LABORATORY FOR
COMPUTER SCIENCE

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

r

\

Functional Languages and Architecture
Progress Report for 1983-84

Computation Structures Group Memo 245
December 1984

~

_J

345 TECHNOLOGY SQUARE. CAMBRIDGE, MASSACHUSEETTS 02139

FUNCTIONAL LANGUAGES AND ARCHITECTURES

Academic Staff

Arvind, Group Leader

Resea rch Staff

R. lannucci J. Pinkerton

Graduate Students

M. Beckerle ' V. Kathail

" S. Brobst P. Lim
C. Chiang G. Papadopoulos
D. Culler _ K. Pingali
P. Fugua M. St. Pierre
S.Heller R. Soley

" R. lannucci B. Vafa

Undergraduate Students

R. Adamjee J. Ngai

S. Vigar Ali C. Qzveren
M. Bucci J. Picciotto
J. Buonora K. Rahmat
J. Cernada R. Sathyanandan
T. Chambers K. Traub

E. Desai W. Tsang
S.Douglass C.-S. Wei
S. Gahni A. Wang
W. Hamdy M. Wong
T.Im C.Wu

C.Li - J. Ying

D. Morais : 3. Younis

G. Ng

FUNCTIONAL LANGUAGES AND ARCHITECTURES

Support Staff

P. Sedell

Visitors

E. Hagersten l. Jacobson

FUNCTIONAL LANGUAGES AND ARCHITECTURES

1. INTRODUCTION

The primary direction of the Functional Languages and Architectures Group
continues to be the study of new computer structures to exploit parallelism in
application programs. Our approach in studying parallelism is based on functional
languages and dynamic dataflow machines. We believe the success of a general-
purpose multiprocessor computer depends on its effective programmability and
efficient utilization of resources. Thus, in addition to the hardware architecture, we
are concerned with high level language support, communications requirements, and
efficient distribution of workload over the machine. We feel the development of
novel parallel architectures will require several iterations. Hence, the group is
pursuing a variety of interrelated projects, all aimed at developing our understanding
of the problems and moving us closer to a final implementation. We have organized
this report in two major sections: The first describes the Tagged Token Dataflow
Project and the other describes the Multiprocessor Emulation Facility (MEF) for
experimenting with parallel machines. The Tagged Token Dataflow architecture is
going to be the first large scale emulation experiment on the MEF.

The Tagged Token Dataflow Project is a major effort to realize the model of
dataflow computation embodied in the U-interpreter [3] The architecture continues
to evolve as our understanding of the issues related to realizing this model deepens.
The development of a detailed simulation of the architecture on the IBM 4341 in
cooperation with IBM Yorktown Heights over the past year has provided invaluable
experience. In order to build the simulation it was necessary to give detailed
specifications of every major component of the architecture. This process
uncovered a number of oversights in the early design. Moreover, in order to run
programs on the simulated machine, it was necessary to develop a run-time
resource management system to control the allocation of resources and distribute
work over the collection of processors. This has considerably sharpened our
attention on resource management issues in the past one year.

The simulator is too slow to be used as a vehicle for experimenting with large
dataflow applications. Thus, a large scale multiprocessor emulation of the Tagged
Token Dataflow Machine is being developed to meet this need. We expect the
emulation to bring about a depth of understanding of dataflow applications far
beyond the current state of the art. Curfently, the emulated dataflow machine runs
on five high-performance Lisp Machines which are connected by an Ethernet.
programming for both the simulated and the emulated machines is done in the high-
level dataflow language Id. We have an operational Id-to-graph compiler which is
used to drive both prototype dataflow machines. The ld definition has been revised
to permit a more elegant use of higher-order functions. We plan to implement a new
version of Id in the next two years.

FUNCTIONAL LANGUAGES AND ARCHITECTURES

The goal of the Multiprocessor Emulation Facility is to develop it as a useful tool for
research on new parallel architectures and associated languages. The facility will
consist of 64 Lisp Machines and a high bandwidth interconnection network. Generic
software for inter-processor communication and for emulating other architectures is
also to be provided. In the past year, significant progress toward these goals was
made. Two parallel efforts to design the communication network have been put in
place. One design uses circuit switching and communication on four bit paralle!
data links while the other uses packet switching and bit-serial communication. The
former is conservative in the use of technology and thus represents lower risk than
the latter. A detailed design for the circuit switch card, excluding the Lisp Machine

interface, has been completed.

We have been able to attract significant industrial support in the form of three
circuit designers from IBM Endicott and one from Ericsson, to do the hardware
development for the emulation facility. However, the infrastructure in the Laboratory
for Computer Science for hardware development is not adequate to support the
MEF. Thus, a detailed plan for a hardware laboratory was prepared and partially
executed. Further construction in the hardware laboratory is contingent upon
receiving more research funds which are believed to be available during the coming

year.
2. TAGGED TOKEN DATAFLOW PROJECT

2.1. Architectural Background

The Tagged Token Dataflow Architecture is composed of a number of Processing
Elements (PEs), connected by a packet switched communications network. Each PE
is a complete dataflow computer. The basic organization is shown in Figure 7-1.
The PE consists of a number of asynchronous pipeline stages, connected by FIFO
buffers. The various stages form three subsystems. The subsystem shown toward
the right in Figure 7-1, performs the basic instruction processing. The stages of this
pipeline reflect the essential steps in the processing of a dataflow instruction: detect
when data has arrived to enable an instruction, fetch the instruction, compute the
result, generate result tags, and finally dispense the result tokens. The subsystem to
the left provides storage for data structures. This structure store incorporates a
number of innovative ideas to allow for sharing of information without constraining
parallelism. The benefits of this approach are presented in [4] A detailed design of
the controller for the structure store is presented in [9]. The center subsystem
includes a PE controller, which provides a variety of support operations, including
input/output, block transfers, and access to the resource management system.

Tokens and Tags: In the Tagged Token Dataflow Architecture, values are carried

;‘..i;.,
A ?
A

PE

FUNCTIONAL LANGUAGES AND ARCHITECTURES

Wait-
Match

v

Instruction
Fetch

Prog
Mem

I Storage

L__vl

I-Str PE
Controller
Compute
Tag
Form
Token
YVvYy
Cutput

FUNCTIONAL LANGUAGES AND ARCHITECTURES

on tokens, which are passed from one instruction to the next. The arrival of data
causes the corresponding instruction to be fetched, unlike a conventional computer
in which the execution &f an instruction causes data to be fetched. There is no
program counter in this machine. Each token carries a tag, in addition to a data
value, which specifies the istruction to be executed. The tag contains essentially
three items of informationc the address of the PE which is responsible for executing
the instruction, the address of the instruction to execute within that PE, and the
context in which the instruction is to be executed. The PE address is required
because a code-block may be spread over many PEs, and tokens must be freely
transferred between PEs. The contextual information is required because many
logically distinct activations of a given code-block may be in execution
simultaneously. There must be a way to distinguish the various activations so that
tokens belonging to different activations do not interact. All tokens belonging to a
given activation carry the same context identifier or cofor. Thus, two tokens are
destined for the same instance of an instruction if and only if their tags match.

Instruction Processing: Upon arriving at a processing element, a token enters
the waiting-matching section. The tag it carries is compared against the tags of all
the tokens resident in the waiting-matching store. Instructions are limited to two
operands, so if a match is found, the corresponding instruction is enabled for
execution. The two matching tokens are purged from the waiting-matching store
and forwarded to the instruction fetch section. The instruction specified in the tag is
fetched from program memory, along with any required constants. The data values
are aligned, and an operation packet is sent to the ALU for processing. In parallel
with the ALU, the compute-tag section forms tags for result tokens, based on the
destination list of the instruction and contextual information on the input tag. The
result values and tags are merged to form tokens and passed on to the
communication network, whereupon each is delivered to the PE specified in its tag.

Tolerance o Communication Latency: In many respects, a multiprocessor
setting presents a fundamental architectural challenge. Communication latency
between processors is generally large and unpredictable. Thus, for a multiprocessor
architecture to be successful, the individual processing elements must be extremely
tolerant to communication latency [4]. The PEs which comprise the Tagged Token
Dataflow Architecture meet this challenge. Note that once an instruction is enabled,
it may be processed to completion without further communication with other PEs.
The pipeline is never held up by communication latency. Waiting only takes place in
the waiting-matching section. Completion detection for external communication is
provided naturally by the basic instruction scheduling mechanism; when data arrives
an instruction is scheduled. This dynamic scheduling, coupled with the ability to
interlace many mdependent threads of computation, allows for overlapped requests
to the communication system, tolerates long latencies, and tolerates unordered
responses.

FUNCTIONAL LANGUAGES AND ARCHITECTURES

2.2. Resource Management

The description of the architecture presented above assumes that the program
graph is in place, distributed appropriately over the machine. This section looks at
the process of executing programs on the Tagged Token Dataflow Architecture at a
somewhat higher level. It focuses on how resources are managed and how work is
distributed over the machine.

Static vs. Dynamic Resource Allocation: There are basically two approaches
to resource allocation, each offering advantages and disadvantages. On one
extreme is the static approach where the compiler assigns processors and storage
to a program. This is a common strategy for scientific programs written in Fortran. If
the decomposition is just right, the performance can be extremely good, with little
overhead for the distribution of work at run-time. However, developing a good static
decomposition appears to be a very difficult problem. In any case, functional
languages require dynamic resource allocation and thus preclude a purely static
approach. A purely dynamic approach, on the other hand, implies allocating each
computational activity on the least busy processor. Dynamic allocation on the
Tagged Token machine is undertaken only at the level of procedure calls, (i.e., code-
block invocation), each of which is assigned to a group of PEs at run-time. David
Culler has developed a dynamic resource management system for the simulation
along these lings. This resource management system has also been adopted for the
emulated dataflow machine. We are currently experimenting with various allocation
algorithms and load balancing techniques. The present architecture provides an
efficient and flexible way to map loops and recursive procedures on a group of
processors. As static analysis techniques develop, we will consider more aggressive
optimizations for mapping special program structures.

Hierarchy of Resources: A variety of resources are required to support a code-
block activation. These include PEs, program memory, code-block registers, colors,
etc. Coordinating resource allocations between a variety of PEs can be extremely
cumbersome, if PEs are allowed to cooperate in arbitrary ways. In order to keep the
complexity of resource management tractable, a hierarchy is imposed on the set of
system resources. In effect, the resource manager deals with blocks of resources
and allows the hardware to distribute them at a finer grain automatically. This also
allows the number of requests to the manager to be reduced.

The notions of physical domain and physical subdomain are introduced to
facilitate selecting a set of PEs for an invocation. The collection of PEs in the system
is divided into disjoint physical domains {PD), each being a set of consecutively
addressed PEs. This partition is not allowed to change while programs are running.
Each PD may be further partitioned into a set of disjoint physical subdomains (PSD),
again each is a set of contiguously address PEs. The size of the PSD is dynamic and
will vary for different code-blocks in a given PD. A code-block activation is assigned
to a domain, and a complete copy of the code is placed in each subdomain.

89

FUNCTIONAL LANGUAGES AND ARCHITECTURES

To simplify memory management, we require that memory allocation be identical in
every PE in a given domain. The code-block is split into as many sub-blocks as there
are PEs in a subdomain. Each PE receives one sub-block, all starting at the same
base address. This allocation is replicated for each subdomain in the domain. For
computational efficiency we require that all PD and PSD be a power of two in size.

Each copy of the code-block may be used by many concurrent activations and
each of these may requine mapping information to be stored locally to the PEs, so
that result tags can be generated. Again, by grouping activations together this
mapping information can be kept within reason. Each PE contains a set of 256
code-block registers (CBR). Each code-block register contains a code-base address
and information pertaining to the mapping of the code-block onto the domain. Each
code-block register can support 16 colors; additional information can be associated
with each color. Code-block registers, like program memory, are allocated uniformly
throughout each domain. With this partitioning, the manager views the system
resources in terms of domains, code-block registers, and colors.

To understand the role of the manager, consider the process of code-block
activation. A request is sent to the resource manager. lt first selects a domain with
sufficient resources to support the activation. |If the code-block is not present in this
domain, it will have to be loaded. In this case, the subdomain size may be set as
suggested by the compiler, or as determined by the resource manager. A code-
block register must be allocated, and a set of colors, relative to this CBR, is assigned
to this activation. Finally, program memory is allocated throughout the domain and
the code is loaded. Mapping information is established in each PE to describe the
disposition of the code-block, as part of the CBR. Further information pertaining to
each color can also be provided. The code-block is now ready to execute. The
manager allocates argument and result structures and sends descriptors to both the
caller and the newly activated code-block. The code-block may now execute on its
own except for invocation and resource aliocation requests. Subsequent
invocations of the same code-block may share the CBR, if colors are available. If
not, a new CBR must be allocated, but it may share the copy of the code. In either
case the mapping parameters will have to be the same as the original, since the code
has the same disposition. New color information may be provided.

_ These resource management concerns essentially dictate the structure of the tag

carried on tokens. It consists of five fixed size fields <PE #, CBR, Color, Initiation #,
Relative Instruction Address). The code-block register gives the base address of the
code and the base address of the color information. This allows instructions and
constants to be fetched from program memory. The CBR also describes the
disposition of the code-block across the domain, so the hardware can generate tags -
for result tokens.

FUNCTIONAL LANGUAGES AND ARCHITECTURES

Efficient Internal Invocation: The resource manager provides a mechanism for
initiating activity in a possibly distant region of the machine. However, in many cases
this generality is not required and is overly expensive. In order to allow highly
repetitive program structures to execute without involving the resource manager,
256 initiation numbers are associated with each color. Loops and recursive
procedures make use of the initiation numbers to distinguish tokens belonging to
different iterations, or different recursive invocations. A code-block activation is
allotted a color and has the range of initiation numbers at its disposal. Loops utilize
the D operator, which increments the initiation number. Recursive procedures make
use of the R operator, which computes a new initiation number of the form A*1 + B.
Many loops may exceed 256 iterations, hence facilities are provided for allocating
blocks of colors and for using the next color in the case of initiation number
overflow. The compiler generates code to test whether all colors and initiation
numbers have been exhausted and to issue a manager request for more colors if
necessary.

The hardware provides a mechanism to distribute internal activations over
processors efficiently. This is the rationale for partitioning domains into
subdomains. Recall, each subdomain contains a complete copy of the code. The
hardware distributes activations within a domain based on the initiation number. An
additional parameter is provided to support block distribution (i.e., k iterations on
this PSD, k on the next, and so on). This follows along the lines discussed in Arvind,
et al. {2].

The results of static analysis are expected to guide the resource manager in
making allocations. In particular, it enters into the process of choosing among
domains, choosing subdomain size, choosing k (the number of iterations to keep
together), and for deciding where to allocate data structures. Conveying this
information is somewhat subtle, however. Completely static information, such as
nesting relationships, can be included in the compiler output along with the code.
Execution dependent information is supplied by augmenting the graph slightly and
sending information along with the request. Currently, only simple information is
conveyed in this way, such as the expected number of iterations. But we are
investigating more powerful aids of this form.

Compiler Responsibilities: Introducing a resource management system into a
dataflow model raised a number of interesting compilation issues. The U-interpreter
is entirely independent of resources; it assumes unbounded computational
resources. In order to execute dataflow programs on a practical machine, resources
must be explicitly requested. They must also be released in some manner. The
basic dataflow graphs must be augmented so that the resource manager request is
generated when reésources are required. “Also, the compiler must generate code to
make proper use of blocks of resources. For example, to use initiation numbers

o1

FUNCTIONAL LANGUAGES AND ARCHITECTURES

properly, it is necessary to handle overflows. The compiler must generate code to
determine when resources can be released. This involves detecting completion of
code-block activations and proper handling of reference counts for structures.

Detecting completion is non-trivial in a dataflow system because a code-block may
continue to execute after all interesting results have been produced. Many iterations
of a loop may be active simultaneously, so the compiler must detect that all have
completed. For acyclic graphs there is little trouble. A signal token is generated for
any operators which have no destinations. These and all the output arcs of the
graph form the inputs to a binary reduction tree. The token that falls out the bottom
of the tree is the last token of the activation. This technique can be extended to
loops, but care must be taken to avoid serializing loops that would otherwise provide
parallelism. The special signal token of one iteration is part of the completion tree
for the next. In effect completion detection is serial, even though the loop may be
parallel. The detection simply lags behind the loop execution.

One important implication of this incremental completion detection is that it makes
it possible to run loops of an arbitrary number of iterations using only a few colors.
The loop is given multiple colors. As it exhausts one color it goes on to the next or
requests more. The completion follows behind detecting and releasing colors that
are no longer needed and, hence may be recycled.

The compiler must also assist in the detection of parallelism in the construction of
data structures. When certain restrictions apply, arrays can be modeled as |-
structures which allows for a more parallel implementation than for ordinary
structures. Detecting those arrays which can be implemented as l-structures is
difficult in general; it involves analysis similar to that done by vectorizing compilers
during code vectorization. There are, however, several important special cases
where |-structures can be detected easily. We have also found several situations in
which the techniques of vectorizing compilers can be borrowed and applied. The
compiler generates instructions for the run-time system to allocate |-structure
storage. For storage reclamation, reference counting can be implemented because
I-structures are acyclic. The overhead of maintaining reference counts can be
substantially reduced if, with -compiler assistance, they are incremented and
decremented at procedure cali and exit only.

2.3. Simulation Experiments

The primary purpose of the simulation facility is to provide a prototype and test bed
for the Tagged Token Dataflow Architecture. The basic requirement in designing the
simulator was that all aspects of the architecture be modeled in a manner that could
be cast directly into hardware. Deficiencies in the architecture were to be exposed
and remedied, rather than disguised by software tricks. Working through the

92

FUNCTIONAL LANGUAGES AND ARCHITECTURES

implementation of the machine in this manner did indeed uncover shortcomings and
caused the specification of the architecture to become much more precise. The
architecture is basically an asynchronous pipeling, with stages connected via finite
sized buffers. This modularity is reflected in the design of the simulator; the
functional behavior of each stage is modeled by a Pascal procedure which receives
an input packet and the state of a station and produces a list of result packets with a
new state. Thus, the specifications of the major hardware components are easily
discernible from the simulator software. Also, the modeling of buffer interactions is
divorced from the modeling of the functional behavior of the components. This
design has greatly simplified the check-out task and allows the architectural
specifications to be easily modified.

The first requirement of this 'soft’ prototype is that it support all operations defined
in the instruction set [1] and provide enough resource management support to run
substantial Id programs. This requirement has been met. Most of the code has been
written by Culler, Brobst, Vafa and Wei. In the coming months, the simulator will
provide a vehicle for analyzing the architecture. The initial set of experiments are
directed at identifying potential architectural failures: buffer deadlock, insufficient
waiting-matching facilities, and inordinate overhead. A larger body of experiments
will focus on determining the proper balance of various components (e.g., buffer
sizes and processing speeds) and how various factors affect the performance of the
machine.

The simulation facility has provided valuable experience in programming,
debugging, and diagnosis in a multiprocessor setting. The simulator pursues many
computations in paraliel. Thus, debugging a program being run on the simulator
involves all the subtleties of debugging on a true multiprocessor: what does a
breakpoint mean? what would be a meaningful trace? etc. We have developed a
debugging tool which will allow the user to examine the invocation tree (i.e., the
parallel counterpart to a conventional procedure trace) and to observe the execution
of a specific code-block at the instruction level. Debugging the simulator itself has
proved much like diagnosing hardware; bugs have to be isolated by running
diagnostic programs on the simulator and inferring from their misbehavior. We are
developing a significant diagnostic package which will carry over to hardware
implementations of the Tagged Token Dataflow Architecture.

2.4. Emulation Experiments .

As a further proving ground for the Tagged Token Dataflow Architecture on large
applications, we are developing a high speed emulation of the architecture on the
MEF. The first version of the software for this emulator has been completed,
allowing us to run graphs generated by the Id compiler. The emulated datafiow
machine can be configured to run several dataflow PEs on each Lisp Machine which

83

FUNCTIONAL LANGUAGES AND ARCHITECTURES

communicates with other Lisp Machines over a ten megabit Ethernet. Higher-speed
networks are currently under development and the software is structured so as to
allow machines to easily integrate with such networks when they become available.

Currently, enhancements to support debugging in an asynchronous environment
and a user interface consistent with the simulator are being developed. The
performance of the Lisp version of the emulator is roughly 200 dataflow instructions
per second on a single Lisp Machine. If scaled up to 64 processors, this would be
approximately 13,000 dataflow instructions per second. However, we have not yet
begun optimizing performance by finding bottlenecks in the Lisp code or moving
critical pieces of the Lisp code into micro-code, so we are confident that we can
obtain our ultimate performance goal of 64,000 to 640,000 dataflow instructions per
second after some fine tuning. These issues are discussed further in Section 3.

2.5. Compiler Development

Two compilers for the dataflow language Id have been developed. One of them
translates 1d into Maclisp, and provides a complete run-time system to execute the
object code; the other one translates Id into dataflow graphs where each node in the
graph is a Tagged Token Dataflow Machine instruction. The Id-to-graph compiler is
also responsible for generating instructions that ask for allocations and deallocation
of resources. Both compilers are written in Maclisp, and run on DEC-20 as well as
on Lisp Machines. The first compiler was written by Kathail and Pingali, while the
second one was written by Kathail alone. Work, in cooperation with IBM Yorktown
Heights, is underway to run these compilers on IBM machines using YKTLISP.

Further work on compilers can be classified into the following three categories:

1) Develop and implement algorithms for the Id-to-graph compiler for doing
static analysis of the programs to acquire information that may be useful
to the system manager. This includes finding producer-consumer
relationship among code-blocks and finding sizes of various data
structures to name a few.

2) Develop and implement optimization techniques io improve the
efficiency of the code generated by the Id-to-graph compiler. This
includes optimizations like constant subexpression elimination, code-
block merging to eliminate the setup time associated with a procedure
call, as well as reduce the number of calls to the manager and constant
propagation.

3) Incorporate streams, managers, and a declarative or deductive typing
system in both compilers.

94

FUNCTIONAL LANGUAGES AND ARCHITECTURES

2.6. Higher-order Functions and Reduction

it has often been remarked that much of the power and elegance of functional
languages stems from higher-order functions i.e., functions that can take functions
as arguments or return functions as the result of application. The use of higher-order
functions has been stressed by researchers interested in reduction and reduction
languages; in particular, by Turner [17], Backus [6] and Burge [8] As part of our
design effort, Arvind, Kathail and Pingali [5] re-examined the primitives provided in Id
for programming with higher-order functions and found them deficient in several
respects. In particular, we were dissatisfied with the compose operator of Id since
we found that it was clumsy to use and led to contorted programs. QOur research into
languages based on the reduction (in particular, SASL [16] model of implementation
has led us to revise Id in order to permit efficient implementation and ease of use of
higher-order functions. In addition, this research has lead one of our group
members, Kenneth Traub, to design a novel architecture for performing parailel
reduction [15] The proposed architecture has several advantages over current
proposals in the literature for performing parallel reduction.

Given an expression in a functional language, reduction interpreters attempt to
simplify the expression by applying a "rewrite rule" to generate another expression
which can be simplified in turn. By doing this repeatedly, the interpreter generates a
sequence of expressions; if, at some point, an expression is generated which cannot
be simplified further, the interpreter returns that expression as the answer.
Expressions that cannot be simplified further are called normal forms and the
number of reduction steps taken by an interpreter to produce the normal form of an
expression is usually taken be be a measure of the work performed by the interpreter
in reducing the expression. Examples of reduction-based interpreters are the
normal-order and applicative-order interpreters for the A-calculus.

Since most functional languages can be considered syntactic sugar for the
A-calculus, our research concentrated on interpreters for the A-calculus. Our goal
was to determine the factors which affected the number of times identical sub-
expressions were evaluated. We believed intuitively that if an interpreter shared
larger sub-expressions, it would take fewer steps to find the normal form. To our
surprise, we found that this was not always true. We have shown in [5] that
Wadsworth’s fully lazy interpreter [18] shares more sub-expressions than Henderson
and Morris’ lazy interpreter [10} at each reduction step. Furthermore, we have given
a A-calculus expression for which the fully lazy interpreter takes more steps than the
lazy interpreter. This led us to define the notion of weak normal forms for which it is
in fact true that an interpreter that does more sharing takes fewer steps to find the
answer. The importance of weak normal forms is that practical interpreters return
weak normal forms as answers. We then showed that it is possible to transform any
expression so that a lazy interpreter reducing the transformed expression would

95

FUNCTIONAL LANGUAGES AND ARCHITECTURES

share the same sub-computations as a fully lazy interpreter reducing the original
expression. Finally, the effect of representing A-expressions as combinatory forms
was explored. It was found that sharing was affected not by the alternative
representation itself but by the abstraction algorithm used to transform the
A-expression into the combinatory form.

3. THE MULTIPROCESSOR EMULATION FACILITY

3.1. The Emulator as a Prerequisite to the Dataflow Machine

The Tagged Token Dataflow Machine and associated programming environment
represent a radical departure from both the hardware and software for parallel
processing based on von Neumann processors communicating via shared memory.
A real challenge in building the first Tagged Token Dataflow Machine is to solve two
highly interrelated problems. Firstly, there are few large dataflow programs whose
dynamic behavior is well understood; estimates of dynamic behavior must be based
exclusively on the analysis of the source code expressed in dataflow languages
because of a lack of facilities for executing these programs. This method of gaining
insights into the behavior of dataflow programs can be applied to a very limited
number of application programs because it requires close cooperation of dataflow
and application experts. Application experts have little motivation to spend time to
understand the behavior of their applications on "hypothetical computers”.
Secondly, the architecture of the Tagged Token machine is so different from
conventional processors that it is difficult to estimate some architectural parameters
(e.g., size of buffers) whose effect on the overall performance of the machine may be
critical, without some concrete assumptions about the dynamic behavior of
programs. One way we are trying to resolve this paradoxical situation is by
implementing the Tagged Token Dataflow Machine on a multiprocessor emulation
facility.

3.2. The Emulator as an Interesting Paraliel Processor

In addition to providing a highly productive vehicle for the direct emulation of large
scale dataflow programs, the Emulator is an interesting and innovative
. multiprocessor in its own right. It is the first MIMD machine which can support
general, distributed, asynchronous processes that require relatively large amounts
of interprocess communication and can do so much more rapidly and be more cost-
effective than the equivalent simulation on a single very large SISD machine. This
unique characteristic is a result of two fundamental design decisions.

First, the Lisp workstations being used to build the facility are themseives powerful
machines with sophisticated programming environments. The power lies in the

FUNCTIONAL LANGUAGES AND ARCHITECTURES

supermini class internal architecture of a high-performance micro-engine, wide data
paths, and a high-speed memory subsystem. The machine also has an 1/0 structure
capable of supporting a high-performance interprocessor communication
mechanism. The associated Lisp system provides a good environment for the
development of cooperating asynchronous processes, and thus also a good vehicle
for architectural exploration, assuming that each processing element (or each of its
subsystems) is viewed as a process.

Second, the interprocessor communication networks provide an instrumented,
flexible, and inherently fault-tolerant data transport mechanism that is well-matched
to the processor’s throughput. The network is easily reconfigured and allows
evaluation of a variety of communication strategies including perfect n-cube, planar,
token ring(s), and shuffle exchanges. This permits empirical exploration of the
effects of interconnect topology and bandwidth on the overall machine performance.
The communication controller design is matched to the high-performance of the
Lisp Machine. It provides its own horizontal microcontrollers to permit transmission
and reception of messages concurrently with the normal program execution. Each
switch node supports an aggressive instrumentation, test, and maintenance
subsystem as well as managing the routing tables for the currently supported
network topologies.

In a sense, these two features are not new - at least when taken independently. It
is precisely the fact that mature, high-performance von Neumann machines like the
Lisp Machine and the theory of n-dimensional packet switching exist that reduces
the risk, and thus the time to completion, of the Emulator. What makes this
interesting is that this level of power, a necessary level to run meaningful programs,
has never been assembied in such a flexible and balanced fashion. Previous
implementations have either lacked processor performance, productive
programming environments or, the common problem, a well-matched
communication system that does not impose excessive processor overhead.
Compromises in design either due to cost or narrow intent haven taken their toll.
This really marks the first time that a parallel machine can directly execute and
instrument a reasonably broad class of distributed programs significantly faster than
an equivalent simulation on the largest uniprocessor systems.

3.3. Hardware Development

We view the Emulator as being an evolutionary step toward our goal of building a
VLSI Tagged Token Dataflow processor. !t will aliow us to properly study this
radically different architecture without the usual constraints and commitment of
resources that are required for a typical hardware project. Also, the component of
the Emulator which is being invented, namely the communications network, is
crucial to the realization of a Tagged Token Dataflow Machine. The network is being

97

FUNCTIONAL LANGUAGES AND ARCHITECTURES

designed in three phases, all oriented toward developing VLS for packet
communication over high-speed serial point to point circuits. The circuit switch is
the first phase, while the packet switch and its VL.SI version are the final two phases.

The Circuit Switch: In an effort to get a network operationai, we decided to
adapt the network used by Bolt, Beranek, and Newman in their Butterfly
multiprocessor [14]. The switching node in this network is a 4x4 crossbar with 4 bit
wide data paths. These nodes are interconnected and centrally clocked to form a
synchronous network of arbitrary topology. Messages traversing the network carry
an encoding of the network path they are to take. The adaptation of the BBN design
required re-engineering the switch so that the network will be built solely out of
cards plugged directly into the backplanes of our Lisp Machines. As a
consequence, the design had to allow for longer inter-switch cables. More
importantly, we are designing the necessary buffering and control logic so that the
network presents as little processing load on the associated processors as possible.
Greg Papadopoulos and Eric Hagersten have been doing this design.

We believe there is a high probability that a system based on the circuit switch will
be operational within a year, as opposed to a system based on the packet switch
which may not be available for two years. In a move to reduce duplication of effort,
we have constrained both switch designs to share major subsystems. Our re-
implementation of the BBN circuit switch has proceeded smoothly since September.
We now have three of the four major subsystems designed and entered into our
Computer Aided Engineering station. An extensive discussion of the development
plan for the circuit switch can be found in.[13].

Packet Switch: We think that a good network structure for the Emulator is a
hypercube of high speed, bidirectional, serial interconnections with full store and
forward logic at each switching node [12]. The exploratory design work by Robert
lannucci has shown the approach to be within the capability of modern engineering
techniques [11]. Nevertheless, to achieve the target speed and reliability, the serial
link drivers and receivers within the switch will be implemented with a mixture of
analog and digital circuits. Further, the internal logic of the switch places strong
demands on the circuit technology for speed and, more critically, predictability. Off
the shelf logic typically has a very wide spread of "acceptable" performance
specified by the manufacturer. This largé spread, when combined with the desire to
produce a robust design, forces the use of worst-case performance figures. This
typically translates directly into a bloating of the design in terms of chip count. It
should be noted that we are interested in medium sized volumes of assembled and
tested switch cards because of our own needs and anticipated need for those who
wish to replicate the Emulator.

To solve these problems, we have reached an agreement with 1BM under which

FUNCTIONAL LANGUAGES AND ARCHITECTURES

they have installed a department of four full-time engineers at MIT for three years.
These engineers will help in the design, prototyping construction, and testing of this
packet network.” We are studying the possibility of using an IBM serial data
communications circuit of their own design which more than meets our performance
goals. In addition, IBM will give us access (indirectly through their engineers) to a
medium capacity bipolar gate array technology and to their Engineering Design
System. This should solve our circuit testing problem because IBM will provide us
with tested gate array chips.

During the spring of 1983 a project to study the feasibility of a VLSI version of the
bit-serial transciever was undertaken in the advanced VLSI subject at MIT. It resulted
in the preliminary design of a 100 MHz serial data communications circuit based on
the MOSIS 1.2 um two layer metal cMOS process [7]. The transmitter section
develops a Manchester coded data stream using asynchronous finite state
techniques. The receiver re-extracts data and clock from the Manchester waveform
using an on-chip phaselock loop.

We are continuing- this VLSI effort because the bit-serial transreciever will be a
retrofitable part of this switch and has applications far beyond the Packet Switch. In
VLS! chips, the transistor to 1/0 pin ratio will continue to increase and thus, as the
use of pins for inter-chip communication will rely more heavily on time multiplexing
techniques in the future. Our VLSI version of the bit serial transreciever set is very
robust and implements full flow control. It will allow a multichip system to be
designed according to the synchronous on-chip, a synchronous across-chip
methodology. Thus, traditional chip design techniques can be employed and the
need for centralized clocking eliminated.

3.4. Emulation Software

The Multiprocessor Emulation Facility, developed by Richard Soley, is a large body
of Lisp software which allows its user to quickly and easily prototype a single- or
multiprocessor computer architecture, and to then execute the proposed machine in
emulation. In order to achieve high emulation speed without excessive cost, and to
force systems architects to begin thinking of computers in a distributed,
multiprocessing way, the Emulation Facility is designed to execute on many paraliel
Lisp processors, linked via a variety of communications media.

The general case of a multiprocessor is a group of various asynchronous
independent processing elements with no shared state, connected by a packet
communications network of arbitrary connectivity. MEF supports this type of
architecture directly, by providing a set of software abstractions which facilitate the
modeling of such an architecture in the Lisp language. The abstractions include
programs to define experiments and logical processors. An experiment consists of

FUNCTIONAL LANGUAGES AND ARCHITECTURES

the number and type of processors being emulated, their interconnection topology,
and other information pertinent to running the architecture in emulation. A /ogical
processor is a Lisp program which exhibits the behavior of a physical processor in
the multiprocessor architecture by modifying local data representing the state of the
processor, and communicating with other processors by calling MEF’s message
sending primitives. The MEF will also provide support for dealing with the lower-
level issues of handling networks and protocols used on them, configuring emulated
topologies on top of different physical interconnections of the Lisp Machines, etc.

In addition to these tools, the system includes more mundane subsystems, such as
the Control Panel, which acts as the bootstrap-load processor of the system,
configuring the Lisp Machines taking part in a particular emulation experiment,
broadcasting the experiment to be executed, and setting up the communications
media for the desired interconnection topology. The control panel subsystem also
provides primitives for collection and display of various statistics, gither during
execution, or afterward. '

The MEF system automatically distributes logical processors in the experiment
over the physical Lisp Machines currently configured into the facility. In this way, an
experiment that requires sixteen logical processors can be run on the facility using
one, two, or more physical Lisp Machines. In addition, the Lisp Machines may be
partitioned into separate sub-facilities by the control panel, allowing multiple
emulation experiments to run at the same time.

Although the abstract structure outlined above was chosen for its generality in
emulating multiprocessor configurations, the skeptic will immediately note that it
does not directly support such multiprocessor designs as synchronous processors
(like the Connection Machine, or llliac 1V} or the shared memory model {e.g.,
C.mmp). In fact, this model is abstract enough to allow prototypical implementation
of even these models of parallel computation; generally, another virtual processing
element is added to the emulation experiment definition to model this shared
resource (e.g., clock or memory) of the system. This is actually quite close to the
real hardware implementation of such a system, in which a central clock for
synchronous operation or a central shared memory will actually be a separate
subsystem of the architecture. In addition, interconnection schemes other than
_ packet-switching networks can be simulated on top of our packet switch by using

the packets to simulate individual items in a continuous stream communication
mechanism. :

The implementation of the Multiprocessor Emulation Facility is proceeding
smoothly. We currently have an emulation system, written entirely in Zetalisp, .
running on five Symbolics 3670 processors. We continue to utilize the ten megabit
Ether network, executing Chaos protocols, for our communications medium. As

100

FUNCTIONAL LANGUAGES AND ARCHITECTURES

work progresses on the circuit and packet switch hardware, we are in the midst of
preparation for use of those new and faster media.

We currently have two architectures in emulation. The first, written by Richard
Soley, is a simple von Neumann style machine, emulated as two logical processors
{one CPU and one MEMORY box) connected via a bus (all communications actually
pass through the Emulation Facility software, as described above). This simple
emulation provided a vehicle for debugging parts of the system.

We also have an emulated version of the Tagged Token Dataflow Machine running
on the Emulation Facility. This emulation, developed by Richard Soley, Paul Fuqua,
and Poh Lim, fully supports our current definition of the Tagged Token Dataflow
Architecture. We are already using the dataflow emulation experiment to tune the
design of the Tagged Token Dataflow Architecture. We are executing Id programs,
compiled into machine code, at the rate of one hundred dataflow machine
instructions per second.

We have an immediate pressing need for more speed in the dataflow emulation;
therefore, selected parts of the emulation facility and the dataflow experiment itself
are being hand-tuned to reach the goal of one thousand emulated dataflow machine
instructions per second.

4. RELATED TOPICS

4.1. Logic Programming

A great deal of attention has recently been given to the Fifth Generation Computing
project in Japan, mostly because of its focus on Logic Programming as the
programming method of choice. Logic Programming shares the "single assignment”
characteristic of Functional Programming, as well as the declarative style; hence, it
is of great relevance to our group. In order to learn more about Logic Programming,

during the IAP in January '84, an informal, week long workshop was held. Talks were

presented by Jan Komorowski, who was invited from Harvard, Michael Beckerle,
Gary Lindstrom (a visiting scientist from the University of Utah}, Arvind, and Gordon
Robinson (from the Al Laboratory). The talks covered topics ranging from the
fundamentals of logic programming to current efforts in the parallel processing of
logic programs. :

4.2. New Equipment

Five Symbolics 3600s were acquired as the first of 64 machines for the
Multiprocessor Emulation Facility. These machines are in the process of being

101

FUNCTIONAL LANGUAGES AND ARCHITECTURES

upgraded to 3670s. Each machine has 6 megabytes of main memory and one
machine is equipped with 500 megabytes of disk storage for file service. An
additicnal 1.6 gigabytes of disk memory was installed on the group’s VAX-750, also
for file server use by the 3670s. A total of sixteen 3670s are expected by the end of
this year. Several IBM PCs, networked onto TCP/IP-speaking Ethernet, were also
obtained. The PCs are used for local editing, software development, and laboratory
instrumentation control.

4.3. Support Tools

As his first UROP project, Dinarte R. Morais, an undergraduate member of the
group, implemented an interactive illustrator program, which is now being used by
members of both the LCS and Al labs. The program, called ILLUSTRATE, is an
interactive illustrator for creating pictures composed of lines, curves and text
captions, and was modeled after the DRAW program available on Alto computers, as
described in the Alto User’s Handbook.

The problems with using the existing DRAW program on the Alto computers include
the fact that pictures could not be very complicated due to the relatively small
amount of memory available. In addition, DRAW came as is and consequently could
not be customized. Finally, the few Alto computers left are getting older and less
reliable, and it was hoped that ILLUSTRATE could allow our group to finally do away
with the Altos.

ILLUSTRATE was implemented in ZetaLisp on a Symbolics 3600 Lisp Machine. The
advantages of ILLUSTRATE over DRAW are many. One advantage is that there is no
practical limit to the complexity of a picture created with ILLUSTRATE. More
importantly, we now have the ability to customize the program to suit our needs.

102

10.

FUNCTIONAL LANGUAGES AND ARCHITECTURES

References

Arvind and lannucci, R. A. "Instruction Set Definition for a Tagged-
Token Dataflow Machine," Massachusetts Institute Technology
Laboratory for Computer Science, Computation Structures Group Memo
212-3, Cambridge, MA, February 1983.

Arvind, Culler, D.E., lannucci, R.A., Kathail, V.. and Pingali, K. "The =~

Tagged Token Dataflow Architecture," to appear as an MIT/LCS/TM.

Arvind, Gostelow, K.P. and Plouffe, W. “An Asynchronous Programming
Language and Computing Machine," University of California Technical
Report 114a, Department of Information and Computer Science, lrvine,
CA, December 1978.

Arvind, and lannucci, R.A. "A Critique of Multiprocessing von Neumann
Style," Proceedings of the Tenth International Symposium on Computer
Architecture, Stockholm, Sweden, June 1983.

Arvind, Kathail, V. and Pingali, K. "Sharing of Computation in Functional
Language Architectures,” Proceedings of the Workshop on High-level
Language Architectures, Los Angeles, CA, May 1984,

Backus, J. "Can Programming be Liberated from the von Neumann
Style?" Communications of the ACM 21, 8 (August 1978) 613-641.

Bassett, P.D, Geldens, P.M., Goodhue, J.T. and lannucci, R. "Design of
a 100 MHz cMOS Phaselocked Manchester Encoder/Decoder Circuit,”
Term Paper in VLSl Subject 6.372, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, 1982.

Burge, W.H. Recursive Programming Techniques, Reading, MA,
Addison-Wesley Publishing Company, 1975.

Heller, S. and Arvind "Design of a Memory Controller for the the
Massachusetts Institute . of. Technology Tagged Token - Dataflow
Machine,” Computation Structures Group Memo-230, MIT Laboratory
for Computer Science, Cambridge, MA, October 1983,

Henderson, P. and Morris, J.H. "A Lazy Evaluator," Conference Record

of the Third ACM Symposium on Principles of Programming Languages,
95-103, Atlanta, GA, January 1976.

103

FUNCTIONAL LANGUAGES AND ARCHITECTURES

11.

12.

13.

14,

15.

16.

17.

18.

lannucci, R. "Packet Communication Switch for a Multiprocessor
Computer Architecture Emulation Facility,” Computation Structures
Group Memo-220, MIT Laboratory for Computer Science, Cambridge,
MA, October 1982,

Ng, G.W. "Design of a Packet Communication Switch for a
Multiprocessor Computer Architecture Emulation Facility Part 1: Clock
Subsystem, Functional Languages and Architectures Group Design
Note 2, MIT Laboratory for Computer Science, Cambridge, MA,
November 1883.

Papadopoulos, G.M., lannucci, R.A. and Chiang, C.J. "Preliminary
Design for MEF Near-Term Communication Switch," Functional
Languages and Architectures Group Design Note 4, MIT Laboratory for
Computer Science, Cambridge, MA, January 1984,

Rettberg, R., Wyman, C., Hunt, D., Hoffman, M., Carvey, P., Hyde, B.,
Clark, W. and Kraley, M. "Development of a Voice Funnel System:
Design Report,” Bolt Beranek and Newman, Inc. Technical Report 4098,
Cambridge, MA, August 1979.

Traub, K.R. "An Abstract Architecture for Parallel Graph Reduction,"
MIT/LCS/TR-317, MIT Laboratory for Computer Science, Cambridge,
MA, September 1984.

Turner, D.A. "A New Implementation Technique for Applicative
lLanguages,” Software -- Practice and Experience 8 (1979) 31-49.

Tumer, D.A. "The Semantic Elegance of Applicative Languages,”
Functional Programming Languages and Computer Architecture 85-92,
October 1981.

Wadsworth, C.P. Semantics and Pragmatics of the Lambda-Calculus,
University of Oxford Press, Oxford England, 1971.

Publications

. Arvind, Dertouzos, M.L. and lannucci, R.A. "Multiprocessor Emuiation

Facility,” MIT/LCS/TR-302, MIT Laboratory for Computer Science,
Cambridge, MA, September 1983.

Arvind and tannucci, R.A. "Two Fundamental Issues in Multiprocessing:

The Dataflow Solution," MIT/LCS/TM-241 MIT Laboratory for Computer
Science, Cambridge, MA, September 1983.

104

10.

11.

12,

FUNCTIONAL LANGUAGES AND ARCHITECTURES

Arvind, Kathail, V. and Pingali, K.K. "Sharing of Computation " in
Functional Language Implementations,” Proceedings of the Workshop
on High-Level Language Architectures, L.os Angeles, CA, May 1984,

Arvind and Culler, D.E. "Why Dataflow Architectures?” Procesdings of
the Fourth Jerusalem Conference on Information Technology,
Jerusalem, lsrael, May 1984. (Also CSG Memo 229-1)

Bassett, P. D., Geldens, P., Goodhue, J.T. and lannucci, R.A. "A 100
MHz. cMOS Manchester Encoder/Decoder Circuit” MEF Design Note
#6, MIT Laboratory for Computer Science, Cambridge, MA, May 1983.

Brobst, S.A. “Simulation Techniques in the Design of a Data Flow
Supercomputer," Proceedings of the 1984 Summer Computer
Simulation Conference, Boston, MA, July 1984,

Desai, E. D. and Pinkerton, J.T. "Design of a Packet Communication
Switch for a Multiprocessor Computer Architecture Emulation Facility
Part 2: Input FIFO, Output Buffer, Sequencer, and Scheduler, MEF
Design Note # 3, MIT Laboratory for Computer Science, Cambridge MA,
September 1983. '

Desai, E. D. "Specification for a High Speed Point to Point Serial Data
Communication Circuit,” MEF Design Note #8, MIT Laboratory for
Computer Science, Cambridge, MA, May 1984.

Heller, S.K, and Arvind, "Design of a Memory Controller for the MIT
Tagged-Token Dataflow Machine," Proceedings of IEEE ICCD 83,
Portchester, NY, October 1983. (Also CSG Memo 230)

Ng, G. "Design Of A Packet Communication Switch For A
Multiprocessor Computer Architecture Emulation Facility Part 1: Clock
Subsystem" MEF Design Note #2, MIT Laboratory for Computer
Science, Cambridge, MA, September 1983.

Papadopoulos, G.M. and Arvind "Dataflow Models for FFault-Tolerant
Control Systems," American Control Conference Proceedings, San

~ Diego, CA, June 1984.

Pingali, K. and Arvind, "Efficient Demand-Driven Evaluation (1),"
MIT/LCS/TM-242, Laboratory for Computer Science, Cambridge, MA,
September 1983.

105

FUNCTIONAL LANGUAGES AND ARCHITECTURES

13.

14.

15.

Pingali, K. and Arvind, "Efficient Demand-Driven Evaluation (I1),"
MIT/LCS/TM-243, Laboratory for Computer Science, Cambrtdge MA
September 1983,

Pinkerton, J. T., lannucci, R.A. and Papadopoulos, G. M. "A
Comprehensive Hardware Laboratory for the Multiprocessor Emulation

Facility," MEF Design Note # 4, MIT Laboratory for Computer Science, = _ = =

November 1983.

Soley, R. M. "A Third Opinion on Dataflow Machines and Languages,"
to appear in IEEE Computer.

Theses Completed

Fuqua, P.C. "Emulating the 1-Structure Memory for the Tagged-Token
Datafiow Machine," S.M. thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, May 1984.

Muriph, S. W. "Optimized Execution of the APL Structured Functions,”
S.M. thesis, MIT Department of Elecirical Engineering and Computer
Science, Cambridge, MA, May 1984, .

Chambers, T. B. "A Database System for Parameters of Data Flow
Machine Simulation," S.B. thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, May 1984,

Desai, E. D. "Specification for a High Speed Point to Point Serial Data
Communication Circuit,” S.B. thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, May 1984.

Douglass, S. A. "Demand-driven Efficiency on Dataflow Machines," S.B.
thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, May 1984.

Traub, K. R. "An Abstract Architecture for Parallel Graph Reduction,”
S.B. thesis, MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, May 1984,

Ying, J. J. "Instrumentation to Collect Statistics for a Multiprocessor

Emulation Facility," S8.B. thesis, MIT Department of Electrical
Engineering and Computer Science, Cambridge, MA, May 1984.

106

FUNCTIONAL LANGUAGES AND ARCHITECTURES

Theses in Progress

. Beckerle, M. J. "The Graph Resolution Method for Logic Programming,"
MIT Department of Electrical Engineering and Computer Science,
Cambridge, MA, expected April 1985.

. Brobst, S. A. "Token Storage Requirements in a Dataflow
Supercomputer,” MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, expected May 1985.

. Culler, D.E. "Resource Management for the Tagged-Token Dataflow
Architecture,” MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected December 1984,

. Soley, R. M. "Generic Software for the Emulation of Multiprocessor
Architectures,” MIT Department of Electrical Engineering and Computer
Science, Cambridge, MA, expected December 1984,

. Vafa, B. "A Resource Management Policy for the Tagged-Token Data
Flow Machine,” MIT Department of Electrical Engineering and
Computer Science, Cambridge, MA, expected December 1984.

Talks

. Arvind, "The Tagged-Token Dataflow Machine," Honeywell Avionics
Division, Minneapolis, MN, August 19, 1983.

. Arvind "The Tagged-Token Dataflow Machine,” The Sixteenth IEEE
EASCON, Washington DC, September 19, 1983.

. Arvind "Two Fundamental Issues in Multiprocessing,”" The 1983 IFIP’s
Congress, Paris, France, September 23, 1983.

. Arvind "The Tagged-Token Dataflow Machlne,“ |BM-Research, Zurich,
Switzerland, September 26, 1983.

. Arvind "The Tagged-Token Dataflow Machine," General Electnc,
Schenectady, NY October 18, 1983.

. Arvind "The Tagged-Token Dataflow Machine,” ICOT, The Institute for
New Generation Computers, Tokyo, Japan, January 18, 1984.

. Arvind "The Tagged-Token Dataflow Machine," Yale, New Haven, CN
March 7, 1984,

107

FUNCTIONAL LANGUAGES AND ARCHITECTURES

- 8

10.

11.

12.

13.

14.

15.

16.

17.

18.

19,

20.

Arvind "The Tagged-Token Dataflow Machine,” University of Delaware,
DE, March 19, 1984.

Arvind "Fundamental Issues in the Design of Multiprocessor
Computers," University of Texas, Austin, TX, March 26, 1984,

Arvind "The Dataflow Solution," University of Texas, Austin, TX, March
27,1984,

Arvind "Sharing of Computation in Functional Language
Implementations,”" International Workshop on High-Level Computer
Architectures, Los Angeles, CA, May 24, 1984.

Arvind "Sharing of Computation in Functional Language
Implementations,” IFIP Working Group 2.2 Meeting, MIT Endicott
House, Needham, MA, June 12, 1984,

Brobst, S. A. "Simulation Techniques in the Design of a Data Flow
Supercomputer,” 1984 Summer Computer Simulation Conference,
Boston, MA, Ju!y 24,1984,

Culler, D. E. "Why Dataflow Architectures?" Fourth Jerusalem
Conference on Information Technology, Jerusalem, Israel, May 1984.

Heller, S. K. "Design of a Memory Controller for the MIT Tagged Token
Dataflow Machine," IEEE International Conference on Computer
Design, Portchester, NY, October 31, 1983.

fannucei, R.A. "VLSI: The Next Cottage Industry?," IBM Glendale
Laboratory, Endicott, NY, September 14, 1983.

lannucci, R.A.' "Phaselocking for Fun and Profit," MIT VLSI Design
Review, Cambridge, MA, December 1983.

lannucci, R.A. "Dataflow Architecture: an Introduction,” IBM Glendale
Laboratory, Endicott, NY, December 1983.

lannucci, R.A. "Dataflow Architecture: an Exercise in Top-Down
Design," IBM Glendale Laboratory, Endicott, NY, December 1983.

Papadopoulos, G.M. "Dataflow Models for Fault-Tolerant Control
Systems," American Control Conference, San Diego, CA, June 1984.

108

21.

22,

23.

FUNCTIONAL LANGUAGES AND ARCHITECTURES

Pingali, K.K. "Demand Driven Evaluation_ on Dataflow Machines,”
University of California, Irvine, CA, May 27, 1984,

Pingali, K.K. "Demand Driven Evaluation on Dataflow Machines," IFIP
Working Group 2.2 Meeting, MIT Endicott House, Needham, MA, June
12, 1984.

Soley, R. M. "A General Multiprocessor Emulation Facility," First Annual

ACM Northeast Regional Conference, University of Lowell, Lowell, MA,
March 20, 1984.

109

FUNCTIONAL LANGUAGES AND ARCHITECTURES

FUNCTIONAL LANGUAGES AND ARCHITECTURES

TABLE OF CONTENTS
FUNCTIONAL LANGUAGES AND ARCHITECTURES 83
1. Introduction 85
2. Tagged Token Dataflow Project 86
3. The Multiprocessor Emulation Facility o6

4. Related Topics 101

FUNCTIONAL LANGUAGES AND ARCHITECTURES

LIST OF FIGURES

Figure 7-1: A Block Diagram of the Abstract Machine 87

CXil

