CELLS-DO-REMAIN <-LASTCELL<-0>
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% ASSOCIATED REGISTERS:

% <I0T9 <-0 1 2 3 4 5 6 7 8 9>
% <I10T19<-10 11 12 13 14 15 16 17 18 19>
% INPUT SECTION

DIM IREGO & / IREG1 8 / IREGZ 8 / IREG3
DIM IREG4 8 / IREG5S & / IREG6é 8 / IREGY
DIM IREGS 8 / IREG9 8 / IREG1C 8 / IREGI11l
DIM IREG12 8 / IREG13 8 / IREGl14 8 / IREG15
DIM IREG1é6 8 / IREG17 8 / IREG18 & / IREGI19
GRP TREGOTI1 <~IREG<0 1>

GRP IREG1T2 <-IREG<1 2>

GRP IREG2T3 <-IREG<2 3>

Co Co 00 Co Q0

. GRP IREG4TS <-IREG<4 5>

GRP IREGST7? <-IREG<é 7>

GRP IREG7T8 <-IREG<7 &>

GRP IREGSTY <-IREG<8 9>

GRP IREG10T11 <-IREG<10 11>

GRP IREG12T13 <-IREG<1Z 13>

GRP IREG14T15 <-IREG<14 15>

GRP IREG16T17 <-IREG<16 17>

GRP IREG18T19 <-IREG<18 19>

% <I0T19<-<I0T9> <I10T19>>

GRP IREG <=-IREG<<IO0OT19>>

GRP IREG2T7 <-IREG<2 3 4 5 6 7>
GRP IREG4T19 <-IREG<4 5 6 7 8 9 <I10T19>>
FIX CHAIN<-IREGO[0]

% QUTPUT SECTION
DIM OREGO 8 / OREG1 8 / OREGZ 8 / OREG3
DIM OREG4 & / OREGS 8 / OREG6 8 / OREG7
DIM OREG8 & / OREG9 8 / OREG10 8 / OREG11
DIM OREG12 8 / OREG13 8 / OREG14 8 / OREG15
8 8
8

0 oo

DIM OREG16 / OREG17 / OREG18 8 / OREG19
DIM OREG20 / OREGZ1 8

%<I10T21<-<I0T19> 20 21>

GRP OREG <-0REG<<1I0T21>>
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GRP OREGOT3 <-0OREG<0 1 2 3>

GRP OREGOT5 <-OREG<0 1 2 3 4 5>

GRP OREG4TS5 <-0OREG<4 5>

GRP OREG6T7 <-OREG<6 7>

GRP OREG6T9 <-0OREG<6 7 & 9>

GRP OREG6T21 <-0OREG<6 7 8 9 <I10T19> 20 21>
GRP OREG7T21 <-QREG<7 8 9 <I10T19> 20 21>

% CONTROLLER SECTION

% I-STRUCTURE DESTINATION REGISTER

DIM DESTO 8/DEST1 8/DEST2 8

DIM DEST3 8/DEST4 8/DESTS 8

GRP DESTOT1 <-DEST<0 1>

GRP DEST2T3 <-DEST<2 3>

GRP DEST2T5 <-DEST<2 5>

GRP DEST4T5 <-DEST<4 5>

GRP DESTOT3 <-DEST<0 1 2 3>

GRP DEST <-DEST<0 1 2 3 & 5>

DIM TYPE 8

DIM ABREG 2

FIX ABSIZE<-ABREG

DIM COMPARE 16 AN ADDRESS TO BE COMPARED WITH MAR
% I-STRUCTURE OPERATION REGISTER

DIM OPREG 4

FIX OPCODE<-OPREG

% I-STRUCTURE ADDRESS REGISTER

DIM ADDR 16 :

% DATA ORGANIZATION

% BYTE 0 IS TYPE INFORMATION: LENGTH AND CLASS
DIM DATAO 8/DATAl 8/DATA2 8/DATA3 8

DIM DATA4 8/DATA5 8/DATA6 8/DATA7 8

DIM DATA8 &/DATA9 8/DATA10 8/DATAll 8

DIM DATA12 8/DATA13 8/DATAl4 8/DATALS 8

% <IOT15 <-<I0OT9> 10 11 12 13 14 15>

GRP DATA <-DATA<<IOT15>> DATA TO BE WRITTEN
% <I1T15 <-1 2 34 56 7 8 9 10 11 12 13 14 15>

GRP DATOT1 <-DATA<D 1> BYTES 0 TO 1
GRP DATOT3  <-DATA<0 1 2 3> BYTES 0O TO 3
GRP DATOT5 <-DATA<0 1 2 3 4 5> BYTES O TO 5
GRP DATIT4  <-DATA<1 2 3 4> BYTES 1 TO 4
GRP DAT1IT15 <-DATA<<I1T15>> BYTES 1 TO 15
GRP DAT2T3  <-DATA<2Z 3> BYTES 2 TO 3
GRP DATZT5S <-DATA<2 3 4 5> BYTES 2 TO 5
GRP DAT2T7 <-DATA<2 3 4 5 6 7> BYTES 2 TO 7
GRP DAT4T7? <-DATA<4 5 6 7> BYTES 4 TO 7
GRP DAT5TS <-DATA<5 6 7 8> BYTES 5 TO 8
GRP DATeT? <-DATA<6 7> BYTES 6 TO 7
GRP DAT7T8  <-DATA<7 &> BYTES 7 TO 8
GRP DATS8T9 <-DATA<8 9> BYTES 8 TOC 9
GRP DAT8T11 <-DATA<8 9 10 11> BYTES 8 TO 11
GRP DAT9T12 <-DATA<S 10 11 12> BYTES 9 TO 12

GRP DAT12T15 <-DATA<12 13 14 15> BYTES 12 TO 15

GRP DAT13T15 <-DATA<13 14 15> BYTES 13 TO 15
FIX LENGTHIN <-DATAO[0 1 2 3]
%

DIM MAR 16 MEMORY ADDRESS REGISTER
% MDR MEMORY DATA REGISTER
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% STATUS: & MDRSTAT

% DATA: 32 MDRDATA

DIM MDRSTAT &

DIM MDRDOA 4 / MDRDOB 4

GRP MDRDATAO <-MDRDO<A B>

DIM MDRDATA1 8/MDRDATAZ2 8/MDRDATA3 8

GRP MDRDATA <-MDRDATAO,MDRDATA1,MDRDATAZ,MDRDATA3
GRP MDRDOT1 <-MDRDATAO,MDRDATA1L

GRP MDRDOT2 <-MDRDATAO,MDRDATA1,MDRDATA2

GRP MDRD2T3 <-MDRDATAZ,MDRDATA3

FIX LENGTH <-MDRDOA

%

GRP MEMARG<-MAR,MDRSTAT ,MDRDATA

FIX STIN<-MDRSTAT -

FIX MDRSTAT<-STOUT

DIM EXTRA 16 EXTRA INTERNAL ADDRESS REGISTER
DIM BOUND 16 BOUNDARY BETWEEN DATA AND FREE LIST
DIM RTOP 16 CURRENT TOP OF THE FREE LIST

DIM MEMCTL 2 INTERNAL MEMORY CONTROL REGISTER
FIX MEMCTL[0]<~CS/MEMCTL[1]<-WEI

DIM ERRORS &4

FIX ERRORS <-ERRCODE

DIM ERRDEST 48 DESTINATION FOR MEMORY ERRORS
DIM CLEARREG 16 CONSTANT, CONTAINS: '0000'X

DIM TYPEQ 1 QUTPUT OF CHKTYPE, BBOX TO CHECK TYPE
FIX TYPEQI<-TYPEQ

DIM EQUALQ 1 OUTPUT OF CHKBOUND, CHECKS FREE LIST BOUNDRY
FIX EQUALQI<-EQUALQ

% HANDSHAKING REGISTERS

DIM TOKIN 1/TOKOUT 1/INT 1/LASTIN 1

FIX TOKINI<-TOKIN

FIX TOKOUTI<-TOKOUT

FIX INTI<-INT

- FIX LASTINI<-LASTIN

% IDL CODE

% SUBCYCLE STRUCTURE:

% PLA | 3 SUB | SUB | SUB
% | CYCLES | CYCLE | CYGLE

e Eoen B Lot ERCert oeeenevnnees
| REGISTER | BLACK | SECONDARY

%

%

% | TRANSFERS | BOXES | BLACK BOXES

% | | | (ZERO TIME DELAYS)
%

% MEMORY CYCLE:
Univ: <INCREMENT-MEMORY-COUNT> ||| MDRDATA<-MEMCTL MEMORY MEMARG

% BLACK BOX TESTS:

% (ZERO TIME DELAYS)

% (SIMULATED AS LAST SUBCYCLE ACTIONS)

Univ: |||| TYPEQ<-MDRDATAO EQBOX DATAO CHECK TYPE EQUALITY
Univ: |]|| EQUALQ<-MAR EQBOX COMPARE VARIOUS MAR COMPARISONS
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% HARD RESET SECTION

%

Univ: IF <STOP> THEN->Univ/->INITIAL

INITIAL: IF <OK> THEN->READY/->INPUT/->QUTPUT

% INPUT SECTION
% TOKENS COME IN THROUGH A 16 BIT DATA PATH
% INPUT FORMAT:

%  STORE OPERATIONS:

% INFO: [CHAIN: (NO-DEST => Q------- ),

% OPCODE: (*STORE-T-FIX => *STORE-T-FIX,
% *5TORE-T-VAR => *3TORE-T-VAR,
% #*STORE-U-FIX => “#8TORE-U-FIX),
% UNUSED: <4..7>],

% ADDRESS: <0..15>,

% DATA: [TYPE: [LENGTH: <0..3>, CLASS: <0..3>],

% DATA: <0..119>]

%

% FETCH OPERATIONS:

% INFO: [CHAIN: (DEST => l------- },

% OPCODE: (*FETCH-TYPE-STORED

% => “FETCH-TYPE-STORED,

*FETCH-NOTYPE-STORED

DESTINATION: <0..47>,
ADDRESS: <0..15>]

ALLOCATE OPERATION:
INFO: [CHAIN: (NO-DEST => Q------- ),
OPCODE: (*ALLOCATE => *ALLOCATE)
UNUSED: <4..7>],
START: <0..15>,
STOP: <0..15>,

UNUSED: <2..7>]]

CLEAR OPERATION:
INFO: [CHAIN: (NO-DEST => 0------- )s
OPCODE: (*CLEAR => *CLEAR)
UNUSED: <4..7>],
START: <0..15>,
STOP: <0..15>]
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RESET OPERATION:

% INFO: [CHAIN: (NO-DEST => O------- ),
% OPCODE: (*RESET => #RESET)

% UNUSED: <4..7>],

% ADDRESS: <0..15>]

%

%  ALLOCATE-FREE-SPACE OPERATION:

% INFO: [CHAIN: (NO-DEST => Q-=====- ),
% OPCODE: (*ALLOCATE-FREE-SPACE
% => ¥ALLOCATE-FREE-SPACE)
% UNUSED: <4..7>],

% START: <0..15>,

% STOP: <0..15>]

=> *FETCH-NOTYPE-STORED),

BLOCK-SIZE: [SIZE: (ONE => 00, TWO => 01,
THREE => 10, FOUR => 11),
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READ-ABSOLUTE OPERATION:
INFO: [CHAIN: (DEST => 1------- ),
OPCODE: (*READ-ABSOLUTE => *READ-ABSOLUTE),
UNUSED: <4..7>},
DESTINATION: <0..47>,
ADDRESS: <0..15>]

WRITE-ABSOLUTE OPERATION:
INFO: [CHAIN: (NO-DEST => Q-w---=~ ),
OPCODE: (*WRITE-ABSOLUTE => *WRITE-ABSOLUTE),
UNUSED: <4..7>],
ADDRESS: <0..15>,
DATA: [VALUE: <0..31>, STATUS: <0..3>]]

INITIALIZE OPERATION:
INFO: [CHAIN: (NODEST => Q------- ),
OPCODE: (*INITIALIZE => *INITIALIZE),
UNUSED: <4..7>],
BOUNDARY: <0..15>]

LOAD-ERROR-DESTINATION OPERATION:
INFO: [CHAIN: (DEST => l------- ),
OPCODE: (*LOAD-ERROR-DESTINATION
=> *LOAD-ERROR-DESTINATION),
UNUSED: <4..7>],
ERROR-DESTINATION: <0..47>]

GET-FREE-SIZE OPERATION:
INFO: [CHAIN: (DEST => 1------- ),
OPCODE: (*GET-FREE-SIZE => %GET-FREE-SIZE),
UNUSED: <4..7>],
DESTINATION: <0..47>]
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INPUT: IF <OK>/<INPUT-SECTION-REQUEST>/ING=0
, THEN <INPUT-REQUEST-ACKNOWLEDGE>
, | IREGOT1<-TOKENQ TOKIN /->INPUTO

INPUTO: IF <OK>/<INPUT-SECTION-REQUEST> THEN->INPUTO.DONEQ
INPUTO.DONEQ: <INPUT-REQUEST-ACKNOWLEDGE>

» / IREG2T3<-TOKENQ TOKIN

INPUTO.DONEQ: IF <LAST-TOKEN-PART-IN>

» THEN INQ<-1 /->INPUT / ELSE->INPUT1

INPUT1: IF <OK>/<INPUT-SECTION-REQUEST> THEN->INPUT1.DONEQ
INPUT1.DONEQ: <INPUT-REQUEST-ACKNOWLEDGE>

» / IREG4T5<-TOKENQ TOKIN

INPUT1.DONEQ: TF <LAST-TOKEN-PART-IN>

, THEN INQ<-1 /->INPUT / ELSE->INPUT2

INPUT2: IF <OK>/<INPUT-SECTION-REQUEST> THEN->INPUT2.DONEQ
INPUT2 .DONEQ: <INPUT-REQUEST-ACKNOWLEDGE>

, / IREG6T7<-TOKENQ TOKIN

INPUT2.DONEQ: IF <LAST-TOKEN-PART-IN>

, THEN INQ<-1 /->INPUT / ELSE->INPUT3
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INPUT3: IF <OK>/<INPUT-SECTION-REQUEST> THEN->INPUT3.DONEQ
INPUT3.DONEQ: <INPUT-REQUEST-ACKNOWLEDGE>

, / TREG8T9<-TOKENQ TOKIN

INPUT3.DONEQ: IF <LAST-TOKEN-PART-IN>

, THEN INQ<-1 /->INPUT / ELSE->INPUT4

INPUT4: IF <0OK>/<INPUT-SECTION-REQUEST> THEN->INPUT4.DONEQ
INPUT4.DONEQ: <INPUT-REQUEST-ACKNCWLEDGE>

, / IREG10T11<-TOKENQ TOKIN

INPUT4 .DONEQ: IF <LAST-TOKEN-PART-IN>

, THEN INQ<-1 /->INPUT / ELSE->INPUT5

INPUTS: IF <OK>/<INPUT-SECTION-REQUEST> THEN->INPUT5.DONEQ
INPUT5 .DONEQ: <INPUT-REQUEST-ACKNOWLEDGE>

, / TREG12T13<-TOKENQ TOKIN

INPUTS.DONEQ: IF <LAST-TOKEN-PART-IN>

, THEN INQ<-1 /->INPUT / ELSE->INPUT6

INPUT6: IF <OK>/<INPUT-SECTION-REQUEST> THEN->INPUT6.DONEQ
INPUT6 .DONEQ: <INPUT-REQUEST-ACKNOWLEDGE>

, / IREG14T15<-TOKENQ TCKIN

INPUT6.DONEQ: IF <LAST-TOKEN-PART-IN>

,» THEN INQ<-1 /->INPUT / ELSE->INPUT7

INPUT7: IF <OK>/<INPUT-SECTION-REQUEST> THEN->INPUT7.DONEQ
INPUT7 .DONEQ: <INPUT-REQUEST-ACKNOWLEDGE>

, / IREG16T17<-TOKENQ TOKIN

INPUT7 .DONEQ: IF <LAST-TOKEN-PART-IN>

, THEN INQ<-1 /->INPUT / ELSE->INPUTS

INPUT8: IF <OK>/<INPUT-SECTION-REQUEST> THEN->INPUTS8.DONEQ
INPUTS .DONEQ: <INPUT-REQUEST-ACKNOWLEDGE>
. / IREG18T19<-TOKENQ TOKIN / INQ<-1 /->INPUT

% OUTPUT SECTIGN
OUTPUT.: IF <0OK> THEN TOKOUT<-TOKOUT OUTPUTQ OREG

% INTERRUPT REQUESTS ARE SERVICED BETWEEN TOKENS
READY: IF <OK>/<INTERRUPT-REQUEST>

, THEN <INTERRUPT-ACKNOWLEDGE>/->INTRUPT
INTRUPT: IF <OK>/<INTERRUPT-REQUEST>

, THEN <INTERRUPT-ACKNOWLEDGE>/->READY

% ACCEPT TOKENS FOR PROCESSING

READY.: IF <OK>/INQ=1/<NO-INTERRUPT-REQUEST>

, THEN->READY.FORMAT ACCEPT NEXT TOKEN - FIRST CHECK FORMAT
%<GRAB1<-IF CHAIN>

%<GRAB2<-THEN DEST<-IREG2T7 / ADDR<-IREG8T9 / DATOT1<-IREG10T11>
%<GRABEM<- / INQ<-0 / OPREG<-IREG1[0 1 2 3] /->OPQ>

%<GRAB3<-ELSE ADDR<-TIREG2T3 / DATA<-IREG4T19>
%<GRAB-TOKEN-IF-READY<-<GRAB1> <GRAB2> <GRABEM> <GRAB3> <GRABEM>>
READY.FORMAT: <GRAB-TOKEN-IF-READY>

OPQ: IF <OK> THEN->0PQ.CK
% NORMAL OPERATIONS:
OPQ.0K: IF *NORMALOP OPCODE NORMAL OPERATION DETECTED
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, THEN MAR<-ADDR / <READO> READ AT INDICATED LOCATION

OPQ.0K: IF OPCODE = <*STORE-T-FIX> THEN->STORE
OPQ.0K: IF OPCODE = <*STORE-T-VAR> THEN->STORE
OPQ.0K: IF OPCODE = <*STORE-U-FIX> THEN->STORE

<*FETCH-TYPE~STORED>  THEN->FETCH
<*FETCH-NOTYPE-STORED> THEN->FETCH

OPQ.0OK: IF OPCODE
OPQ.OK: IF OPCODE

OPQ.OK: IF OPCODE = <*ALLOCATE> THEN->0PQ.ALLOCATE
GPQ.OK: IF OPCODE = <*CLEAR> THEN->0PQ.CLEAR
OPQ.0K: IF OPCODE = <*RESET> THEN->RESET

OPQ.OK: IF OPCODE = <*ALLOCATE-FREE-SPACE> THEN->OPQ.ALLOCFR
% SERVICE OPERATICNS:

OPQ.OK: IF OPCODE = <%READ-ABSCLUTE> THEN->0PQ.READARE
OPQ.0OK: IF OPCODE = <*WRITE-ABSOLUTE> THEN->0PQ.WRITEAB
OPQ.OK: IF OPCODE = <*INITIALIZE> THEN->0PQ. INITIAL
OPQ.0K: IF OPCODE = <*LOAD-ERROR-DESTINATICN> THEN->0PQ.LOADED
%»0PQ.0OK: IF OPCODE = <*GET-FREE-SIZE> THEN->0PQ.GETFREE

OPQ.ALLOCATE: COMPARE<-DATOT1 / ABREG<-DATA3[0 1] /->ALLOCATE
OPQ.CLEAR: COMPARE<-DATOT1 /->CLEAR
OPQ.ALLOCFR: COMPARE<-DATOT1 /->ALLOCFR

B.1 *STORE OPERATIONS

% STORE OPERATION
% CHECK THE STATUS OF THE LOCATION AND TAKE APPROPRIATE ACTION
STORE.: IF <OK>/<MEM-FINI> THEN->STORE.ST

STORE.ST: IF STIN
STORE.ST: IF STIN
STORE.ST: IF STIN

<NOT-ALLOCATED> THEN->STORE.ERROR
<TYPED-DATA> THEN->STORE . ERROR
<UNTYPED-DATA> THEN->STORE.ERROR

ownon

STORE.ST: IF STIN = <MIDDLE> THEN->STORE . ERROR
STORE.ST: IF STIN = <INVISIBLE> THEN->8TORE . ERROR
STORE.ST: IF STIN = <ERROR> THEN->STORE . ERROR

STORE.ST: IF OPCODE
STORE.ST: IF OPCODE

<*STORE-T-FIX> THEN->STORE.TF
<*%*STORE-T-VAR> THEN->STORE.TV
<*STORE-U-FIX> THEN->STORE.UF

I

= <EMPTY-NOWAIT>  THEN->STORE.ENTF
STORE.TF: IF STIN = <TYPE-DEFERRED>  THEN->STORE.ERROR
TF: =

STORE IF STIN = <NOTYPE-DEFERRED> THEN->STORE.DEFTF
B e e e et e e e e e e
STORE.TV: IF STIN = <EMPTY-NOWAIT> THEN->STORE .ENTV
STORE.TV: IF STIN = <TYPE-DEFERRED>  THEN->STORE.ERROR
STORE.TV: IF STIN = <NOTYPE-DEFERRED> THEN->STORE.DEFTV
e it ettt

= <EMPTY-NOWAIT> THEN->STORE . ENUF
STORE.UF: IF STIN = <TYPE-DEFERRED>  THEN->STORE.DEFUF
= <NOTYPE-DEFERRED> THEN->STORE .ERROR

STORE.ERROR: UNEXPECTED STATUS FOUND
s SET ERROR FLAGS AND PROCESS THE ERROR
» ERRCODE<-QPCODE/->ERROR
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STORE.ENTF: EMPTY, NOONE WAITING, TYPED DATA, FIXED LENGTH
s STORE ONE, TWO, THREE, OR FOUR WORDS DEPENDING ON THE

, TYPE PROVIDED. STORE TYPE INFORMATION IN THE FIRST WORD
s, <WRITEO>/STOUT<-<TYPED-DATA> WRITE BYTES 0-2 TO MEMORY

, /MDRDATA<-DATOT3/->STENTFQ WITH TYPE INFORMATION

STENTFO.: IF <0K>/<MEM-FINI> THEN->STENTFO.CHKSIZ
STENTFO.CHKSIZ: IF LENGTHIN = 0 0 - -

, THE DATA IS 3 BYTES OR LESS IN LENGTH

, THEN->STENTFO.FINISH WE ARE FINISHED - PROCEED

, ELSE WE MUST CONTINUE TO STORE DATA - FIRST CHECK STATUS

’ <READO>/<INC-MAR>/->STENTF1 READ THE NEXT LOCATION (WAIT)

STENTF1.: IF <OK>/<MEM-FINI> THEN->STENTF1.CHKSTAT
STENTF1.CHKSTAT: IF STIN # <MIDDLE> CHECK STATUS OF 2ND WORD
, THEN ERRCODE<-<DATA-TOO-LARGE>/->ERROR SIGNAL AN ERROR

s ELSE <WRITEO>/STOUT<-<MIDDLE> WRITE BYTES 3-6 TO MEMORY

, /MDRDATA<-DATA4T?7/->STENTF2 WAIT FOR MEMORY TO RESPOND

STENTF2.: IF <OK>/<MEM-FINI> THEN->STENTF2.CHKSIZ
STENTF2.CHKSIZ: IF LENGTHIN =1 - - -

., THE DATA IS > 7 BYTES OR LESS IN LENGTH

, THEN->STENTF2.FINISH WE ARE FINISHED - PROCEED

, ELSE WE MUST CONTINUE TO STORE DATA - FIRST CHECK STATUS

, <READO>/<INC-MAR>/->STENTF3 READ THE NEXT LOCATION (WAIT)

STENTF3.: IF <QOK>/<MEM-FINI> THEN->STENTF3.CHKSTAT
STENTF3.CHKSTAT: IF STIN # <MIDDLE> CHECK STATUS OF 3ND WCRD
» THEN ERRCODE<-<DATA-TOO0-LARGE>/->ERROR SIGNAL AN ERROR

, ELSE <WRITEO>/STOUT<-<MIDDLE> WRITE BYTES 7-10 TC MEMORY

» /MDRDATA<-DAT8T11/~>STENTF4 WAIT FOR MEMORY TO RESPOND

STENTF4.: IF <OK>/<MEM-FINI> THEN->STENTF4.CHKSIZ
STENTF4.CHKS1Z: IF LENGTHIN =11 - -

, THE DATA IS > 11 BYTES OR LESS IN LENGTH

, THEN->STENTF4.FINISH WE ARE FINISHED - PROCEED

, ELSE WE MUST CONTINUE TO STORE DATA - FIRST CHECK STATUS

s <READO>/<INC-MAR>/->STENTF5 READ THE NEXT LOCATION (WAIT)

STENTF5.: IF <OK>/<MEM-FINI> THEN->STENTFS5.CHKSTAT
STENTF5.CHKSTAT: IF STIN # <MIDDLE> CHECK STATUS OF 3ND WORD
,» THEN ERRCODE<-<DATA-TOO-LARGE>/->ERROR SIGNAL AN ERROR

., ELSE <WRITEO>/STOUT<-<MIDDLE> WRITE BYTES 11-14 TO MEMORY

s /MDRDATA<-DAT12T15/->STENTF6 WAIT FOR MEMORY TO RESPOND

% FINISH STORE EMPTY NO-WAITING T FIX
STENTFO.FINISH: IF INQ =1

» THEN->STENTFO.FORMAT ELSE->READY
STENTFO.FORMAT: <GRAB-TOKEN-IF-READY>
STENTF2.FINISH: IF INQ = 1

s THEN->STENTF2.FORMAT ELSE->READY
STENTF2.PCRMAT: <GRAB-TOKEN-IF-READY>
STENTF4.FINISH: IF INQ = 1

, THEN->STENTF4.FORMAT ELSE->READY
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STENTF4 . FORMAT: <GRAB-TOKEN-IF-READY>
STENTFé.FINISH: IF INQ =1

» THEN->STENTF&.FORMAT ELSE->READY
STENTF6 .FORMAT: <GRAB-TOKEN-IF-READY>

STORE.ENTV: EMPTY, NOONE WAITING, TYPED DATA, VARIABLE LENGTH
s STORE ONE WORD OF DATA MEMORY USING THE FREE LIST

s IF NECESSARY TO STORE UP TO A TOTAL OF 16 BYTES

s STORE TYPE INFORMATION IN THE DATA MEMORY WORD

» IF LENGTHIN = 0 0 - - LENGTH £ 3

, THEN <WRITEO>/STOUT<-<TYPED-DATA> WRITE BYTES 0-3 TO MEMORY
R /MDRDATA<-DATOT3/->STENTVO WITH TYPE INFORMATION

» ELSE STORE THE DATA USING SPACE FROM

» ->3TORE.FREE THE FREE -LIST - IF SPACE IS AVAILABLE

STENTVO.: IF <OK>/<MEM-FINI> THEN->STENTVO.FINISH

STORE.FREE: IF <IS-LIST-EMPTY> THERE IS NO ROOM CN THE FREE LIST
, THEN ERRCODE<-<FREE-LIST-OVERFLOW> /->ERROR

, ELSE WRITE THE TYPE, ONE BYTE OF DATA,

s AND THE POINTER TO THE REST OF THE DATA

’ <WRITEO>/STOUT<-<INVISIBLE> WRITE TYPE INFO, 1 BYTE OF DATA
s /MDRDOT1<-DATOT1/MDRD2T3<-RTOFP AND A POINTER TO MORE DATA

/->STENTV1 WAIT FOR MEMORY TO RESPOND
o e e e e e s
STENTV1.: IF <0K>/<MEM-FINI> THEN->STENTV1.STORE
STENTV1.STORE: STORE BYTES 2-5 IN FREE LIST
» <WRITEO>/MAR<-RTOP WRITE FOUR BYTES TO MEMORY

» /MDRDATA<-DAT2T5/->STENTV2 WAIT FOR MEMORY TO RESPOND

STENTVZ2.: IF <OK>/<MEM-FINI> THEN->STENTVZ.READ

STENTVZ2 .READ: SAVE THE NEW TOP OF THE FREE-LIST

, <INC-MAR>/<READO> READ FROM SECOND HALF OF FREE CELL
s /->8TENTV3 WAIT FOR MEMORY TO RESPOND

e e e e e e e

STENTV3.: IF <0OK>/<MEM-FINI> THEN->STENTV3.READ
STENTV3.READ: STORE THE NEW TOP OF THE FREE-LIST
» RTOP <-MDRD2T3 IN RTOP; DECIDE IF MORE WRITING
» /->8TENTV3.MORE IS NECESSARY (STORE DATA)

STENTV3.MORE: IF *L6T15 LENGTHIN CHECK SIZE OF DATA
s THEN->STENTV3.WRITE WRITE MORE DATA TO MEMORY AND WAIT
» ELSE->STENTV3.FINISH

STENTV3.WRITE: IF *L6T9 LENGTHIN FIT IN ONE MORE WORD?

» THEN MDRDATA<-DAT5TS8 WRITE FOUR BYTES TO MEMORY

’ /<WRITEO>/->STENTV99 WAIT FOR MEMORY TO RESPOND
s /=>STENTV3.LASTQ CHECK IF THIS WAS THE LAST FREE CELL
, ELSE CHECK IF THERE IS ANOTHER FREE CELL

s IF 80, STORE TWO MORE BYTES OF DATA AND A POINTER

» =>STENTV3.SPACEQ

STENTV3.LASTQ: IF STIN = <LASTI> THEN <LIST-IS-EMPTY>
STENTV3.SPACEQ: IF STIN = <LASTI>

» THEN->STENTV3.ERROR ELSE->STENTV3.SPACE

STENTV3.ERROR: MAR<-ADDR / ERRCODE<-<FREE-LIST-OVERFLOW> /->ERROR
STENTV3.SPACE: WRITE TWO BYTES AND A POINTER TO MEMORY

» MDRDOT1<-DAT6T7? THE POINTER IS ALREADY IN PLACE

fl

3
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, [<WRITEO>/->STENTV4 WAIT FOR MEMORY TO RESPOND

% THE ABOVE STATEMENT COULD INCLUDE A TRANSFER OF THE
% TOP POINTER. WHAT WE REALLY WANT IS AN OUTPUT

% DON'T CARE ON THE SYSTEM GENERATED CONTROL SIGNAL.

STENTV4. : WRITE FOUR MORE BYTES OF DATA
s <WRITEO>/MAR<-RTOP WRITE FOUR BYTES INTO THE
s /MDRDATA<-DAT8T11 TOP HALF OF A DATA CELL

s /->STENTVS WAIT FOR MEMORY TO RESPOND

e it e e it e et e e
STENTV5.: IF <QK>/<MEM-FINI> THEN->STENTV5.READ
STENTV5.READ: SAVE THE NEW TOP OF THE FREE-LIST

, <INC-MAR>/<READO> READ FROM SECOND HALF OF FREE CELL
s {->STENTV6 WAIT FOR MEMORY TO RESPOND
/I
STENTVé.: IF <OK>/<MEM-FINI> THEN->STENTV6.READ
STENTV6.READ: STORE THE NEW TOP OF THE FREE-LIST

, RTOP <-MDRD2T3 1IN RTOP; DECIDE IF MORE WRITING

, /->STENTV6.MORE IS NECESSARY (STORE DATA)

, /->STENTV6.LASTQ CHECK IF THIS WAS THE LAST FREE CELL
STENTV6.LASTQ: IF STIN = <LASTI> THEN <LIST-IS-EMPTY>

STENTV6.MORE: IF *L10T11 LENGTHIN CHECK SIZE OF DATA

» THEN->STENTV6.WRITE WRITE FOUR BYTES TO MEMORY
» ELSE->STENTV6.FINISH WAIT FOR MEMORY TO RESPOND
T

STENTV6E .WRITE: STORE BYTES 12-15 IN FREE LIST

» MDRDATA<-DAT12T15 WRITE FOUR BYTES TO MEMORY

s /<WRITEO>/->STENTV39 WAIT FOR MEMORY TO RESPOND

STENTVO.FINISH: IF INQ =1

» THEN->STENTVO.FORMAT ELSE->READY
STENTVO.FORMAT: <GRAB-TOKEN-IF-READY>
STENTV3.FINISH: IF INQ =1

, THEN->STENTV3.FORMAT ELSE->READY
STENTV3.FORMAT: <GRAB-TOKEN-IF-READY>
STENTV6.FINISH: IF INQ =1

, THEN->STENTV6.FORMAT ELSE->READY
STENTV6.FORMAT: <GRAB-TOKEN-IF-READY>
STENTVS9.FINISH: IF INQ = 1

,» THEN->STENTV99.FORMAT ELSE->READY
STENTV99 .FORMAT: <GRAB-TOKEN-IF-READY>

STORE.ENUF: EMPTY, NOONE WAITING, UNTYPED DATA, FIXED LENGTH
STORE ONE, TWC, THREE, OF FOUR WORDS OF DATA
STORE EMPTY NO-WAITING U FIX

» STOUT<-<UNTYPED-DATA> WRITE BYTES 1-4 TO MEMORY
» /MDRDATA<-DATIT4/<WRITEQ> (BYTE 0 IS TYPE INFORMATION)
» /->S8TENUFO WAIT FOR MEMORY TO RESPCND

STENUFO.: IF <QK>/<MEM-FINI> THEN->STENUFO.MORE
STENUFO.MORE: IF *L0T4 LENGTHIN LENGTH £ 4

, THEN->STENUFQ.FINISH WE ARE DONE; FINISH

,» ELSE CHECK IF THE NEXT CELL IS A MIDDLE CELL
s READ NEXT WORD TO DETERMINE STATUS
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, <INC~MAR>/<READO>/->STENTF1

STENUF1.: IF <OK>/<MEM-FINI> THEN->STENUF1.MIDDLEQ
STENUF1.MIDDLEQ: IF STIN = <MIDDLE>

, THEN ERRCODE<-<DATA-TO0Q-LARGE> / MAR<-ADDR /->ERROR

, ELSE <WRITEOD>/MDRDATA<-DAT5T8 WRITE BYTES 5-8 TG MEMORY
s /->STENTF2 WITH TYPE INFORMATION

STENUF2.: IF <0OK>/<MEM-FINI> THEN->STENUF2.MORE
STENUF2.MORE: I¥ *L5T8 LENGTHIN 5 £ LENGTH =< 8
, THEN->STENUF2.FINISH WE ARE DONE; FINISH

, ELSE CHECK IF THE NEXT CELL IS A MIDDLE CELL
s READ NEXT WORD TO DETERMINE STATUS

s <INC-MAR>/<READO>/->STENTF3

STENUF3.: IF <OK>/<MEM-FINI> THEN->STENUF3.MIDDLEQ
STENUF3.MIDDLEQ: IF STIN = <MIDDLE>

, THEN ERRCODE<-<DATA-TOO-LARGE> / MAR<-ADDR /->ERROR

., ELSE <WRITEQ>/STOUT<-<MIDDLE> WRITE BYTES 9-12 TO MEMORY
s /MDRDATA<-DAT9T12/->STENTF4 WITH TYPE INFORMATION

STENUF4.: IF <0K>/<MEM-FINI> THEN->STENUF4.MORE
STENUF4.MORE: IF *L9T12 LENGTHIN 9 < LENGTH £ 12
» THEN->STENUF4.FINISH WE ARE DONE; FINISH

, ELSE CHECK IF THE NEXT CELL IS A MIDDLE CELL

s READ NEXT WORD TO DETERMINE STATUS

s <INC-MAR>/<READC>/->STENTF5

STENUF5.: IF <OK>/<MEM-FINI> THEN->STENUF5.MIDDLEQ
STENUF5.MIDDLEQ: IF STIN = <MIDDLE>
, THEN ERRCODE<-~-<DATA-TOO~LARGE> / MAR<-ADDR /->ERROR

, ELSE <WRITEC>/MDRDOT2<-DAT13T15 WRITE BYTES 13-15 TO MEMORY

s / ->STENTF6

STENUFO.FINISH: IF INQ = 1

, THEN->STENUFO.FORMAT ELSE->READY
STENUFO.FORMAT: <GRAB-TOKEN-IF-READY>
STENUF2.FINISH: IF INGQ = 1

, THEN->STENUF2.FORMAT ELSE->READY
STENUF2 .FORMAT: <GRAB-TOKEN-IF-READY>
STENUF4.FINISH: IF INQ = 1

» THEN->STENUF4.FORMAT ELSE->READY
STENUF4 .FORMAT: <GRAB-TOKEN-IF-READY>
STENUF6.FINISH: IF ING = 1

» THEN->STENUF6.FORMAT ELSE->READY
STENUF6 .FORMAT: <GRAB-TOKEN-IF¥-READY>

% STORE WITH DEFERRED DESTINATIONS

» SEND A TOKEN TO EACH DEFERRED DESTINATION

, RETURN LINKS TO THE FREE LIST

, STORE THE DATA

STORE.DEFTF: TYPE <-DATAO /->STORE .DEFER

STORE.DEFTV: TYPE <-DATAO /->STORE.DEFER

STORE.DEFUF: TYPE <-MDRDATAO /->STORE.DEFER

STORE .DEFER: <READO>/MAR<-MDRD2T3 GET THE FIRST DESTINATION
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» / EXTRA<-MDRD2T3 /->S8TDEFO SAVE A POINTER TO THE FIRST DEST

STDEFO.: IF <O0K>/<MEM-FINI> THEN->STDEFO.OK

STDEF0.0K: IF <IS-QUTPUT-SECTION-FREE>

, THEN OREGOT3<-MDRDATA TRANSFER DEST<0..3> AND DATA

, / OREG6<-TYPE / OREG7T21 <-DAT1T15

s / <READO> / <INC-MAR> GET THE REST OF THE FIRST DESTINATION
s /->STDEF1

STDEF1l.: IF <0K>/<MEM-FINI> THEN->STDEF1.0K

STDEF1.0K: OREG4T5<-MDRDOT1 HAND OVER THE REST OF THE DESTINATION
s / <OUTPUT-SECTION-REQUEST> SEND THIS TOKEN OFF

, /=>8TDEF1.MOREQ CHECK FOR MORE DESTINATIONS

STDEF1.MOREQ: IF STIN = <NOT-LASTI>

, THEN->STDEF1.NEXT READ THE NEXT DESTINATION

, ELSE->STDEF1.CONS THERE ARE NO MORE DESTINATIONS
s REPLACE THE FREE CELLS, AND STORE THE DATA

STDEF1.NEXT: <READO>/MAR<-MDRD2T3 GET THE NEXT DESTINATION
, /->STDEF3

STDEF3.: IF <0K>/<MEM-FINI> THEN->STDEF3.0K

STDEF3.0K: IF <IS-QUTPUT-SECTION-FREE>

., THEN OREGOT3<-MDRDATA TRANSFER DEST<O0..3> AND DATA

s / <READO> / <INC-MAR> GET THE REST OF THE FIRST DESTINATION
, /~>8TDEF1 -

STDEF1.CONS: FIRST APPEND THE FREE LIST ONTO THIS CELL
, THEN CHANGE THE HEAD POINTER

s <WRITEO> / MDRD2T3<-RTOP /->STDEF2 /->STDEF1.STAT
STDEF1.STAT: IF <I5-LIST-EMPTY>

,» THEN <CELLS-DO-REMAIN>

, ELSE STOUT<-<NOT-LASTO>

STDEFZ2.: IF <QK>/<MEM-FINI> THEN->STDEFZ.0K

STDEF2.0K: RTOP<-EXTRA /->STDEF2.0PQ NOW WRITE THE DATA
STDEF2.0PQ: IF OPCODE = <*STORE-T-FIX> THEN->STDEFZ.ENTF
STDEF2.0PQ: IF OPCODE = <#STORE-T-VAR> THEN->STDEF2.ENTV
STDEF2.0PQ: 1IF OPCODE = <*STORE-U-FIX> THEN->STDEF2.ENUF

wnu

STDEF2.ENTF: EMPTY, NOONE WAITING, TYPED DATA, FIXED LENGTH
s STORE ONE, TWO, THREE, OR FOUR WORDS DEPENDING ON THE

s TYPE PROVIDED. STORE TYPE INFORMATION IN THE FIRST WORD
> <WRITEO>/STOUT<-<TYPED-DATA> WRITE BYTES 0-2 TO MEMORY

s /MDRDATA<-DATOT3/->STENTFO WITH TYPE INFORMATION

) /MAR<-ADDR

STDEF2.ENTV: EMPTY, NOONE WAITING, TYPED DATA, VARIABLE LENGTH
s STORE ONE WORD OF DATA MEMORY USING THE FREE LIST

s IF NECESSARY TO STORE UP TO A TOTAL OF 16 BYTES

, STORE TYPE INFORMATION IN THE DATA MEMORY WORD

, 1F LENGTHIN = 0 ¢ - -~ LENGTH = 3

» THEN <WRITEO>/STOUT<-<TYPED-DATA> WRITE BYTES ¢-3 TO MEMORY
, /MDRDATA<-DATOT3/->STENTVO WITH TYPE INFORMATION

» ELSE STORE THE DATA USING SPACE FROM

» =>STDEF2.FREE THE FREE LIST - IF SPACE IS AVAILABLE
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STDEF2.FREE: IF <IS-LIST-EMPTY> THERE IS NO ROOM ON THE FREE LIST
, THEN ERRCODE<-<FREE-LIST-OVERFLOW> /->ERROR

, ELSE WRITE THE TYPE, ONE BYTE OF DATA,

s AND THE POINTER TO THE REST OF THE DATA

, <WRITEQ>/STOUT<-<INVISIBLE> WRITE TYPE INFO, 1 BYTE OF DATA
s /MDRDOT1<-DATOT1/MDRD2T3<-RTOP AND A POINTER TO MORE DATA

s /->STENTV1 WAIT FOR MEMORY TO RESPOND

STDEF2.ENUF: EMPTY, NOONE WAITING, UNTYPED DATA, FIXED LENGTH
STORE ONE, TWO, THREE, OF FOUR WORDS OF DATA
STORE EMPTY NO-WAITING U FIX

]

, STOUT<-<UNTYPED-DATA> WRITE BYTES 1-4 TO MEMORY

. /MDRDATA<-DAT1T4/<WRITEO> (BYTE O IS TYPE INFORMATION)
, /->STENUFO WAIT FOR MEMORY TO RESPOND

-]

.2 *FETCH OPERATIONS

%**************************************************

% FETCH OPERATION
% CHECK THE STATUS OF THE LOCATION AND TAKE APPROPRIATE ACTION
FETCH.: IF <0K>/<MEM-FINI> THEN->FETCH.ST

FETCH.ST: IF STIN = <NOT-ALLOCATED> THEN->FETCH.ERROR
FETCH.S8T: IF STIN = <MIDDLE> THEN->FETCH.ERROR
FETCH.ST: IF OPCODE = <*FETCH-TYPE-STORED>  THEN->FETCH.TS
FETCH.ST: IF OPCODE = <*FETCH-NOTYPE-STORED> THEN->FETCH.NTS

<EMPTY-NOWAIT> THEN->FETCH.ENTS

FETCH.TS: IF STIN = <TYPED-DATA> THEN->FETCH.TYPED
FETCH.TS: IF STIN = <UNTYPED-DATA> THEN->FETCH.ERROR

<TYPE-DEFERRED>  THEN->FETCH.TDEF

FETCH.TS: IF STIN = <INVISIBLE> THEN->FETCH.INVIS
= <NOTYPE-DEFERRED> THEN->FETCH.ERROR

<EMPTY-NOWAIT> THEN->FETCH.ENNTS

FETCH.NTS: IF STIN = <TYPED-DATA> THEN->FETCH.ERRCR
FETCH.NTS: IF STIN = <INVISIBLE> THEN->FETCH.ERRCR

<TYPE-DEFERRED>  THEN->FETCH.ERROR

FETCH.NTS: IF STIN = <UNTYPED-DATA> THEN->FETCH.UNTYPED
= <NOTYPE-DEFERRED> THEN->FETCH.NTDEF

ettt et it e
FETCH.ERROR: UNEXPECTED STATUS FOUND
s SET ERROR FLAGS AND PROCESS THE ERROR

» ERRCODE<-0PCODE/->ERROR

FETCH.ENTS: IF <IS-LIST-EMPTY>

, THEN ERRCODE<-<FREE-LIST-OVERFLOW> /->ERROR

, ELSE MDRD2T3<-RTOP SAVE POINTER TO NEW DESTINATION
, / <WRITEO> /->FENO

FETCH.ENNTS: MDRDATA1<-DATAC /->FETCH.ENTS

FENO.: IF <OK>/<MEM-FINI> THEN->FENO.OK

129



FENC.OK: MAR<-RTOP / MDRDATA<-DESTOT3 STORE THE DESTINATION
s [/ <WRITEC> /->FEN1 FIND NEW RTOP

FEN1.: IF <OK>/<MEM-FINI> THEN->FEN1.0K
FEN1.0K: <INC-MAR> / <READO> /->FEN2 GET NEW RTOP

FEN2.: IF <OK>/<MEM-FINI> THEN->FEN2.0K

FEN2.0K: RTOP<-MDRD2T3 / <WRITEO> STORE REST OF DEST
, / MDRDOT1<-DEST4TS /->FINISH

FEN2.0OK: IF STIN = <LASTI> THEN <LIST-IS-EMPTY>

FETCH.TYPED: IF *LOT3 LENGTH DATA ALL IN FIRST WORD
, THEN->FETCH.SHIP SEND THE DATA

, ELSE DATOT3<-MDRDATA / <INC-MAR> GET MORE DATA

, / <READO> /->FTYO

FTYO0.: IF <QOK>/<MEM-FINI> THEN->FTY0.OK

FTYO.OK: IF STIN # <MIDDLE>

» THEN ERRCODE<-<LENGTH-ERROR> /->ERROR

» ELSE DAT4T7<-MDRDATA /->FTY0O.LENGTH

FTYO.LENGTH: IF LENGTHIN = 0 1 - - THE DATA IS IN TWO WORDS
» THEN->FTYO.SHIF SEND THE DATA

» ELSE <INC-MAR> / <READO> /->FTY1 GET MORE DATA

FTY1l.: IF <OK>/<MEM-FINI> THEN->FTY1.0K

FTY1.0K: IF STIN # <MIDDLE>

,» THEN ERRCODE<-<LENGTH-ERROR> /->ERROR

» ELSE DAT8T11<-MDRDATA /->FTY1l.LENGTH

FTY1.LENGTH: IF LENGTHIN = 1 0 - - THE DATA IS IN THREE WORDS
» THEN->FTY1.SHIP SEND THE DATA

, ELSE <INC-MAR> / <READO> /->FTY2Z GET MORE DATA

FTY2.: IF <QK>/<MEM-FINI> THEN->FTY2.0K
FTY2.0K: IF STIN # <MIDDLE>

,» THEN ERRCODE<-<LENGTH-ERROR> /->ERROR
s, ELSE DAT12T15<-MDRDATA /->FTYZ.SHIP

FETCH.SHIP: IF <IS-OUTPUT-SECTION-FREE>

» THEN OREGOT5<-DEST / OREG6T21<-DATA TRANSFER DESTINATION
s / <OUTPUT-SECTION-REQUEST> TRANSFER DATA

s /->FETCH.FINISH ~ TRY AND GRAB NEXT TOKEN
FETCH.FINISH: IF INQ =1

, THEN->FETCH.FORMAT ELSE->READY

FETCH.FORMAT: <GRAB-TOKEN-IF-READY>

FTYO.SHIP: IF <IS-OUTPUT-SECTION-FREE>

» THEN OREGOTS5<-DEST / OREG6T21<-DATA TRANSFER DESTINATION
s / <OUTPUT-SECTION-REQUEST> TRANSFER DATA

s /->FTYO.FINISH TRY AND GRAB NEXT TOKEN
FTYO.FINISH: IF INGQ = 1

, THEN->FTYQO.FORMAT ELSE->READY

FTYO.FORMAT: <GRAB-TCKEN-IF-READY>

FTY1.8HIP: IF <IS-OUTPUT-SECTION-FREE>

,» THEN OREGOT5<-DEST / OREG6T21<-DATA TRANSFER DESTINATION
s / <OUTPUT-SECTION-REQUEST> TRANSFER DATA

s /->FTY1.FINISH TRY AND GRAB NEXT TOKEN
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FTY1.FINISH: IF INQ =1
, THEN->FTY1.FORMAT ELSE->READY
FIY1.FORMAT: <GRAB-TOKEN-IF-READY>

FTY2.SHIP: IF <IS-OUTPUT-SECTION-FREE>

, THEN OREGOT5<-DEST / OREG6T21<-DATA TRANSFER DESTINATION
, / <QUTPUT-SECTION-REQUEST> TRANSFER DATA

’ /->FTY2 .FINISH TRY AND GRAB NEXT TOKEN
FTY2.FINISH: IF INQ =1

, THEN->FTY2 FORMAT ELSE->READY

FTY2 .FORMAT: <GRAB-TOKEN-IF-READY>

FETCH.UNTYPED: IF *L0OT4 LENGTHIN DATA IS ALL IN FIRST WORD
, THEN->FETCH.SHIFP SEND THE DATA
, ELSE DATAD <-TYPE / DAT1T4<-MDRDATA GET MORE DATA

/ <INC-MAR> / <READO> /->FUNTYO

FUNTYO0.: IF <OK>/<MEM-FINI> THEN->FUNTYO.OK

FUNTYO.OK: IF STIN # <MIDDLE>

, THEN ERRCODE<-<LENGTH-ERROR> /->ERROR

, ELSE DATS5T8<-MDRDATA /->FUNTYO.LENGTH

FUNTYO.LENGTH: IF *L5T8 LENGTHIN THE DATA IS IN TWO WORDS
, THEN->FUNTYO.SHIP SEND THE DATA

, ELSE <INC-MAR> / <READO> /->FUNTY1l GET MORE DATA

FUNTY1.: IF <OK>/<MEM-FINI> THEN->FUNTY1.0K

FUNTY1.0K: IF STIN # <MIDDLE>

, THEN ERRCODE<-<LENGTH-ERROR> /->ERROR

, ELSE DAT9T12<-MDRDATA /->FUNTY1.LENGTH

FUNTY1.LENGTH: IF *L9T12 LENGTHIN THE DATA IS IN THREE WORDS
, THEN->FUNTY1.SHIP SEND THE DATA

, ELSE <INC-MAR> / <READO> /->FUNTY2 GET MORE DATA

FUNTY2.: IF <OK>/<MEM-FINI> THEN->FUNTY2.OK
FUNTY2.0K: IF STIN # <MIDDLE>

, THEN ERRCODE<-<LENGTH-ERROR> /->ERROR

., ELSE DAT13T15<-MDRDOT2 /->FUNTY2.SHIP

FUNTYO.SHIP: IF <IS-OUTPUT-SECTION-FREE>

, THEN OREGOT5<-DEST / OREG6T21<-DATA TRANSFER DESTINATION
, / <OUTPUT-SECTION-REQUEST> TRANSFER DATA

, /->FUNTYO.FINISH TRY AND GRAB NEXT TOKEN
FUNTYO.FINISH: IF INQ = 1

, THEN->FUNTYO.FORMAT ELSE->READY

FUNTYO.FORMAT: <GRAB-TOKEN-IF-READY>

FUNTY1.SHIP: IF <IS-QUTPUT-SECTION-FREE>

, THEN OREGOTS5<-DEST / OREG6T21<-DATA TRANSFER DESTINATION
» / <OUTPUT-SECTION-REQUEST> TRANSFER DATA

, /->FUNTY1.FINISH TRY AND GRAB NEXT TOKEN
FUNTY1.FINISH: IF INQ = 1 '

, THEN->FUNTY1.FORMAT ELSE->READY

FUNTY1.FORMAT: <GRAB-TOKEN-IF-READY>

FUNTY2.SHIP: IF <IS-OUTPUT-SECTION-FREE>
, THEN OREGOTS5<-DEST / OREG6T21<-DATA TRANSFER DESTINATION
s / <OUTPUT-SECTI1ON-REQUEST> TRANSFER DATA
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s /->FUNTYZ.FINISH TRY AND GRAB NEXT TOKEN
FUNTY2.FINISH: IF INQ =1

» THEN->FUNTYZ.FORMAT ELSE->READY

FUNTY2.FORMAT: <GRAB-TOKEN-IF-READY>

FETCH.TDEF: IF <I5-LIST-EMPTY>
» THEN ERRCODE<-<FREE-LIST-OVERFLOW> /->ERROR

» ELSE EXTRA<-MDRD2T3 SAVE POINTER TO OLD DESTINATION LIST
, / <WRITEO> /->FDEFO0 WRITE POINTER TO NEW DESTINATION
s | MDRD2T3<-RTOP

FETCH.NTDEF: IF TYPEQI TYPE BEING DEFERRED DOES NOT MATCH
, THEN ERRCODE<-<DEFERRED-TYPE-COLLISION> /->ERROR
, ELSE->FETCH.TDEF

FDEFO.: IF <OK>/<MEM-FINI> THEN->FDEFO.OK
FDEF0.OK: MAR<-RTOP / MDRDATA<-DESTOT3 STORE THE DESTINATION
, / <WRITEO> /->FDEF1 FIND NEW RTOP

FDEF1.: IF <OK>/<MEM-FINI> THEN->FDEF1.0K
FDEF1.0K: <INC-MAR> / <READO> /->FDEF2 GET NEW RTOP

FDEF2.: IF <OK>/<MEM-FINI> THEN->FDEF2.0K

FDEF2.0K: RTOP<-MDRD2T3 / <WRITEO> STORE REST OF DEST

, / MDRDOT1<-DEST4TS /->FINISH

, | MDRD2T3<-EXTRA ALSO POINT TO OLD DEST LIST
FDEF2.0K: IF STIN = <LASTI> THEN <LIST-IS-EMPTY>

FETCH.INVIS: FOLLOW THE POINTER AND GET THE DATA
, DATOT1<-MDRDOT1 / MAR<-MDRD2T3 SAVE TYPE AND ONE BYTE OF DATA
, / <READO> / EXTRA<-MDRDZT3 /->FINVO SAVE PTR TO CELL

FINVO.: IF <OK>/<MEM-FINI> THEN->FINVO.OK

FINVO.OK: DAT2T5<-MDRDATA SAVE 4 BYTES OF DATA

» /=>FINVO.CHECK CHECK FOR MORE DATA
FINVO.CHECK: IF *L2T5 LENGTHIN WE NOW HAVE ALL THE DATA
» THEN->FINVO.FINISH RETURN CELL AND SHIP DATA

» ELSE <INC-MAR> / <READO> /->FINV1

e ettt i a e
FINV1.: IF <O0K>/<MEM-FINI> THEN->FINV1.0OK

FINV1.0K: DAT6T7<-MDRDOT1 SAVE 2 BYTES OF DATA

s /->FINV1.CHECK CHECK FOR MORE DATA
FINV1.CHECK: IF¥ *L6T9 LENGTHIN WE NOW HAVE ALL THE DATA
s THEN DAT7T8<-MDRD2T3 /->FINV1.FINISH RETURN CELL AND SHIP DATA
» ELSE MAR<-MDRD2T3 / <READC> /->FINV2Z READ MORE DATA

FINV2.: IF <0K>/<MEM-FINI> THEN->FINV2.CK

FINVZ.0K: DAT8T11i<-MDRDATA SAVE 4 BYTES OF DATA

s /=>FINV2.CHECK CHECK FOR MORE DATA
FINV2Z.CHECK: IF *L8T11 LENGTHIN WE NOW HAVE ALL THE DATA
+ THEN->FINV2.FINISH RETURN CELLS AND SHIP DATA

» ELSE <INC-MAR> / <READO> /->FINV3

FINV3.: IF <OK>/<MEM-FINI> THEN->FINV3.0K
FINV3.0K: DAT12T15<-MDRDATA SAVE 4 BYTES OF DATA
» /->FINV3.FINISH RETURN CELLS AND SHIP DATA

FINVO.FINISH: RETURN A -CELL TO FREE LIST AND SEND DATA
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, / <INC-MAR> / <WRITEO> /->FINVEND

. | MDRD2T3<-RTOP

FINVO.FINISH: IF <DO-CELLS-REMAIN>

, THEN STOUT<-<NOT-LASTO>

, ELSE STOUT<-<LASTO> / <CELLS-DO-REMAIN>

FINV1.FINISH: RETURN A CELL TO FREE LIST AND SEND DATA
» / <WRITEOQ> /->FINVEND

» | MDRD2T3<~RTOP

FINV1.FINISH: IF <DO-CELLS-REMAIN>

, THEN STOUT<-<NOT-LASTO>

, ELSE STOUT<-<LASTO> / <CELLS-DO-REMAIN>

FINV2.FINISH: RETURN CELLS TO FREE LIST AND SEND DATA
, / <INC-MAR> / <WRITEO> /->FINVEND

, | MDRD2T3<-RTOP

FINV2.FINISH: IF <DO-GELLS-REMAIN>

, THEN STOUT<-<NOT-LASTO>

, ELSE STOUT<-<LASTO> / <CELLS-DO-REMAIN>

FINV3.FINISH: RETURN A CELL TO FREE LIST AND SEND DATA
, / <WRITEO> /->FINVEND

, | MDRD2T3<-RTOP

FINV3.FINISH: IF <DO-CELLS-REMAIN>

, THEN STOUT<-<NOT-LASTO>

, ELSE STOUT<-<LASTO> / <CELLS-DO-REMAIN>

FINVEND.: IF <OK>/<MEM-FINI> THEN->FINVEND.SHIP

FINVEND.SHIP: RTOP<-EXTRA

FINVEND.SHIP: IF <IS-QUTPUT-SECTION-FREE>

, THEN QOREGOT5<-DEST / OREG6T21<-DATA TRANSFER DESTINATION
s / <OUTPUT-SECTION-REQUEST> TRANSFER DATA

, /->FINVEND.FINISH TRY AND GRAB NEXT TOKEN
. FINVEND.FINISH: IF INQ =1

» THEN->FINVEND.FORMAT ELSE->READY

FINVEND.FORMAT: <GRAB-TOKEN-IF-READY>

B.3 *INITIALIZE OPERATION
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OPQ.INITIAL: INITIALIZE THE MEMORY
, MAR<-CLEARREG / STOUT<-<NOT-ALLOCATED> / ERRDEST<-DATOTS5
s / <WRITEO> / <CHECK-FREE> /->INITTOP

INITTOP.: IF <OK>/<MEM-FINI> THEN->INITTOP.FREEQ
INITTOP.FREEQ: IF <MAR = FBR> WE HAVE HIT THE I-STORE BOUNDARY

s THEN->INITTOP.FREE SET UP THE FREE LIST
» ELSE <INC-MAR> / <WRITEO> CONTINUE TO INITIALIZE I-STORE
e e et e eae et a e m e e

INITTOP.FREE: SET UP THE FREE LIST
, EXTRA<-MAR / <WRITEO> /->INITBOT0O SAVE THE POINTER TO THIS CELL
s / <CHECK-WRAP> | <INC-MAR>
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INITBOTO.: IF <OK>/<MEM-FINI> THEN->INITBOTC.CK
INITBOT0.0K: STOUT<-<LASTO> WRITE STATUS FOR LAST CELL
s / <INC-MAR> / <WRITEO> /->INITBOT1

INITBOT1.: IF <QOK>/<MEM-FINI> THEN->INITBOT1.ENDQ
INITBOT1.ENDQ: IF <WRAP> WE HAVE HIT THE MEMORY BOUNDARY

» THEN->READY WE'RE FINISHED, CONTINUE

,» ELSE <INC-MAR> / <WRITEO> CONTINUE TO INITIALIZE FREE-LIST
s /->INITBOT2

INITBOT2.: IF <OK>/<MEM-FINI> THEN->INITBOTZ2.OK
INITBOT2.0K: STOUT<-<NOT-LASTO> WRITE STATUS FOR NOT LAST CELL
, / <WRITEO> /->INITBOT1

, / MDRD2T3<-EXTRA | EXTRA<-MAR | <INC-MAR>

B.4 *ALLOCATE OPERATION
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ALLOCATE.: IF <OK>/<MEM-FINI> THEN->ALLOCATE.OK
ALLOCATE.CK: ALLOCATE A BLOCK OF MEMORY

,» IF STIN = <NOT-ALLOCATED>

» THEN->ALLOCATE . BEGIN

’ ELSE ERRCODE<-<ALLOCATE-ERROR> /->ERROR
ALLOCATE.BEGIN: <SET-ALLOCATION-COUNT> WRITE FIRST HEADER
s / STOUT<-<EMPTY-NOWAIT> / <WRITEO>

ALLOCATE .BEGIN: IF <ALLOCATION-COMPLETE>

» THEN->FINISH ELSE->ALLOCO

ALLOCO.: IF <OK>/<MEM-FINI> THEN->ALLOCO.OK
ALLOCO.OK: <INC-MAR> / <READO> / <COUNT-ALLOCATION> /->ALLOC1

ALLOCl.: IF <OK>/<MEM-FINI> THEN->ALLOC1.STATQ
ALLOC1.STATQ: IF STIN = <NOT-ALLOCATED>

s THEN->ALLOC1.BEGIN

s ELSE ERRCODE<-<ALLOCATE-ERROR> /->ERROR
ALLOC1.BEGIN: IF <HEADER-TIME> '

,» THEN STOUT<-<EMPTY-NOWAIT> / <SET-ALLOCATION-COUNT>
» ELSE STOUT<-<MIDDLE>

ALLOC1.BEGIN: <WRITEO>

ALLOC1.BEGIN: IF <ALLOCATION- COMPLETE>

» THEN->FINISH ELSE->ALLOCO

B.5 *CLEAR OPERATION
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% CLEAR OPERATION

CLEAR.: IF <OK>/<MEM-FINI> THEN->CLEAR.STATUSQ
CLEAR.STATUSQ: IF STIN = <NOT-ALLOCATED> THEN->CLEAR.ERROR
CLEAR.STATUSQ: IF STIN = <EMPTY-NOWAIT>  THEN->CLEAR.CLEAR
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CLEAR.STATUSQ: IF STIN
CLEAR.STATUSQ: IF STIN
CLEAR.STATUSQ: IF STIN
CLEAR.STATUSQ: IF STIN
CLEAR.STATUSQ: IF STIN
CLEAR.STATUSQ: IF STIN
CLEAR.STATUSQ: IF STIN

<TYPED-DATA> THEN->CLEAR.CLEAR
<UNTYPED-DATA> THEN->CLEAR.CLEAR
<MIDDLE> THEN->CLEAR.CLEAR
<INVISIBLE> THEN->CLEAR. INVIS
<TYPE-DEFERRED>  THEN->CLEAR.DEFER
<NOTYPE-DEFERRED> THEN->CLEAR.DEFER
<ERROR> THEN->CLEAR.ERROR

| I O T A | I |

CLEAR.CLEAR: VANILLA CLEARING OF THIS WORD.
, MAR<-ADDR / STOUT<-<NOT-ALLOCATED>
, / <WRITEO> /->CLEARO

CLEAR.INVIS: RETURN CELLS TO THE FREE LIST

, DATAO<-MDRDATAO / <READO> /->CLINVO SAVE TYPE INFO

. / ADDR<-MAR / EXTRA<-MDRDZT3 SAVE THIS AND CELL'S ADDR
s | MAR<-MDRD2T3 | <INGC-MAR>

CLINVO.: IF <OK>/<MEM-FINI> THEN->CLINV0.OK
CLINVO.OK: IF *LOT9 LENGTHIN THERE IS ONLY ONE CELL
, THEN->CLINVO.ONECELL

, ELSE MAR<-MDRD2T3 / <READO> FOLLOW POINTER

. | <INC-MAR> /->CLINV1

CLINVO.ONECELL: IF <IS-LIST-EMPTY>

, THEN STOUT<-<LASTO> / <CELLS-DO-REMAIN>

» ELSE STOUT<-<NOT-LASTO>

CLINVO.ONECELL: CONS THIS CELL INTO FREE LIST
, MDRD2T3<-RTOF / <WRITEO> /->CLDONE

CLINV1.: IF <OK>/<MEM-FINI> THEN->CLINV1.0K
CLINV1.OK: MDRD2T3<-RTOP JOIN THESE CELLS TO THE FREE LIST
» / <WRITEO> /->CLDONE

CLDONE.: IF <OK>/<MEM-FINI> THEN->CLDONE.CK
CLDONE.OK: RTOP<-EXTRA / MAR<-ADDR /->CLEARO

CLEAR.DEFER: RETURN CELLS TO THE FREE LIST

» <READO> /->CLDEFO0 TRACE FIRST LINK

s / ADDR<-MAR / EXTRA<-MDRD2T3 SAVE THIS AND CELL'S ADDR
s | MAR<-MDRD2ZT3 | <INC-MAR> '

e e e ie it e e e b e

CLDEFO.: IF <OK>/<MEM-FINI> THEN->CLDEF0.0K

CLDEFO0.0K: IF STIN = <LASTI> THIS IS THE LAST CELL

, THEN MDRD2T3<-RTOP / <WRITEO> JOIN THIS CELL TO FREE LIST
s /~>CLDONE

» ELSE MAR<-MDRD2T3 | <INC-MAR> / <READO> FOLLOW POINTER

CLEARD.: IF <0OK>/<MEM-FINI> THEN->CLEARO.OX

CLEARO.OK: IF <MAR = FBR> WE HAVE HIT THE END OF THE BLOCK
, THEN->CLEARO.FINISH FINISHED WITH CLEAR OPERATION
» ELSE <INC-MAR> / <READO> CONTINUE TO CLEAR THIS BLOCK
CLEARO.FINISH: IF INQ =1

» THEN->CLEARO.FORMAT ELSE->READY

CLEARO.FORMAT: <GRAB-TOKEN-IF-READY>
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CLEAR1.: IF <OK>/<MEM-FINI> THEN->CLEAR1.STATUSQ
CLEAR1. STATUSQ: IF STIN = <NOT-ALLOCATED> THEN->CLEAR1.ERROR
CLEAR1.STATUSQ: IF STIN = <EMPTY-NOWAIT> THEN->CLEAR1.CLEAR

CLEAR1.STATUSQ: IF STIN = <TYPED-DATA> THEN->CLEAR1.CLEAR
CLEAR1.STATUSQ: IF STIN = <UNTYPED-DATA> THEN->CLEAR1.CLEAR
CLEAR1.STATUSQ: IF STIN = <MIDDLE> THEN->CLEAR1.CLEAR
CLEAR1.STATUSQ: IF STIN = <INVISIBLE> THEN->CLEAR1.INVIS

<TYPE-DEFERRED>  THEN->CLEAR1.DEFER
<NOTYPE-DEFERRED> THEN->CLEAR1.DEFER
<ERROR> THEN->CLEAR1.ERROR

CLEAR1.STATUSQ: IF STIN
CLEAR1.STATUSQ: IF STIN
CLEAR1.STATUSQ: IF STIN

CLEAR1.CLEAR: VANILLA CLEARING OF THIS WORD.
, MAR<-ADDR / STOUT<-<NOT-ALLOCATED>
, / <WRITEO> /->CLEARO

CLEAR1.INVIS: RETURN CELLS TC THE FREE LIST
, DATAO<-MDRDATAO / <READO> /->CLINVO SAVE TYPE INFO
, / ADDR<-MAR / EXTRA<-MDRD2T3 SAVE THIS AND CELL'S ADDR

CLEAR1.DEFER: RETURN CELLS TO THE FREE LIST

, <READO> /->CLDEF0 TRACE FIRST LINK

, / ADDR<-MAR / EXTRA<-MDRD2T3 SAVE THIS AND CELL'S ADDR
. | MAR<-MDRD2T3 | <INC-MAR>

B.6 *RESET OPERATION
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. % RESET OPERATION

RESET.: IF <OK>/<MEM-FINI> THEN->RESET.STATUSQ
RESET.STATUSQ: IF STIN = <ERROR-NOT-ALLOCATED>  THEN->RESET.RESET
RESET.STATUSQ: IF STIN = <ERROR-EMPTY-NOWAIT> THEN->RESET.RESET

RESET.STATUS(Q: 1F STIN = <ERROR-TYPED-DATA> THEN->RESET.RESET
RESET.STATUSQ: IF STIN = <ERROR-UNTYPED-DATA> THEN->RESET .RESET
RESET.STATUSQ: IF STIN = <ERROR-MIDDLE> THEN->RESET .RESET
RESET.STATUSQ: IF STIN = <ERROR-INVISIBLE> THEN->RESET. INVI3

RESET.STATUSQ: IF STIN
RESET.STATUSQ: IF STIN
RESET.STATUSQ: IF STIN

<ERROR-TYPE-DEFERRED>  THEN->RESET.DEFER
<ERROR-NOTYPE-DEFERRED> THEN->RESET.DEFER
<NO-ERROR> THEN->RESET.ERROR

L {1 ({1 A

RESET.RESET: VARILLA RESETTING OF THIS WORD.
» MAR<-ADDR / STOUT<-<NOT-ALLOCATED>
, / <WRITEO> /->RESETO

RESET.INVIS: RETURN CELLS TO THE FREE LIST

, DATAO<-MDRDATAO / <READO> /->REINVD SAVE TYPE INFO

, / ADDR<-MAR / EXTRA<-MDRD2T3 SAVE THIS AND CELL'S ADDR
, | MAR<-MDRD2T3 | <INC-MAR>

REINVO.: IF <OK>/<MEM-FINI> THEN->REINVO.OK
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REINVO.OK: IF *LOT9 LENGTHIN THERE IS ONLY ONE CELL
, THEN->REINVO.ONECELL

, ELSE MAR<-MDRD2T3 / <READO> FOLLOW POINTER

, | <IKNC-MAR> /->REINV1

REINVO.ONECELL: IF <IS-LIST-EMPTY>

, THEN STOUT<-<LASTO> / <CELLS-DO-REMAIN>

, ELSE STOUT<-<NOT-LASTO>

REINVO.ONECELL: CONS THIS CELL INTO FREE LIST
, MDRD2T3<-RTOP ;/ <WRITEO> /->REDONE

REINV1.: IF <OK>/<MEM-FINI> THEN->REINV1.0K

REINV1.0K: MDRD2T3<-RTOP JOIN THESE CELLS TO THE FREE LIST

, / <WRITEO> /~>REDONE

REDONE.: IF <OK>/<MEM-FIN1> THEN->REDONE.OK
REDONE.CK: RTOP<-EXTRA / MAR<-ADDR /->RESETO

RESET.DEFER: RETURN CELLS TO THE FREE LIST
» <READO> /->REDEFO TRACE FIRST LINK

, / ADDR<-MAR ; EXTRA<-MDRD2T3

SAVE THIS AND CELL'S ADDR

, | MAR<-MDRD2T3 | <INC-MAR>
B e et et aeaaaaee ettt e
REDEFO.: IF <OK>/<MEM-FINI> THEN->REDEFO0.OK

REDEFO

,  /->REDONE

, ELSE MAR<-MDRD2T3 | <INC-MAR> / <READO>

RESETO. :

.OK: IF STIN =
, THEN MDRD2T3<-RTOP / <WRITEO>

s, THEN->RESETO.FINISH

» ELSE <INC-MAR> / <READO>

- RESETO.FINISH: IF 1INQ =
,» THEN->RESETO.FORMAT ELSE->READY
RESETO.FORMAT: <GRAB-TOKEN-IF-READY>

RESET1.: IF <OK>/<MEM-FINI> THEN->RESET1.STATUSQ

RESET1. STATUSQ: IF STIN = <ERROR-NOT-ALLOCATED>  THEN->RESET1
RESET1.STATUSG: IF STIN = <ERROR-EMPTY-NOWAIT> THEN->RESET1.
RESET1.STATUSQ: IF STIN = <ERROR-TYPED-DATA> THEN->RESET1.
RESET1.STATUSQ: IF STIN = <ERROR-UNTYPED-DATA> THEN->RESET1.
RESET1.STATUSQ: IF STIN = <ERROR-MIDDLE> THEN->RESET1.
RESET1.STATUSQ: IF STIN = <ERROR-INVISIBLE> THEN->RESET1
RESET1.STATUSQ: IF STIN = <ERROR-TYPE-DEFERRED>  THEN->RESET1
RESET1.STATUSQ: IF STIN = <ERROR-NOTYPE-DEFERRED> THEN->RESET1
RESET1.8TATUSQ: IF STIN = <NO-ERROR> THEN->RESET1
o e e et et s
RESET1.RESET: VANILLA RESETING OF THIS WORD.

<LASTI>

FBR>

IF <OK>/<MEM-FINI> THEN->RESETO0.OK
RESET0O.0K: IF <MAR =

THIS IS5 THE LAST CELL
JOIN THIS CELL TO FREE LIST

FOLLOW POINTER

WE HAVE HIT THE END OF THE BLOCK
FINISHED WITH RESET OPERATION
CONTINUE TO RESET THIS BLOCK

» MAR<-ADDR / STOUT<-<NOT-ALLOCATED>

, / <WRITEO> /->RESETO

RESET1.
» DATAO<-MDRDATAO / <READO> /->REINVO
s / ADDR<-MAR / EXTRA<-MDRD2T3

INVIS:

RETURN CELLS TO THE FREE LIST

SAVE TYPE INFO
SAVE THIS AND CELL'S ADDR

.RESET

RESET
RESET
RESET
RESET

.INVIS
.DEFER
.DEFER
.ERROR
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RESET1.DEFER: RETURN CELLS TO THE FREE LIST

, <READO> /->REDEFO TRACE FIRST LINK

./ ADDR<-MAR / EXTRA<-MDRD2T3 SAVE THIS AND CELL'S ADDR
, | MAR<-MDRD2T3 | <INC-MAR>

B.7 *ALLOCATE-FREE-SPACE OPERATION
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% ALLOCATE FREE CELLS IN THE I-STORE SECTION

ALLOCFR.: IF <OK>/<MEM-FINI> THEN->ALLOCFR.STATUSQ
ALLOCFR.STATUSQ: IF STIN # <NOT-ALLOCATED> CHECK FIRST CELL
, THEN STOUT<-<ALLOCATE-FREE-SPACE-ERROR> /->ERROR

, ELSE READ THE SECOND CELL

, EXTRA<-MAR | <INC-MAR> / <READO> /->AFS0

AFSO.: IF <OK>/<MEM-FINI> THEN->AFS0.STATUSQ CHECK SECOND CELL
AFS0.STATUSQ: IF STIN # <NOT-ALLOCATED>

, THEN STOUT<-<ALLOCATE-FREE-SPACE-ERROR> /->ERROR

, ELSE CONS THIS CELL ONTO THE FREE LIST

R MDRD2T3<-RTOP / <WRITEO> /->AFS0.STAT /->AFS1

AFS0.S8TAT: IF <IS-LIST-EMPTY>

, THEN STOUT<=-<LASTO> / <CELLS-DO-REMAIN>

, ELSE STOUT<-<NOT-LASTO>

AFS1.: IF <OK>/<MEM-FINI> THEN->AFS1.ENDQ

AFS1.ENDQ: IF <ALLOCATE-FREE-SPACE-COMPLETE>

, THEN->READY WE'RE FINISHED, CONTINUE

, ELSE <INC-MAR> / <READO> /->AFS2 READ ANOTHER CELL

AFS2.: IF <OK>/<MEM-FINI> THEN->AFS2.STAT

AFS2.8TAT: IF STIN # <NOT-ALLOCATED> CHECK FIRST CELL
, THEN STOUT<-<ALLOCATE-FREE-SPACE-ERROR> /->ERROR

, ELSE EXTRA<-MAR | <INC-MAR> READ SECOND CELL

s /->AF50

B.8 +*READ-ABSOLUTE OPERATION
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OPQ.READAB: READ ABSOLUTE
, DEST<-DAT2T? / ADDR<-DAT8TY
, | MAR<-ADDR / <READO> /->READABO

READABO.: IF <OK>/<MEM-FINI> THEN->READABO.SHIP

READABO.SHIP: IF <IS-OUTPUT-SECTION-FREE>

, THEN OREGOT5<-DEST / OREG6T9<-MDRDATA TRANSFER DESTINATION,
s / OREG10[0 1 2 3]<-MDRSTAT DATA, AND STATUS

, /->READABG .FINISH TRY AND GRAB NEXT TOKEN
READABO.FINISH: IF INQ =1
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, THEN->READABO.FORMAT ELSE->READY
READARO.FORMAT: <GRAB-TOKEN-IF-READY>

B.9 *WRITE-ABSOLUTE OPERATION

%****#**************************#*k**ﬁ***********#*
OPQ.WRITEAB: WRITE ABSOLUTE

, ADDR<-DAT2T3 / MDRDATA<-DATOT3 / MDRSTAT<-DATA4[O0 1 2 3]
, | MAR<-ADDR / <WRITEO> /->FINISH

B.10 *LOAD-ERROR-DESTINATION OPERATION

%**************************************************

OPQ.LOADED: LOAD ERROR DESTINATION

, ERRDEST<-DEST /->READY
e e

% ROUTINES COME HERE TO HAVE A VANILLA FINISH TO THEIR EXECUTICN
FINISH.: IF <OK>/<MEM-FINI> THEN->FINISH.OK

FINISH.OK: IF INQ=1 WE ARE FINISHED, CLEAN UP

, THEN->FINISH.FORMAT ELSE->READY

FINISH.FORMAT: <GRAB-TOKEN-IF-READY>

ERROR: ERROR STATE. SET THE ERROR BIT TO 1 AND EXPORT A MESSAGE
R ASSUME ERRCODE HAS BEEN SET, MAR POINTS TO THE CORRECT

s LOCATION, AND MDR HOLDS THE CONTENTS OF THAT LOCATION.

, / <WRITEO> / STOUT3<-<SET-TO-ERROR> SET THE ERROR BIT ON

s /=>ERROR1 WAIT FOR MEMORY TO RESPOND
ERROR1: IF <OK>/<MEM-FINI> MEMORY FINISHED

, / <18-0UTPUT-SECTION-FREE>

, THEN OREGOT5<-ERRDEST SEND TO ERROR MANAGER

s / OREG6T7<-MAR ] SEND ADDRESS

N / OREG8<-<0OPREG-ERRORS> SEND OPCODE AND ERROR CODE
s / <OUTPUT-SECTION-REQUEST> /->READY '
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