LABORATORY FOR
COMPUTER SCIENCE

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

—

Practical Polymorphism

Computation Structures Group Memo 249

July 9, 1985

Rishiyur S. Nikhil

A —

~

345 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETIS 02139






Practical Polymorphism

Rishiyur S. Nikhil

MIT Laboratory for Computer Science,
545 Technology Square,
Cambridge, Massachusetts 02139
US.A.

Abstract

Polymorphic type systems as proposed by Milner and implemented in the programming
language ML offer rich types, unobtrusive compile-time type-checking, and complete type-salety in
functional ianguages. However, straightforward addition of such a type system to languages with
interactive environments such as FQL, SASL or Scheme can irhibit seriously the top-down,
incremental programming style characteristically employed with them. The problems include error-
recovery during type-checking, type-checking with incomplete information and incremental type-
checking during program development. We describe these problems and present an integrated
solution as prototyped in FQL.

1. Introduction

Polymorphic type systems as proposed by Milner in [10] and implemented in the programming
language ML [8, 6] have won increasing popularity in recent years. This is evidenced by their
adoption in several other languages such as FQL [3, 4, 12], Hope [5], Galileo [1] and Prolog [11].
Such type systems offer the promise of unobtrusive compile-time type-checking together with
complete type-safety in functional languages.



However, it is not trivial to add such a type system to functional languages with interactive
programming environments such as, say, SASL [16] or SCHEME [14]. If implemented naively, the use
of a polymorphic type system raises practical problems that can inhibit seriously the top-down,
incremental programming style characteristically employed when programming in these languages.

These problems are identified in Section 3. in Section 4 we present solutions to these
problems. Qur solutions have been prototyped successfully in the context of the experimental
database programming ianguage FQL [12], but are generally applicable.

Partly to set the stage for kater discussion, and partly for readers not familiar with polymorphic
type systems, section 2 contains a brief review of an ML-style type system and type-checker.

2. Polymorphic Type Systems and Type-Checking

This section reviews, in greatly abbreviated form, an ML-style polymorphic type system and its
type-checker. The reader is invited to consult [10], [7] and [8] for detailed discussions of this subject.

2.1. Types and Polymorphism
We employ a language of expressions that denote values. Every expression has a value, and
its type is described by a Type Expression. Type expressions are built up recursively by applying type
operators (such as prefix "list” and infix "— ") to constant types ("int", "bool", ...) and type variables
(a, B, ...). The following are all examples of type expressions:
int
bool
string
a
list int
(list ay) — (list bool)
A type expression with no type variables (i.e. a ground type expression) is menomorphic;
otherwise it is polymorphic. A value with a palymorphic type possesses all types that are
monomorphic instances of that type.

For exampie, consider a function "filter" that returns just those elements of a list that satisfy
some boolean predicate "p":

filter p nil = nil
filter p (hd::t1) = if (p hd) then hd::(filter p t1)
else filter p t1

{here "nil" is the empty listand "::" is an infix "CONS" for lists). For example the expressions
filter evenNumber [1;2:3;4:5:6: ... ]
filter affirmative ["ja"; "nyet"; "oui"; "yes"; "nein"; ... ]

evaluate to the lists



[2;4:;6; ... ]
["ja": "oui"; "yes"; ... ]

respectively. The function "filter" is a polymorphic function. It has the polymorphic type
{a — bool} — ({list a) — (list a))

and thus it has all types

(int — bool} — ({list int) — (listint)) |,
(string — baol) — ((list string) — (list string)) ,

i.e. the same function may be used at any of those types.

2.2. The Type-Checker

A characteristic feature of many polymorphic type systems is that type declarations are often
optional. The type-checker automatically infers a type for every definition. If the user chooses to
declare its type (e.g. for documentation purposes), the type-checker makes sure that the declared
type is consistent with the inferred type. The type-checker guarantees type-safety-- no run-time
type-checking need be performed.

The type-checker infers a type for a definition based on an initial Type Environment which
assigns a type to every free identifier in the definition. This type environment typically specifies a type
for each built-in (pre-defined) identifier, and for all previously entered definitions.

The type-checking algorithm is very simple and efficient. it makes use of the unification
algorithm [13] to make sure that certain constraints between the types of expressions are satisfied.
These Well-Typing constraints arise primarily in ensuring that the actual type of an argument "is the
same as" the type of the expected argument type of a function.

For example if "evenNumber" is a predicate on numbers and "filter"” is applied to
"evenNumber”, the type of "evenNumber” (i.e. int — bool) is unified with the argument component of
the type of "filter” {i.e. « — bool). This constrains a to be equal to "int", which in turn constrains the
result component of the type of "filter” {i.e. (list a) — (list a)) to be (list int) — (list int). Thus the value
of "{filter evenNumber)"” is a function that may be applied only to integer lists. '

In Figure 2-1 we present the type-checking algorithm (greatly simplified) for just three
syntactic forms of expressions (identifiers, applications and lambda-abstractions); it can be extended
routinely to handie other syntactic forms. The inputs are: an expression to be type-checked, a type
environment, and an initial substitution of type expressions for type variables. The outputs are: a type
for the expression, and a new substitution.

The algorithm is initiated with an empty substitution. As it traverses the expression



recursively, repeated unification steps continually augment and refine this substitution. Each
unification step is of the form

unify(typeExpry, typeExpr;, subst) = subst’

i.e. it unifies two type expressions with respect to an initial substitution and produces an augmented
substitution. If unification fails, the returned "substitution" will indicate that an error occurred.

typeCheck (expr, TypeEnv, subst) = {Returns (type,subst')}

CASE expr OF
x {identifier} :
let type, = Tookup type of x in TypeEnv
in

typey,
subst

{f a) {application} :
let types, substl = typeCheck(f,TypeEnv,subst) ;
type,, subst2 = typeCheck{a,TypeEnv,substl) ;
o« = & new type variable ;
) subst3d = unify{types., type, — a, subst2)
in

a,
substd

Ax.e {lambda-abstraction} :
let @ = a new type variable ;
TypeEnv' = extend TypeEnv with (x:a} ;
. typeg, substl = typeCheck(e, TypeEnv', subst)
in
a — type,,
substl

Figure 2-1: A Simple Polymorphic Type-checker

2.3. Type Errors
The type-checker rejects an expression when it is unable to proceed due to either of two

conditions:
- an identifier for which the type environment does not specify a type, or
- unification fails

In the former case, that identifier is an unbound identifier; the latter case indicates that there was an
improper application of a function to an argument.

3. Practical Problems in the Use of the Type System

These two features of ML-style types-- the economy of expression that comes with
polymorphic cbjects, and automatic type-inference-- together hold out the promise of the unobtrusive
introduction of a rich type system and the benefits of type-safety into an otherwise "type-less"



language such as FQL, SASL or Scheme. However, when such étype checker is introduced into
these interactive programming languages, some practical problems arise which, if confronted naively,
can inhibit seriously the attractive top-down, incremental program development style charecteristic of
these tanguage environments. These problems may be viewed at two levels: at the level of individual
definitions, and at the "system" level (collections of top-level definitions).

3.1. At the Level of Individual Definitions
The problem here is that the type-checker as presented has no provision for error-recovery
{other than reporting an error as soon as it finds one and rejecting the entire expression).

In Unix ML [8], for exampie, the type-checker gives up checking an expression as soon as it
finds a singie type error. The user then must re-enter the entire (corrected) expression, at which point
a second type error may be discovered. Repeating this process several times, uncovering one type
error at a time is extremely tedious. Most compilers for other languages (such as Pascal) do better,
trying to discover and report as many errors as possible within a single compilation attempt. To be
fair, an automatic type-checker like ML's has a more difficult job; it usually works with no user-
specified type information, so that it does not have ready-made "anchor points" to which it can safely
recover and then proceed.

In interactive programming, one often tests one part of a definition by giving it a specific input
argument, knowing full well that another part of the definition that is not of immediate concern is still
unfinished. For example, in writing a lexical analyser, one may test it for reading integers befare fixing
errors in another part that deals with reals. It should not then matter that the unexercised part of the
definition has type-errors in it. Thus we would like to be able to type-check expressions partially.

3.2. At the System Level {Coliections of Definitions)

In an interactive programming environment, we would like to operate the type-checker
incrementally, normally each time we enter a definition. However, the type-checker presented earlier
requires a type environment that specifies a type for each free identifier in the expression. Typically,
these free identifiers include all primitive identifiers {e.g. " + ") and all other definitions used by this
expression. Unfortunately, in interabtive program development as in FQL one cannot usually provide
such a type environment incrementally to the type-checker.

First, we prefer to design and construct programs {(and to present them in text form} in a
top-down order. But requiring that the type of free identifiers in a definition be known beforehand
forces the user to enter his definitions in a strictly "bottom-up" order, i.e. an identifier must be defined
before it can be used. (Mutually recursive definitions are always entered together; the details are not
relevant here).

In the top-down refinement of a program, the user often wishes to test selected parts of a
definition before all subsidiary definitions are available. For example, in writing the "eval” function of



an interpreter, one may wish to test it on the easy cases first (e.g. numbers) before turning ones
attention to the difficult cases (e.g. closures). This means the ability to run a program knowing that
certain sub-expressions will not be evaluated. It should not matter if those sub-expressions refer to
identifiers that may be missing completely from the type environment.

In an interactive system, definitions may be compiled incrementally, but the resolution of
identifiers defined at the top-level is usually deferred until just before the evaluation of an expression
or even till run-time. This allows one to edit a definition and aliow other expressions automatically to
receive this latest value. (This is not to be confused with "dynamic scoping”, as is alleged in [15]).

There are many reasons why the user would like to edit previously entered definitions, apart
from fixing bugs. For example, in writing an interpreter whose top-level is a read-eval-print loop, one
typically wishes to test the read and print functions before testing the eval function. We do this by
initiatly coding eva/ as the identity function, and later editing it to fill in the details. Similarly, in writing
a complex program, the user first may write all definitions in a style that prefers perspicacity, and only
tater edit them for efficiency.

But editing a definition may result in a change of its type, thus invalidating the type
environment under which other definitions were type-checked.

3.3. Why ML does not Measure Up
The following comments apply to Unix ML [6]; we do not know if they also apply to other ML
implementations {8, 2].

ML js interactive in the sense that a user may type in definitions from the terminal and have
them evaluated incrementally. However, the system imposes certain restrictions which, while making
type-checking easy, also preclude the interactive style that is so attractive in FQL.

First of all an ML program must be entirely type-correct before any part of it may be exercised.
We feel that this is too restrictive. One should be able to run a program with type-incorrect regions,
provided these regions are clearly marked, and any attempt to enter such a region during execution is
trapped.

The scope of an identifier defined at the top-level in an ML session is always "the rest of the
session”. A definition is evaluated immediately, with free identifiers bound immediately in the
previous environment. Thus identifiers must be defined before they are used, implying bottom-up
program development; again, we find this unacceptabile.

The user never edits any definition; he simply enters a second definition for the same
identifier, and because of the scope rules, this hides the earlier one. Unfortunately, previous
definitions that used that identifier are still bound to the old value; hence, to get truly the effect of an
edit, all those definitions must be entered again. This is generally too tedious to do by hand; one
usually runs an editor process simultaneously, reloading an edited subfile into ML. We fee! that this is



a clumsy and roundabout way of obtaining the effect of an edit.

4. A More Flexible Type-Checking Discipline

For a polymorphic type-checker truly to fulfill its promise, it must therefore have some error-
recovery mechanism and be able to work without a clear, stable set of assumptions about the types of
ail free identifiers in a given expression.

By appropriate modifications to the type-checker and the system-level typing discipline, we
show that this is indeed possible. Programs can be developed in a top-down manner, and may be run
with complete type-safety in spite of partial or missing definitions. Regions of the program with
type-errors are marked automaticaily and can be selectively corrected so that a "finished” program is
certifiably free of type-errors. We believe that this allows us to enjoy the benefits of a rich type system
without sacrificing the productivity of incremental, interactive programming afa FQL, SASL or
Scheme,

4.1. At the Level of Individual Definitions
We first turn our attention to improving the type-checker so that it gives more meaningful
information when it finds a type-error, and so that it can continue operation even after it has
discovered a type-error. in addition, we would like the type-checker to infer a type for an expression
in spite of type-errors, if possible. For example, in the following definition,
f x = if (... sub-expression with type error ...)

then x + 1
else x - 1

we would like to infer the type "int — int" for "[" even though the condition part of the "if" expression
has a type error. This could be of use while type-checking other functions that use "f". Of course, we
must ensure that we never attempt to evaluate any sub-expression with a type-error.

The type-checking algorithm may be viewed as a "bottom-up" algorithm: starting from the
types at the leaves (known from the type environment), it infers types of larger and larger sub-
expressions. In order to pinpoint type-errors, it is more fruitful to invert this view, and re-formulate it
as a "top-down"” algorithm: we begin with an expected type for the entire expression, and recursively
infer expected types for each of its subexpressions. At every stage, we check if the type of the
sub-expression indeed matches the expected type (by unification). If it does not match, we reporta
type-error, assume that it had matched, and continue type-checking the rest of the expression.

At its simplest, the "expected type" may be totally unconstrained (i.e. just a type-variable). At
various stages during the type-checking, the expected type may become more specific-- for example,
if the user has declared explicitly the type of an expression, or if the argument to a function becomes
constrained to be of some particuiar type. A sketch of the re-formulated algorithm is presented in



Figure 4-1. Note that it does not return a type anymore; it just returns a substitution. The full type of
an expression may then be obtained by applying this substitution to the original expected type for the
expression.

typeCheck (expr, expectType, TypeEnv, subst) = {Returns subst'}

CASE expr OF
X {identifierg
if x is unbound in TypeEnv then
report that x is unbound ;
subst

else
let actualType = lookup type of x in TypeEnv ;
substl = unify (expectiype, actualfype, subst) ;

in
if no unify-error in substl then
substil
else
report type-error{expr, expectType, actualType);
subst

(f a) {application} :
let B = a new type variable ;
substl = typeCheck(f,
B—expectType,
TypeEnv, subst) ;
~ subst2 = typeCheck(a, . TypeEnv, substl) ;
in
subst?2
Ax.e {lambda-abstraction} :

let a, B = new type variables ;
TypeEnv' = extend TypeEnv with {(x:a) ;

substl = typeCheck(e, B, TypeEnv', substz :
i subst2 = unify(expectType, a — 8. substl)
in
if no unify-error in subst2 then
subst?
else
report type-error{expr, expectType, a — f8) ;
subst

Figure 4-1: AnImproved Type-checker

At every type-error, we can identify the sub-expression that caused the type-error, and report
the expected type and the actual type found. This is invaluable information for debugging.

Note that one cannot claim that the type-checker finds the type-error in an expression
because of the difficulty of defining such a concept. For example, when an application "(f a)" is
found to have a type-error, the culprit could be either "f* or "a". Our algorithm favours the function
part by type-checking it first and allowing it to determine the expected type of the argument part. This
i5 based on the cbservation that in most cases the function part is not a complicated expression and
is less likely to be the cause of the type-error in the programmer’s judgement. i also has some
precedent in conventional type-checkers where the declared type of a function is treated as



"correct”, and a type-error in an application is judged to be due to an incorrect argument.

Unbound identifiers are flagged and reported, but cause no problem: they are simply treated
as initially having an unconistrained polymorphic type. Later (in Section 4.3) we shall see that we take
some extra action with such identifiers in order that we not compromise type-salety.

The "expected type" information available on encountering a type error is very useful in
compilation. The offending sub-expression is compiled as if it had been replaced by the special
expression

typefauit: expectType
which type-checks correctly.

The meaning of "typefauit” could be to abort the program, if it is ever evaluated. This trap
ensures that we never execute type-incorrect regions of the program. If a given execution of a
program never evaluates "typefault”, it will complete successfully (interestingly, the probability of this
event increases in a lazy-evaiuation regime as in FQL). This allows us to go ahead and test partially
those parts of the program that do not contain type errors while deferring work on those parts which
do.

In the spirit of interactive programming, however, we follow a more useful strategy: each
"typefault” is tagged with the type that was expected at that point. At run time, if the evaluator
encounters a "typefault”, it recursively re-enters the evaluator, in a manner anatogous to a "break" in
Lisp systems. At this point, the user may supply explicitly an expression to be evatuated and returned
as the value in place of the "typefault”. We type-check the expression supplied by the user; because
we know the expected type, we can reject the expression if the expected type is not a substitution of
the expression’s type (i.e. if the given expression’s type is not "at least as polymorphic" as the
expected type}.

The "expected type" information could also be useful in a syntax-directed editor. When a
change is made to some sub-expression, the type-checker may be able to use the already-known
expected type to re-analyse it in isolation (and thus do it quickly). {(We have not explored this:
possibility.)

Our experience has shown our type-checker to be quite successful at localizing type errors,
catching multiple type errors in a single expression and inferring "reasonable" types for expressions
in spite of the presence of type errors.

4.2, At the Level of Collections of Definitions

Armed with a more "liberal” (but still type-safe) type-checking algorithm at the level of
individual definitions, we now turn our attention to collections of definitions that form a program. In
particular, we wish to permit identifiers to be redefined (edited), while maintaining type-safety. The



redefinition may result in changing the type of an identifier, which in turn may invalidate the type
environment for ather functions.

This problem is analogous to the "module version” problem in software engineering: when a
module is changed, all other modules that depend on it directly or indirectly may have to be
recompiled. However, the polymorphic type system gives us a rich relationship between types that
can better limit the propogation of changes. In most monomorphic type systems, the only relation (if
any) between types is that of equality, so that when the type of one module changes in any way, the
system must pessimistically recompile every module that depends on it.

In redefining "f", the change may not have affected its type at all (as, for example, in the
frequent case where "f" merely is re-implemented with a better algorithm). In this case, all that is
needed is the recompilation of "f" alone.

If the type of "f" indeed had changed, ML’s "linear" approach may cause the recompilation of
hundreds of unrelated definitions (all definitions textually following "{", whether they used "f" or not).
Instead, a simple solution is to maintain a dependency graph over all definitions. There is a node in
the graph for each definition. f "g" uses "f", there is an edge from "g" to "f". If there is any mutual
recursion the graph will not be acyclic. This graph is built easily incrementally with information that is
already available. When a definition "g" is entered, it is type-checked, it is trivial for the type-checker
to collect all free identifiers in the expression, and these are precisely the delinitions used by "g".

If "f" is redefined now, the dependency graph tells us which other functions may need re-
analysis (type-checking). The algorithm to do this is given in Figure 4-2

When f is changed, re-analyze(f), where
re-analyze(f) =
Let fRec be
the largest sub-graph that includes f,

such that (for every pair of functions fy, f, in fRec,
fy and f, are mutually recursive)

Type-check the functions in fRec.
For each function f in fRec,
If its type has changed then

For each g outside fRec that depends directly on f
re-analyze(qg)

Figure 4-2: Re-analysis Procedure Foliowing a Redefinition

(At each stage, we first "grow" the candidate set of functions to be type-checked to include
all mutualiy recursive functions because mutually recursive functions must be type-checked
together).

We can strengthen further the decision whether to re-analyze the dependents of a function by



using the “<" relation between types. We say that t; (tyift,is a substitution instance of t, (informally,
t, is "less polymorphic” than tp). For example, if

(int — bool) — ((list int) — (1list int))

1%}
t2

{(a — bool) — {(1ist a) — (list a})
then ty < {, because there is a substitution
S = {a = int}
such that S(ty) = t;. Clearly, "(" is a transitive relation (because substitutions can be composed).

Suppose oy is the type of "f" before it is redefined. Every function "g" dependent on “t"
must use it at a more specific type tig {tYoig- Thus if the new type ty.,, of "f" is no less polymorphic
than g (i.e. if tigig < tivew)s then the relation tg < tyye,, must also hold by transitivity. The re-analysis
of "g" when "[" changes thus need be done only if "{" has become less polymorphic, i.e. if

tinew < tola:

Extending this idea, we can narrow further the set of functions that are candidates for re-
analysis by putting in more information in the dependency graph. We now /abe/ the edge from "g" to
"f* with the set of types at which "f" is used in "g". This information is readily available anyway when
"g" is type-checked.

For example, the function "filter" has a polymorphic type, but may be used at only the specific
type
{int — bool) — (list int) — (list int)
within a definition of "aliEvenNumbers". Thus if “filter" was redefined to be a function that operated

only on integer lists, "atlEvenNumbers" would still be valid.

The arrow from "g" to "f" is now labelled with the set of types t,, ..., t, at which "f" is used in
"g". When “f" is redefined, "g" needs to be re-analyzed only if the new type of "f" is less
polymorphic than one of the types at which "g" actually uses "f". The improved procedure is given in
Figure 4-3:

4.3. Unbound tdentifiers

We now also have the tools to handle "unbound” identifiers encountered by the type-
checker. For any identifer "x" encountered unbound during type-checking some definition, we
merely introduce the following definition into the top-level environment:

val x:a = typefault

i.e. we automatically introduce a stub (a dummy definition) for the identifier. The dependency graph
maintains all the types at which "x" is used in other functions. When "x" is defined later, this

10



When f is changed, re-analyze(f), where
re-analyze(f) =

Let fRec be
the largest sub-graph that includes f,
such that (for every pair of functions f;, f, in fRec,
f, and T, are mutually recursive)

Type-check the functions in fRec.

For each function f in fRec,

Let tgyq be its old type,

Let ty,s be its new type,

If tyew € tgjg then

For each gq outside fRec that depends directly on f
Let t;, ..., t, be the types at which g uses f
If thew < tj for any i in 1 ., n then
re-analyze(g)

Figure 4-3: Improved Re-analysis Procedure

information is used automatically to ensure that "x" has indeed been used correctly. If "x" is invoked
during testing before a definition has been supplied, the usual "typefault” trap mechanism is invoked.

This supports top-down program development well: when a definition is entered, all its free
identifiers are automatically introduced into the environment, and the types of all uses of these free
identifiers are remembered. When one of these lower-level identifiers is subsequently defined,
provided it was used type-carrectly, only the new definition will need to be type-checked.

There may be some question whether an unbound identifier should automatically be assumed
to refer to some future top-level definition. For example, an unbound identifier three blocks deep
could belong to any of the levels above it, not necessarily the top level. We feel that thisis nota
serious issue-- the system could interact with the user to determine his intent. In practice we have
found that simply lifting it to the top-level is quite acceptable.

5. Conclusion

A rich type system is a useful inteflectual tool in designing large programs [9]. Type-checking
then leads to robust, efficient programs. Unfortunately, the use of these techniques has generally
been aveoided in interactive programming languages because most type systems and type-checkers
are too restrictive and obtrusive, and severely inhibit the productivity of the interactive programming
environment,

Milner-style polymorphic type systems with automatic type-checking offer a possible solution,
but must be carefully engineered so as not to compromise the interactive environment, We have
identified some practical problems that arise in doing so, and shown some solutions. Early
experience with small programs in a prototype system has been favourable.

"



References

1. Albano,A., Cardelli,l.. and Orsini,R. Galileo: a Strongiy Typed Interactive Conceptual Language.
Tech. Rep. 83-11271.2, Beli Laboratories, 1983.

2. Augustsson,L. A Compiler for Lazy ML. Proc. 1984 ACM Conf. on Lisp and Functional
Programming, Austin, Texas, ACM, Aug., 1984, pp. 218-227.

3. Buneman,O.P., Frankel R.E. and Nikhil,R. A Practical Functional Programming System for
Databases. Proc. ACM Conference on Functional Programming Languages and Computer
Architecture, Portsmouth, New Hampshire, 1981, pp. 164-186.

4. Buneman,0.P., Frankel R.E. and Nikhil.R. An implementation Technigue for Database Query
Languages. ACM Trans. on Database Systems 7, 2 (June 1982}, 164-186,

5. Burstall,R.M., MacQueen,D. and Sanella,D. Hope: an Experimental Applicative Language.
Proceedings of the Lisp Conference, Stanford, ACM, 1980, pp. 138-143.

6. Cardelli,L. ML Under Unix. Bell Laboratories, 1983.

7. Damas,L. and Milner,R. Principal Type-Schemes for Functional Programs. Proc. 8th Symp. on
Principles of Programming Languages, ACM, Jan., 1882, pp. 207-212.

8. Gordon,M.J.C., Milner,R. and Wadsworth,C. Lecture Notes in Computer Science. Vol. 78:
Edinburgh LCF. Springer-Verlag, Berlin, 1979,

9. Liskov,B.H. and Zilles,S.N. Programming with Abstract Data Types. SIGPLAN Notices ¢, 4 (1974),
50-59. (Proc. ACM SIGPLAN Conf. on VHLL)

10. Milner,R. A Theory of Type Polymorphism in Programming. J. Computer and System Sciences
17 (1978), 348-375.

11. Mycroft,A. and O'Keefe,R. A Polymorhic Type System for Prolog. Proc. Logic Programming
Workshop 83, Portugal, 1983, pp. 107-122.

12. Nikhil, R.S. An Incremental, Strongiy-Typed Database Query Language. Ph.D. Th., Moore
School, University of Pennsylvania, Philadelphia, Aug., 1984. Available as Technical Report MS-
Cl15-85-02

13. Robinson,J.A. Computational Logic: the Unification Computation. Machine Intelligence, Vol 6,
Edinburgh University Press, Edinburgh, Scotland, 1971, pp. 63-72.

14. Steele,G.L. Jr. and Sussman,G.J. The Revised Report on Scheme: A Dialect of LISP. Tech. Rep.
Al Memo 452, MIT Artificial intelligence Laboratory, Jan., 1978.

15. Steele,G.L. Jr. and Sussman,G.J. The Art of the Interpreter, or, The Modularity Compiex {Parts
Zero, One, and Two). Tech. Rep. Al Memo 453, MIT Artificial Intelligence Laboratory, May, 1978.

16. Turner,D.A. SASL Manual. University of St.Andrews, 1976.

A

12



Table of Contents

1. Introduction

2. Polymorphic Type Systems and Type-Checking
2.1. Types and Polymorphism
2.2. The Type-Checker
2.3. Type Errors

3. Practical Problems in the Use of the Type System
3.1. At the Level of Individual Definitions
3.2. At the System Level (Collections of Definitions)
3.3. Why ML does not Measure Up

4. A More Flexible Type-Checking Discipline
4.1. At the Level of Individual Definitions
4.2. At the Level of Collections of Definitions
4.3. Unbound Identifiers

5. Conclusion

OO bWWN==D

-t b



List of Figures

Figure 2-1: A Simple Polymorphic Type-checker

Figure 4-1: An Improved Type-checker

Figure 4-2: Re-analysis Procedure Following a Redefinition
Figure 4-3: improved Re-analysis Procedure

- O~NWw



