LABORATORY FOR MASSACHUSETTS
INSTITUTE OF
COMPUTER SCIENCE TECHNOLOGY

The Design of a VLSI Self-timed Ring Buffer
Using Signal T'ransition Graphs

Computation Structures Group Memo 247
May 1986

Tam-Anh Chu

‘T'his version supersedes a previous V1.SI Memo. No. 85-240 dated
March 1935. A short version of this paper entitfed “Design of VI.SI
Asynchronous F1HEO Queues for Packet Communication Neiworks,” jointly authored
with Clement K.C. Leung, was. presented at the International Conference on
’arallel Processing 1986.

This rescarch was supported in part by a National Science Foundation Grant
7915255 and a Hughes Fellowship. ,

u)

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSEI'TS 02139

The Design of a VLSI Self-timed Ring Buffer
using Signal Transition Graphs !

Tam-Anh Chu
Department of EECS, M.I.T.
Cambridge MA 02139

Abstract

Throughput and latency in packet communication networks are determined to a
large extent by throughput and latency in the first-in first-out (FIFO) queues used for
packet buffering in these networks. We describe a design approach for self-timed FIFO
queues with a novel organization which allows tradeoffs between area, throughput
and latency in VLSI implementations. This flexibility is made possible by the use
of asynchronous distributed control circuits. These circuits are synthesized directly
from a graph model called Signal Transition Graphs, and are completely hazard-free.
A number of nMOS test chips were fabricated and they worked at a 4 Mbytes/sec
throughput rate.

1 Introduction

Multistage interconnection networks (MIN) are used to support communication among
processing and storage modules in multiprocessor architectures [2]. To use a packet routing
MIN, modules communicate by sending packets to each other. A packet consists of an
address and data. The address is used to forward the packet along a path through the
network from the sender to the destination module. Multistage interconnection networks
are usually constructed out of N x N crossbar switches, where the number of ports N is
determined by performance requirements and packaging constraints. A switch forwards
an input packet to an output port according to the destination address of the packet.
Each switch may also provide buffering storage for packets whose forwarding paths are
temporarily blocked by other network traffic. The buffering storage is usually managed by
a first-in first-out discipline.

In this setting, the design of FIFO queues is an important consideration in the design of
practical packet routing networks. We present an approach for designing FIFO queues in
VLSI technology which allows tradeoffs between area, latency and throughput. At one end
of the design spectrum, an area-efficient implementation with high throughput, but long
latency, can be obtained. In this organization, the register stages are connected serially to
allow data to ripple through; there is no global communication. At the other end of the
spectrum is a queue with minimal latency, but somewhat lower throughput rate due to

!This version supersedes a previous CSG Memo. No. 247 dated March 1985. A short version of this
paper entitled “Design of VLSI Asynchronous FIFO Queues for Packet Communication Networks,” jointly
authored with Clement K.C. Leung, is presented at the International Conference on Parallel Processing 1986.

increased delay in the control operations and in the loading of global buses. On a VLSI
chip, these buses are sets of wires carrying input and output data which are connected
to the input and output of all register stages. An optimal design somewhere in the range
of these extremes can be chosen depending on the application. A queue of N stages can
be partitioned such that only M register stages load the buses; given that the permissible
latency is L stage delays, then M = N /L. Thus, this distributed organization also reduces
the amount of global communication; this is particularly important for large queues, where
the loading on control and data buses approaches the level existing in a typical memory
array.

Our FIFO queue design makes use of distributed control structures and local com-
munication. There are only a few types of modules in this design, with modules of each
type replicated as necessary to construct complete FIFO queues. The distributed control
structure allows the exploitation of concurrency. Concurrent read/write supports a higher
throughput rate. The FIFO queue is also completely data driven, hence no potential
read/write conflict exists and there is no need for any arbiter.

The distributed control organization of the FIFO lends itself naturally to a design
using asynchronous, self-timed hardware circuits. Towards this end, a specification tech-
nique for asynchronous control structures based on a graph model called Signal Transition
Graphs (STGs) have been proposed, and methods for direct and efficient synthesis of self-
timed hardware circuits from such specifications have been developed. The STG model
is especially appropriate for control modules which exhibit a high degree of asynchronous
concurrency. A preliminary discussion of the STG model and its expressiveness and im-
plementability are given in [4]. The use of STGs in the design and implementation of a
self-timed 2 x 2 packet router is reported in [3].

The paper is organized as follows. Section 2 describes the functional behavior and
alternate organizations of the FIFO queue. Section 3 introduces the STG model and
discusses its use in the specification of self-timed circuits. In Section 4, STG specifications
of the building block control modules for realizing the various FIFO queue organizations
and their implementation are presented. Finally, Section 5 presents the results and some
further discussions on the STG model.

2 Organization of the FIFO Queue

This section discusses the one and two-dimensional organizations for the FIFO queue (Figs.
1 and 2). The R-module is a control circuit designed to support pipelined operation of
the register stages. A R-module has an input link from a previous stage, an output link
to the next stage, and an output link to a register module in the same stage to control
data loading into this register. A link is a pair of ready/acknowledge wires, depicted as
an arc with the arrow pointing in the direction of the ready signal. When input data is
available for loading into a register, a ready signal is sent to its R-module controller on the

e

regishyr slige

] Ir le O -]
control moduie el R L ow JR R I R |:

4 u % “ Cutput data

Figure 1: Organization of a one-dimensional (linear) FIFO queue.

I, wire (Fig. 1). The actual loading is performed when the R-module controller sends a
ready signal to the register on the L wire. Once data have been loaded into a register, an
acknowledge signal is sent to its R-module on the D wire. The R-module then returns an
acknowledge signal on the I, wire of the input link and forwards a ready signal on the O,
wire of its output link concurrently. The next data item will be loaded into its register
only after the R-module has received an acknowledge signal on its O, wire and another
ready signal on its I, wire. Thus, the operation of the R-module is pipelined. Data from
one stage will be forwarded to the next unless the latter is full. The throughput rate of
this queue is determined by the delays of the R-module and registers, whereas its latency
is proportional to the number of stages in the queue.

A two-dimensional, or ring organization is shown in Fig. 2. This queue consists of M
linear queues, each of L stages, and two token rings for controlling input /output operation.
The capacity of the queue is M x L and the latency is proportional to L. I-modules are
connected together to form a token ring to control the writing of data into the queue.
The ring is initialized such that only one I-module contains the token, marking the next
available empty register stage. Since the Write-request signal, carried on wire W,, is
connected to all I-modules, the token should not be passed on to the next module in the
ring if the Write-request signal is still active. This is an important timing restriction.
The Write-acknowledge on wire W, is the output of an OR gate (shown as a heavy bar
with a + sign) whose inputs are acknowledge wires from all I-modules. Similarly, reading
from the FIFO is controlled by an Output token ring, formed by connecting O-modules
together. Data written into the linear queues ripple to their output side, ready to be gated
onto the output bus. The Output ring is initialized such that only one O-module contains
the token. This module then controls the timing and signaling for gating of data to the
output bus; the detailed organization is explained in Section 4.2. The Read-request signal
on wire R, is the output of an OR gate whose inputs are request wires from all O-modules.
Another timing restriction exists for the Output token ring: since the Read-acknowledge

W, = : : 7
t ! '] o {ale hiput token ng
| — | -

mnk

Tyt
R R
1Xia Bus
I R K
. . . I incar queues
of length |
R R LS
hnk l l l e Qutpur data bus
U—l OL — 0 Quiput teken ring
'H Or-Lile - ks
4 & l 1 -

Ra

Figure 2: The ring organization of a FIFO queue

signal, carried on wire R, is broadcast to all O-modules, the token should not be passed
on to the next module while Read-acknowledge is still active.

The Ring buffer which we fabricated is one with minimal latency (L = 1), with each
of the linear queues containing exactly one stage. Registers in each stage have inputs
connected to the input data bus, and outputs connected to the output data bus.

3 Signal Transition Graphs

In this section we introduce the STG model and its application to the specification of
pipeline controllers. A more complete discussion of STG can be found in {5]. In short,
STGs are a form of Petri nets restricted by a set of axioms, and their components (such
as transitions and places) assigned attributes related to physical circuits. The result is
a graph model which is much more amenable to analysis due to the reduced complexity,
and still retains sufficient expressiveness for specifying most common behaviors of control
circuits including concurrency, choices and conflicts.

3.1 The STG notation

A hardware circuit consists of an interconnection of logse elements, each having an output
terminal and a number of input terminals. Every input terminal is connected either to an
input terminal of the entire circuit, or to an output terminal of another logic element in
the circuit. The set of all terminals of a circuit is call the set of signals M. In order to
describe the dynamics of a circuit, a set of signal transitions T = M x {+,-} is used to
specify the rising and falling transitions of each signal in M. For each i € M, its associated

transitions are denoted by i+ and {—. It is often convenient to use the notations t and
to denote pairs of transitions, such that if ¢ = i+ then 7 — t— and vice versa.

For the purpose of this Presentation, a STG is a directed graph represented as a triple
(T, Tgo, R) where T is the set of signal transitions (defined over a signal set M)> Tro the
set of transitions which are enabled in the initial state of the circuit, and R C T x T
an srreflexive, intransitive relation over the set of transitions, called the causal relation.
Graphically, ¢, Rt; is shown as an arc between two transitions: ¢; — ;. Let R* C T x T
denote the transitive closure of R, tiR*t; means that there exists a directed path from ¢,
to t; this is shown graphically as ¢, —p t2. The semantics of STQ can be expressed in
terms of transition sequences and their compositions; this has been carried out in [5] using
trace theory [13]. Informally, ¢, R¢; means that the occurrence of transition ¢; causes that
of transition t,; this implies that if the circuit is in some state s in which transition ¢, is
enabled and eventually occurs, then the occurrence of t, brings the circuit to another state
s' say, in which ¢, is enabled and hence will eventually occur. This last statement hints
that given an initial state of the circuit (in which transitions in Tg, are enabled) and a
STG expressing the causal relation between its signal transitions, one can generate a state
transition graph from the STG. A circuit realization can then be obtained from the state
graph. Furthermore, a constraint t1Rt; can be implemented as a logic element with ¢; as
one of the inputs and ¢, as output. This important observation allows the decomposition
of a STG specification into smaller subgraphs, each of which contains only transitions
which are causally related. Thus, STG allows a very efficient and direct implementation
based on this decomposition principle. This is a unique feature of STG compared to other
approaches.

A multi-arc connects several tail transitions to one head transition, or one tail transition
to several head transitions. We call these arc configurations And Forks and Joins (there
are also Or constructs for specifying choices or conflicts in the complete STG model), and
their diagrammatic notations are shown in Figure 3a. An And-fork is used to describe
a situation in which the occurrence of a tail transition causes the occurrences of all of
the head transitions. An And-join describes a situation in which all tail transitions in the
relation have to occur to cause the occurrence of the head transition. These And constructs
are used to describe concurrent operations in circuits,

3.2 Liveness and Persistency

A STG has a deadlock-free and hazard-free circuit realization only if it satisfies the proper-
ties of liveness and persistency. Since STGs are merely behavior specifications from which
state graphs can be derived for implementation, these properties must ultimately be based
on the latter type of graphs. However, there is a one-to-one correspondence between them,
so that liveness and persistency will appear as synlactic constraints on STGs. We discuss
briefly these properties and their STQ syntactic ramifications .

The continual operation without deadlocking of control modules is a property called

5

2 q :
2 Q2
H e

(@) b)

ST
DO K
© b .m

Figure 3: (a) Conjunctive Forks and Joins. (b) A persistency constraint. (¢) A specification
of pipelined operation. (d) The partial order resulted from “unfolding” of the STG in (c).

liveness. A STG is live iff its underlying state transition graph is strongly connected. The
necessary condition for a STG to be live consists of (i) the STG is a strongly connected
graph, and (ii} there is a simple cycle containing both t and ¥ for every t € T. Since live
STGs are strongly connected, concurrency and ordering have to be characterized differ-
ently: two transitions can occur concurrently iff there is no simple cycle containing both
of them in the STG; equivalently, the occurrence of two transitions are ordered iff there
exists a simple cycle containing both of them.

Due to the similarity to a special class of Petri nets called marked graphs (6], it may
appear that the form of STGs discussed here is always persistent. However this is not the
case, as the underlying state graph may exhibit nonpersistency whenever two transitions
are enabled in the same state and the occurrence of one removes the enabling condition of
the other. A persistency constraint is an ordering constraint between two transitions used
to eliminate nonpersistency, as illustrated in Fig. 3b. For a live STG, the condition tR+7
always holds for every transition ¢. If Ry exists as shown and wR*? (depicted as an heavy
arc in Fig. 3b) were not present, then transitions F and u can occur concurrently. Suppose
the course of action tRu is implemented by a hardware element with ¢ as one of its inputs
and u as its output. Concurrency between 7 and u implies that while the hardware element
is reacting to ¢ to cause u, may be occurring simultaneously at the input of that hardware
element. This is commonly known as a race condition in hardware circuits and can lead to
malfunction. The approach to deal with this problem is to impose a persistency constraint
on STG specifications, namely uR*%, to eliminate this nonpersistence behavior. Hence, a
STG specification is persistent if every transition u caused by a transition ¢ precede t,ie.

6

Vu €T, if tRu then uR*i.

3.3 Specification of Pipelined Circuits.

We can now develop a STG specification for pipelined control operations such that liveness
and persistency are satisfied. Consider two cycles of transitions as shown in Fig. 3c.
The left cycle (with @ and @) represents the control sequence of the input portion of a
pipelined circuit; the right one (with b and) represents the control sequence of its output
portion. The necessary condition for liveness is satisfied by each cycle if every transition
in a cycle is paired with another in the same cycle. We want the two cycles to operate
in parallel as much as possible, with the left one initiates control actions on the right
one through arc aRbd. In order for the STG to be persistent, three additional arcs (in
heavy line) are required. Because of the existence of arc aRb, arc bRa is required as a
persistency constraint to prevent concurrent firing of b and @. The introduction of bRa
requires adding aRb to prevent concurrent firing of @ and 3, and this in turns requires arc
bRa. These four arcs allows the synchronization of two cycles of transitions in pipelined
fashion such that the resulting STG is persistent. These constraints can be viewed from
a different perspective by “unfolding” the cycles (Fig. 3d) into partial orders, in much
the same fashion as occurrence nets [1]. In this type of nets, a node such as a represents
an instance of a transition e in a cycle of operation. It can be seen that the persistency
constraints appear as aRbRaRb... and thus forces these transitions to occur in sequence.
Otherwise, transitions belonging to other branches of the cycles can occur concurrently.

4 STG specification of control modules

In this section we apply the STG model to specify the control modules used in the FIFO
organizations in Section 2. We will illustrate how to specify a STG such that it meets the
liveness and persistency conditions set forth in Section 3. Once a STG satisfying these
conditions is obtained, it can be translated directly into circuit modules, using the synthesis
steps discussed in [5]. We will give the hardware implementation obtained through this
synthesis procedure for each STG specification, and discuss the procedure itself informally.

For all the control modules we will specify, event occurrences are signalled over control
links, using the reset signaling handshake protocol {11]. Usually, an occurrence of an event
is signalled by a positive transition on the ready wire of the control link; its acknowledgment
is signalled by a positive transition on the acknowledge wire of the control link. The signals
on these links are then reset through negative transitions before the occurrence of the next
event can be signalled.

While liveness and persistency are considered to be fundamental properties of STG,
there are other properties more related to the implementation of control circuits according
to a certain design methodology. Two such constraints pertinent to the ensuing discussions
called R1 and R2 are described.

R1 This constraint concerns the behavior in the initial state of a control circuit oper-
ating with the reset signaling protocol. Starting from the idle initial state, every control
module used in the FIFO organizations alternates between an active phase consisting en-
tirely of positive signal transitions, and a reset phase consisting entirely of negative signal
transitions. In a circuit implementation, the signal state at each terminal is identified with
a signal transition at that terminal: if the state of a signal u is 1 (0), it implies that u+
(1) has occurred. If the initial state of a circuit is all O’s then negative transition of
the form u— must have occurred in each of these signals in the immediate past. Thus,
any positive transition in a STG, say u+ which is preceded only by negative transitions
of the form ¢— will always be activated in this initial state. When this is not desired, an
artificial constraint from some other positive transition r+ to u+ must be added. Hence,
it is required that for every STG, the subgraph induced by the set of positive transitions is
connected.

R2 The second constraint results from the communication discipline imposed on a
control circuit. Control circuits operating under the reset signaling protocol uses pairs
of ready/acknowledge wires to communicate with the external world. A transition on the
acknowledge wire can only occur in response to a transition on the ready wire and vice
versa. For a pair of wires {I,, 1.} where I, is an input ready and I, an output acknowledge,
this communication interface to the external world is specified in a STG by the pair of
constraints {I, — RI+,I, + RI,—}. Similarly for a pair of wires {O,,0,} where O,
is an output ready and O, an input acknowledge, its corresponding set of constraints is
{0, + RO, +,0, — RO,—}. Thus, in a STG, every transition of an input signal has ezactly
one transition which directly precedes i, and this transition must be that of an output
signal. Transitions of an input signals are underlined to distinguish it from transitions of
“non-input” ones.

The remaining of this section describes the operation of the I-,0- and R-modules and
their STG specifications. It will be seen that their STGs satisfy the liveness and persistency
properties as discussed previously.

4.1 The I-module

An I-module controls the loading of input data into a linear queue (Fig. 2). When its turn
comes, a token is passed to the I-module from its immediate predecessor in the token ring,
through a control link P = {P,, P.}. Upon receiving the token, the I-module responds to
the next input request on its W = {W.,W,} control link by sending a load request to the
linear queue it controls through its I = {I;, 1.} control link. After loading a new data item
into the linear queue, the I-module forwards the token it holds to the next I-module in the
token ring through its N = {N,, N,} link.

The STG description of I-module in Fig. 4 contains two main cycles, the left one coor-
dinates the reception of the ring token with the reception of the next data item presented
to the FIFO queue. The right one manages the forwarding of ring token to a successor

8

Figure 4: STG description and realization of the I-module

I-module. The *-arc (W, — RN,+) implements the timing constraint discussed earlier,

such that N, does not go high (to pass a token to the next module) until after the in-
put Write-request W, has gone low. These two cycles and the *-arc together provide the
specification for proper event sequencing in the I-module. Other arcs are to be added to
satisfied persistency and other constraints discussed above. First, arc D, ensures that all
positive transitions form a connected subgraph according to constraint R1. Since D,isa
constraint from transition I,+ to N,+, the pairs of transitions {I.+,1,-} and {N,+, N.-}
could be used for implementing the persistency constraints. This set of arcs would include:
L+ RN+, N, + RI,—, I, - RN,—,and N, - RI,+. However, since I,+ and I,— are
transitions of an input signal, each can have no more than one incident arc according to
constraint R3. To enforce these constraints, we change N, + RI,— to N, + RI,—, and,
"N, — RI+ to N, — RI+. These final constraints are shown as D; — D, in Fig. 4.

Liveness and persistency are satisfied by this STG. The synthesis procedure produces
a state graph, from which the realization in Fig. 4 is obtained. The logic equation for I, is
I =W.PN, + LW, + P,+N,) and its implementation is a C-element with inputs W,, P,
and N,. The logic equation for N, is N, =NW,.I, + N,(N .+ I,) and its implementation
is as shown in Fig. 4. The reader can readily verify that the circuit operates according to
its STG specification.

4.2 O-module

The O-module controls the gating of output data in one of the linear queues onto the
output bus (Fig. 5). Its operation is somewhat similar to that of the I-module. When

9

its turn comes, a token is passed to an O-module from its immediate predecessor in the
token ring, through a control link P. The O-modyle which receives the token will respond
to an output ready on link O from its linear queue by sending a gating request on link G
(this link is not shown in Fig. 2). After data have been gated onto the output bus, the
O-module sends a Read request to the external world on link R. Upon acknowledgment
from the external world, it forwards the token it holds to the next O-module in the token
ring though its N link.

As in the STG for the I-module, the STG for the O-module also has two main cycles.
The one on the right forwards the ring token. The one on the left coordinates the receipt
of the ring token and the receipt of a new piece of data from the linear queue with the
gating of this new piece of data onto the output bus and the reading of this new piece
of data from the output bus by the outside world. During the reset phase, G,— (Fig.
5a) disconnects the output of the linear queue from the output bus, the R control link is
then completely reset before the token is passed on to the next O-module on the token
ring via N,+. This latter sequencing is necessary because R, is fed to all O-modules.
The constraint R, + RN,+ is added so that all the positive transitions form a connected
subgraph to satisfy constraint R1.

The STG in Fig. 5a has an inconsistency in that R,+ and R,— both precede N, +,
which requires the signal at node R, in the hardware implementation to be both at 0 and at
1 in order for signal N, to undergo a positive transition. We eliminate this inconsistency by
introducing nodes y+, and y— as in Fig. 5b. Additional arcs emanating and terminating
at node y are also introduced to satisfy the persistency constraints for proper pipelining
between the two cycles. -

If the STG in Fig. 5a were implemented directly according to our techniques, the
hardware circuit whose output is P, will have as inputs R, and F,. In the implementation
obtained from Fig. 5b, this hardware circuit will have only a single input y. Introducing
nodes can lead to simplified implementations much as eliminating common subexpressions
in computer programs. In Fig. 5c, another pair of nodes £+ and z— are introduced,
reducing the inputs to the circuit for generating y from 4 to 3, and reducing the inputs to

the circuit for generating G, from 3 to 2. Implementation of the STG in Fig. 5¢ is shown
in Fig. 6.

4.3 R-module

The R-module is a pipelined module which controls the loading of data into a register.
As shown in Fig. 7, it has an input link I, an output link O, and communicates with a
register via the control signals L and D. The arrival of input data is signalled by I,+. L+
initiates the loading of this new data into the register. The completion of data loading is
indicated by D+. Signal D is not an input signal to the R-module in this design, rather
it is generated by some internal delay mechanism to match the delay of data latches used
in the registers. This delay mechanism is further detailed below.

10

NN
Prv (_)r+
Giri
'
Cin + O Oa Gr Ga
: P
Rr+
'
Ra + I'r —— = Np
| [P — bv——— N\a
N -
Pa+ Qa+ G- ‘\
i b / il
o Ge A Pa k'
Rr-- \ Block diagram of O-module
' by +
Bi.-
Oa-- () Enitial specification (incomplete)

(b} Introduce node ¥ (¢) Introduce node x

Figure 5: Refinements of STG specifications of O-module.

11

Gatr Gr fia

e

(‘ o Nr

C

R}
Ra Rr

Figure 6: Implementation of O-module.

The STG specification of the R-module (Fig. 7a) contains two cycles: the left one
contains transitions of link 7 and signals L and D, the right one contains those of the
output link O. After D+ occurs, indicating that data have been stored, the R-module
turns off the load signal L before raising the acknowledge signal I; this allows the input
data to change only after the registers have disconnected their input gates. The *-arc
implements constraint R1. Transition D+ also causes the R-module to raise output ready
O, through arc D,. Persistency could then be satisfied with the set of ares D + RO, +,
O, + RD-, D, — RO,— and O, — RD+. There is one other sequencing constraint
that needs to be satisfied, however. After O,+ occurs, transitions D— and I,— take place -
in succession, initiating another input cycle. If the input side operates “faster” than the
output side, then data overwrite can be prevented by inhibiting the next L+ until after the
current output has been acknowledged through O,+. Note that this constraint O, + RL+,
when added to the STG, also enforces the last constraint O, ~ RD+ needed to ensure
persistency, which can now be removed.

From this graph, the synthesis procedures are applied to obtain a circuit implemen-
tation as shown in Fig. 7b. The logic equation for Dis D = [, + D(R; + R,) and its
implementation is a RS flipflop with the reset input being R,.R,;. This circuit suggests
that the delay of the RS flipflop can be used to “time” the loading operation of data regis-
ters. This technique works weil in integrated circuits because delays of similar components
track each other in a wide range of voltage and temperature variation. In an nMOS imple-
mentation, as shown in Fig. T¢, the RS flipflop is implemented as a standard pseudo static
register. This register can be conveniently reset by pulling node D low directly through
a pull-down transistor (the small triangle is the symbol for Ground). When L goes high,
it turns on the pass transistor which connects a high voitage to the internal input node
of the register. After some delay, node D is set to high. Signal H = T is used to close
the feedback loops when L is low. The data registers have the same configuration and are
controlled by signals L and H. The timing diagram for the R-module is shown in Fig 7d.

12

5 Result and Conclusion

A FIFO with 8 stages and 9-bit wide data path was designed, using a 4 micron nMOS
technology. The chip size (including pads) is 3.15 x 2.25mm?. Six chips were received
from MOSIS, they were tested and five were fully operational at a throughput rate of
approximately 4 MBytes/sec. An nMOS circuit diagram and a photomicrograph of the
chip are shown in Fig. 8, the lower portion is the control circuitry, with R-modules on
top, I-ring in the middle and O-ring at the bottom. The control circuits take a relatively
large amount of area in this chip. However, in a 2-dimensional organization with L > 2,
the overhead due to I-modules and O-modules can be reduced significantly.

In this paper, Signal Transition Graphs have been used as a specification too! for
asynchronous control modules. A STG specification can be viewed as an interpreted Petri
net in which each transition is identified with a signal transition in a hardware circuit. In
the synthesis approach proposed, a state transition graph is generated from a STG and
then is used to derive logic equations and hardware structures for the signals. A STG
specification can thus also be viewed as a concise yet more abstract notation for specifying
a class of state transition graphs.

In our specification and design examples, it has been shown how introducing additional
constraints in a STG allows us to use level-sensitive hardware circuits instead of transition-
sensitive hardware circuits in its implementation. These constraints are justified only
informally. A more formal theory based on trace theory and state transition graphs are
developed in [5].

The module descriptions used in this paper require only constructs for specifying se-
quencing and concurrency. There are other behaviors which exhibit conflict and data-
dependent signal low that would require additional STG constructs for their specification.
These latter constructs are called OR-constructs, and the reader is referred to [4] for an
introduction to their formulation and applications.

In [8] Martin described a design approach using constructs for non-deterministic pro-
gramming to specify hardware modules whose behaviors exhibit only sequencing and arbi-
tration requirements. This approach uses a subset, of Dijkstra’s guarded command language
to specify each process; concurrent cooperating processes are described using notations
similar to Hoare’s CSP [9]. Heuristic procedures are used to “compile” a hardware im-
plementation from a module specification into an interconnection of standard hardware
templates such as And, Or, C-elements, etc.. During the compilation, the technique of
reordering signal transitions in a sequence is made use to improve implementation effi-
ciency. The complete STG model allows the specification of concurrency, sequencing and
conflict in module behavior, and our implementation approach is aimed at automating the
derivation of hardware structures from STG specifications. Recently there are works on
the classification and synthesis of delay-insensitive circuits based on trace theory [12,13].
The relation of STG to trace theory is analogous to that of Petri nets model to its un-
derlying sequence semantics. Thus, we believe that STG can serve as a high-level, more

13

abstract specification than that of an approach directly based on trace theory.

There are also related works on verification of asynchronous hardware structures based
on temporal logic [7]. Such techniques can be used fruitfully for correctness validation of
self-timed circuits. The design of suitable translation techniques from high-level language
to STG - in the same vein as those done by Martin and Rem [10] - is another area for
further research.

Acknowledgments
The author would like to thank Prof. Jack Dennis for his support and guidance, Prof.

Lance Glasser and Dr. Bill Ackerman for helpful suggestions. This research was supported
in part by NSF-7915255 and a Hughes Fellowship.

14

10.

11.

12.

13.

REFERENCES

. Best, E “Concurrent Behaviour: Sequences, Processes and Axioms.” LNCS 197,

Springer-Verlag 1984.

. Chin, C.-Y. and K. Hwang, “Packet Switching Networks for Multiprocessors é,nd

Data Flow Computers.” IEEE Transactions on Computers, C-33, No. 11, November
1084.

. Chu, T-A., C. Leung and T. Wanuga, “A design methodology for concurrent VLSI

systems.” Proceedings of the ICCD-85, Oct. 1985.

Chu, T-A. “On the models for designing VLST asynchronous digital systems.” To be
published in IV TEGRATION, the VLSI Journal. North-Holland, 1986.

Chu, T-A. Signal Transition Graphs and the Modeling of Self-timed Circusts. Ph.D.
thesis, Department of EECS, MIT, expected Sept. 1986.

Commoner, et. al. “Marked directed graphs.” Journal of Computer and System
Sctences. No. 5, 1971.

Dill, L.D. and E.M. Clarke, “Automatic verification of asynchronous circuits using
temporal logic.” Proceedings of the 1985 Chapel Hill Conference on VLSI. Computer
Science Press, May 1985.

- Martin, A.J. “The design of a self-timed circuit for distributed mutual exclusion.”

Proceedings of the 1985 Chapell Hill Conference on VLSI. Computer Science Press,
May 1985,

Martin, A.J. “Compiling Communicating Processes into Delay-Insensitive VLSI Cir-
cuits.” 5210:TR:86, Dept. of Computer Science, CalTech 1986.

Rem, M. “Concurrent Computations and VLSI Circuits.” in Formal Deseription of
Programming Concepts - II. D. Bjgrner (ed.), North-Holland Pub. Co. IFIP 1983.

Seitz, C.L. “System Timing.” Chapter 7 of Introduction to VLSI Systems, Mead and
Conway (Eds.), Addison Wesley 1981.

Udding, J.T. Classification and Composition of Delay-Insensitive Circusts. Ph.D.
thesis, Dept. of Mathematics and Computing Science, Eindhoven Univ. of Technol-
ogy, 1984.

van de Snepscheut, J.L.A. Trace Theory and VLSI Design. LNCS 200, Springer-
Verlag 1985.

15

M

Or

(h
m Oa-- "
: Or+ Or-- la __@-_ (b)
/\ Oa +

)

=

Figure 7: (a) STG specification of R-module, (b) its implementation, (c) an nMOS imple-
mentation interfacing to registers, (d) its timing diagram.

16

TEEEX 1

& oulput
bus

: .
Hold Hold

R i S e 1T
o

Load Done L oad Done
I | |
7 R p—— L] [] I R :—1
P N - L N
W ! - I
req
$ 1 stage controller
; 1 y 1
Wack ij S oll |or °* o S ol lor
P N r N
1 0 - O Rreg
———
1 1
Rack

Figure 8: Photomicrograph and circuit diagram of the test Ring Buffer.

17

