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FUNCTIONAL LANGUAGES AND ARCHITECTURES
Functional Languages and Architectures

1. INTRODUCTION

The Functional Languages and Architectures group is pursuing two interrelated
projects, namely, the Tagged-Token Dataflow Machine and the Multiprocessor
Emuiation Facility (MEF). The goal of the Tagged-Token Dataflow project is to
demonstrate the feasibility of generatl purpose parallel machines by simulation and
emulation. The goal of the MEF project is to construct a "sandbox" to facilitate
research and development in paralle! architectures and languages. Following this
introduction, the report is divided into two major sections describing the ongeing
projects.

Our cooperation with IBM on both these projects has increased significantly over
the past year. Several joint meetings to discuss the technical details of the two
projects were held, and as a consequence of these meetings mid-course maneuvers
were required. For example, we have decided to switch to non-IBM technology for
the packet communication network for the MEF. On the dataflow project, the
discussions resulted in identification of two sub-goals which may be achieved by
somewhat different strategies. These sub-goals were (1) the demonstration of the
scalability of the dataflow machine, and (2) the investigation of a dataffow machine
which will require the same amount of hardware as a high performance sequential
computer for the same level of performance. Qur immediate attention has been
focused on the first sub-goal, and consequently changes in the architecture or the
compiler which are required only for the demonstration of the second sub-goal, have
been deferred.

A lively and productive IBM-MIT workshop was organized last April, in Essex, CT,
to review muiti-processor research at the two institutions. We expect such
interactions and cooperation with IBM will continue at an even greater pace in the
coming year.

1.1. Dataflow Project Overview

Since the success of parallel machines will depend on the effective
programmability and efficient utilization of resources, the dataflow project has been
deeply concerned with high level language support and resource management
issues. We have been experimenting with Id, a functional language, for a number of
years, and this year have finally produced a documented version of the Id-to-
dataflow graph compiler, which can be used as a service program by us and other
researchers. We have now entered what may be called the second phase of
development for both the language and the compiler. On the language side, some
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ground work has been done to make polymorphic type-checking and reference
count garbage collection possible. A proper semantic view of |-structures, the main
data structure in Id, also seems to be emerging. Fortunately, this new view of !-
structures, even though fundamentally very important and novel, should have
minimal impact on the compiler. The compiler is being rewritten to improve its
internal modularity to make possible easy implementation of both anticipated and
unanticipated changes in Id. This new phase of language and compiler development
is relying, much more heavily than in the past, on the solid theoretical work that has
been done at MIT and elsewhere in the area of functional languages.

We think that programmable and scalabte machines should be such that a change
in machine configuration, e.g., changing the number of processors or memory
modules, interconnection topoiogy, does not require the programmer either to
rewrite or recompile application programs. Thus, sophisticated run- time resource
managers are essential for the dataflow machine. We have made significant
progress in efficiently executing loop programs; however, further progress in this
area is crucially tied to the farge scale simulation and emulation experiments. Our
simulator, which runs on IBM machines, is in the final stages of debugging and
documentation, and should allow us and IBM researchers to experiment with
resource management policies in the near future. Large scale emulation
experiments will have to wait until MEF is fully functional.

1.2. MEF Overview

The past year has been one of continual upheaval for the Multiprocessor
Emulation Facility (MEF). We have endured one change of CPU, a major change in
personnel, several changes of technology, several changes of design strategy, and,
most importantly, two changes of name. Despite these changes, or perhaps
because of them, we have moved forward and will soon see first fruits. Spurred on
by the arrival of funds from DARPA, the Hardware Laboratory was completed and is

now in use.

New CPU: At the beginning of this reporting period, we had planned to construct
the Emulation Facility out of Symbolics 3670 processors. We have subsequently
switched to Tl Explorers. The rationale for the change was based partially on price,
but predominantly on the open architecture of the Explorer coupled with the fine
cooperation we have received and expect to receive from Texas Instruments.
Currently, we have 8 Symbolics Lisp machines connected by Ethernet, and 2

preproduction models of Tl Explorers.

Personnel: During the previous reporting period, we had proposed a joint study
with IBM whereby they wouid provide design engineers to work at LCS on the packet
switch. The first three engineers have been with us for a year now and have made
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significant contributions in the areas of high speed serial link protocol development
/ verification, central switching mechanism design, creation of a library of very high
performance Programmable Logic Array cells for custom VLSI, partitioning,
packaging, and analysis for the packet switch. In addition, they have researched the
existence of standard parts within IBM which will greatly simplify the design of this
switch.

Technology: As an adjunct benefit of the Joint Study, IBM was to provide design
tools and manufacturing for the gate array logic used in the packet switch. Due to
confidentiality constraints, we have declined this offer of technology and have
instead negotiated for chip fabrication through LSI Logic Corporation.

Design Strategies: Prior to the switchover to Tl machines, we were designing
two different network cards for the 3670: the first was an adaptation of the BBN
Butterfly’s circuit switch. The second was a packet switch of our own design (both
reported previously). The Tl machine is smaller than the Symbolics machine in many
respects - most importantly, the circuit cards are smaliler, and the potential for
expansion (card slots, power) is much more limiting. Consequently, we have re-
partitioned the design into three circuit cards: (1) a packet switching network
adapter, (2) a circuit switching network adapter, and (3) a NuBus channel adapter.
The channel adapter, or NuCA, provides direct-memory access between the NuBus
and up to three network adapters which may be circuit switches, packet switches, or
a combination.

Name Changes: In that the design effort for the MEF is directed at
interconnecting an array of Lisp machines and that these machines have been
named after trees, e.g., Cherry, Mahogany, Live-Qak, Netleaf-Hackberry, etc., a
proposal was put before the group to name ourselves Project Tanglewood. The
Boston Symphony, however, refused to permit our use of the name. We had
temporarily changed names, only to have to revert back to the old (and uninspiring)
"MEF".

2. TAGGED-TOKEN DATAFLOW PROJECT

2.1. Language Work

Our work on languages this last year, under the guidance of Professor Rishiyur
Nikhil, has been aimed mostly towards improving the expressive power of Id,
improving the reliability of Id programs and generating better code for the execution
of Id programs on. the tagged-token dataflow machine. To this end we are
experimenting with the introduction of types and type-checking into Id, but with a
firm commitment not to sacrifice the expressive power of the fanguage. In this
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endeavor we are inspired by the work of Milner on the type system of the
programming language ML [3, 1]; however, we expect our type system to be much
more convenient to use without sacrificing type-safety.

2.1.1 Towards An Unobtrusive but Useful Type System

We consider a language to be type-safe if it is not possible to misinterpret the
underlying representation of an "abstract” object, i.e., if only "proper" operations
may be applied to it. The issue of type-safety is orthogonal to the gquestion of
compile-time vs. run-time type-checking which specifies at what time a violation of
type-safety is caught. Thus Lisp, Apl, Ada, CLU and Pascal! are all type-safe,
whereas C is not. However, Lisp and Apl are run-time type-checked, whereas Ada,
CLU and Pascal are compile-time type-checked. Id is a type-safe language;
_however, the current version of Id is weakly typed in the Lisp sense, i.e. there are a
few primitive types (numbers, booleans, strings and arrays), no user-defined types,
and all type-checking is deferred until run-time. This lack of typing information has
posed some serious problems in generating efficient code for procedure calls and
data structures in Id. Some of these problems have been resolved in the current
version of Id in a rather ad hoc way. For example, function calls often have to be
annotated with information about the number of results returned. In some other
cases, such as proper code generation for reference count garbage collection we
have not been able to come up with an acceptable solution. The primary difficuity
arises from the fact that we are unable to distinguish at compile time between
identifiers, i.e., variables, that represent arrays and those which don't.

However, the benefits of compile-time type-checking often come at the expense of
certain unreasonable restrictions on what the programmer may say. For example, in
Pascal one cannot write generic routines to manipulate stacks: one must write
separate routines to manipulate integer-stacks, boolean-stacks, etc. To a large
extent this is attributable to a lack of sufficient polymorphism in the type system, i.e.,
most type systems do not allow functions to be parameterized with respect to types.
Another criticism of languages with compile-time type-checking is that the
programmer is required usually to declare explicitly the type of every identifier that is
used. While this is generally a good idea from the point of view of readability and
fong-term maintenance of code, it can often be a hindrance in interactive program

development. '

The type system of ML is one attempt to address these issues. Its type system has
sufficient polymorphism to allow writing programs as succinctly as, say, in Lisp.
Further, it has a type-inference system built into the type-checker that allows the
programmer in general to omit declarations of identifiers and expressions: the

system fills them in.

1With a few well-known holes.
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While ML'’s type system is a step in the right direction, it is still not unobtrusive.
Most seriously, there are some limitations in its expressive power that resuit in the
rejection of some quite reasonable programs. Further, because the type-inference
relies on inter-procedural type information, a straight-forward implementation of the
type-checker? ends up doing unacceptable amounts of re-analysis on every change
made in interactive program development. We are currently experimenting with
solutions to these problems.

In the context of id a number of changes to the language must be made before we
can explore the limitations of Milner's system. For example, arrays in Id can be
heterogeneous (i.e., x[0] could be a number and x[1] an array) and so may be treated
as n-slot CONS cells. Currently, the use of heterogeneous arrays in Id is necessary
generally because of the lack of a record type. It is practically impossible to
generate efficient code for reference counting under such conditions. Thus, for
better type deductions in Id, we are exploring the introduction of two more pnmltwe
type constructors: records and tagged unions.

Our type-checker will also give us a good handle on optimizing code generation for
storage management in the tagged-token dataflow machine. As will be explained in
the next section, we are experimenting with reference counting techniques, and the
code necessary for this is centered around two constructs in Id dataflow graphs that
are very common: forks and function calls/returns. Without information about
which edges here carry structure pointers and which carry scalars, it is necessary to
generate a lot of "conditional" code to maintain reference counts at every such
construct. The type information inferred by our type-checker will allow us to cut
down significantly on this overhead by identifying just those places where such code
is really necessary.

2.1.2 Garbage Collection

Like some other modern languages, Id requires dynamic storage management for
its structures, i.e., structures are allocated in a special memory called "l-structure
memory" at run-time and reclaimed when they are referred to no longer; this activity
does not follow a stack discipline. The problem of detecting when a structure no
ionger is referred to generally requires reference-count or mark-sweep garbage
collection.

We think that a mark-sweep technique is not very suitable for a multiprocessor
architecture because it appears to be inherently sequential as opposed to reference
counting which is inherently parallel [4], moreover, our machine model is not well
suited to identifying the roots of all reachable objects: pointers reside in tokens

2As in existing ML implementations.
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which are continuously flowing through different memories (waiting-matching,
constant memory}, queues and the network. The classic disadvantage of reference
count methods, of course, is that they are unable to handie circular structures.
Fortunately, Id structures cannot be circular. The two variations on this theme that
we are exploring are: 1) program transformation to optimize reference counting and
2) reference Weights. In addition to Michael Beckerle, Vinod Kathail, and Keshav
Pingali at MIT, K. Ekanadham and M. Kumar of IBM have also participated in this

work,
|.Optimizing Reference Counting

There is an aspect of the reference counting method that does not fit well into the
highly pipelined and asynchronous execution model of the tagged token dataflow
machine. After an “Increment Reference Count" instruction {In¢-RC) sends a token
to structure memory asking for the the count to be incremented, it must waijt for an
acknowledgement before it can enable any successor instructions. The reason is
that a successor instruction may be a "Decrement Reference Count” instruction
(Dec-RC) which also sends a token to structure memory, asking for the count to be
decremented. If the Inc-RC instruction does not wait for an acknowledgement
before enabling successor instructions, these tokens may arrive at structure memory
out of order, thus decrementing the count to zero spuriously, resulting in the
structure being freed prematurely. Thus each Inc-RC instruction becomes an

(undesirable) synchronizing point.

The Dec-RC instruction, on the other hand, does not have to wait for an
acknowledgement from structure memory. This means that we run the risk of
holding on to a structure longer than is absolutely necessary; but this is still safe,
provided we are not criticaily short of storage.

We are working on program transformations to decrease the number of places in
ld code where a synchronizing Inc-RC needs to be done, at the expense of
increasing the number of places where a Dec-RC is done. Normally, an Inc-RC must
be done at every fork in the dataflow graph (where tokens get duplicated). Our aim
is to be able to do a single "Increment Reference Count by N instruction (Inc-RC-n)
at the beginning of a larger code block, say a function or a loop, by analysing the
graph of the code block to see how many copies of a token might ever be made. Of
course, because of conditionals, this in general will be an over-estimate, and so it
may be necessary to compensate for this by inserting "Decrement Reference Count
by N" (Dec-RC-n) instructions into some branches of conditionals.

li.Reference Weights

c”By convention only; the compiler does not enforce this.
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A possible alternative to the reference count method is that of reference weights.
When a structure is allocated, we store a large "reference weight" w in the structure
and in the returned pointer. When the pointer is duplicated, the weight is simply spiit
between the two resulting pointers. When a pointer containing weight w7 is
discarded, we send a message to structure memory to decrement the weight stored
there in the object by w7. The invariant is that every pointer to a structure carries
weight of at least 1, and the the sum of the weights in all extant pointers to an object
is equal to the weight stored in the object itself. When the weight stored in the
structure drops to zero, therefore, there cannot be any remaining pointers to it, and
so the structure may be deallocated.

The advantage of this scheme is that all the operations are purely local: there are
no synchronizing points. The disadvantage is that when a pointer carrying weight
equal to 1 needs to be duplicated, some extraordinary action needs to be taken. A
solution to this problem now is to allocate a new "indirection" structure with full
weight w, containing the original weight 1 pointer. The pointer to this new structure
now has full weight and may thus be duplicated. Of course, when this pointer is later
traversed to access the structure, it must use the indirection to forward the request
to the original structure, and this constitutes a source of overhead. However,
experimental figures for reference counts for sequential implementations of Lisp and
other functional languages seem to indicate that very few (less than 5%) of all
structures need reference counts (and hence reference weights) of more than 1, and
thus such indirections would be necessary but rarely. If this is true also in datafiow
execution of Id, the indirection overhead would be negligible enough to be
acceptable. We plan to perform simulation experiments to test this hypothesis.

2.2. Compiler Progress

Steven Heller and Ken Traub have debugged and ported Vinod Kathail's original
Id-to-Graph Compiler to Lisp Machines. Now simply called the |d Compiler (Version
1), it has been used successfully to compile several hundred programs since its
release in January 1985. The compiler output has been verified both by execution
on the simulator and emulator, and by detailed hand inspection. The largest
program that this compiler has processed is Simple, a 1200-line hydrodynamics
program from Lawrence Livermore Laboratory. Simple consists of 19 individual Id
procedures, which in turn compile into 55 code blocks representing the procedures
and the loops nested therein. The total size of the compiled code is about 86,000
bytes of code for the Tagged Token Dataflow Architecture (TTDA), representing over
10,000 dataftow operators. The current release of the compiler implements bounded
loop schema which was developed this year and is discussed in Section 2.4

" Coincident with the release of Version 1 of the Id Compiler was the publishing of
the ID Compiler Users’s Manual, which contained the first definitive description of Id
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syntax, as well as instructions for using the compiler. A revised and expanded
version of the user’s manual has been published as CSG Memo 248,

The past year we have been increasingly aware of the need to adapt the Id
Compiler to changing requirements. We are now interested in particular in changing
the basic schema to incorporate new ideas about resource management, in
changing the object code generation to reflect the evolution of the TTDA, in
optimizing code through common subexpression elimination and code-block
merging, in enhancing the language with a deductive type-checking facility to permit
efficient management of structures, and in performing a host of other compiler-
related experiments. To meet these requirements, we have begun work on Version 2
of the id Compiler. The major design goals of Version 2 are:

« Provide a well-documented modular structure that allows the easy
addition and removal of compiler phases, such as type-checking or
common subexpression elimination. In this way, experimental
compilation techniques can be introduced at each step of the
compilation procedure.

« Make the major transformation phases of the compiler (parsing, abstract
graph generation, machine code graph generation, and assembly) as
specification- driven as possible. This allows easy modifications to
syntax, schema, and machine architecture without the need for detailed
knowledge of data structures and algorithms internal to the compiler.

We are now designing Version 2 and plan to complete it by June 1986.

2.3. Simulator Progress

The simulation facility has evolved into a solid testbed for the TTDA. The simulation
software has stabilized and we are proceeding with experiments aimed at enhancing
our understanding of the architectural tradeoffs to be made in the construction of a
dataflow muitiprocessor. Experiments conducted by Stephen Brobst, David Culler,
and Behrouz Vafa have helped us to identify conditions under which the machine will
deadlock, bottlenecks in the execution pipeline of the processing elements, and the
need for controlling the amount of parallelism exploited during program execution.
Programs that we are currently running on the simulation facility include matrix
manipulations, the Livermore Kernels, and parts of the Simpie Code developed at
Lawrence Livermore National Laboratory. The resource reguirements within the
TTDA necessary for executing the partial-differential equation simulations
implemented by the Simple Code are a subject of current investigation.

In support of these simulation experiments, Richard Wei with the help of others has

10
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built a sophisticated user interface on top of the software implementation of the
TTDA. This interface allows complete configuration of a dataflow multiprocessor,
including the number of processing elements, relative speeds and technology of the
hardware stages in a PE, and resource management policies. Simulation
experiments consist of both a machine configuration and a specification of the
source program to be executed. These experiments can be run either in a remote
batch mode via a simulation server on its own virtual machine or in a user's own
virtual machine to facilitate interactive resource management decisions, as well as
debugging.

In addition, a suite of data collection and analysis tools have been developed by
Robert Katz as a means for evaluating the performance of various implementations
of our dataflow multiprocessor. A database system specifically built for the
simulation facility was put in place early last fall. The data collected includes
performance profile information, as well as a summary of all retevant benchmark
characteristics of an experimental run. A number of statistic-calcutating packages
are available for analyzing this performance data. Cora Wong has developed a
facility for graphic output of experimental data, and it is one of the most useful tools
we have for providing insight into the dynamic execution characteristics of the
TTDA. Most recently, an interface between Hewlett-Packard plotters and the iBM
4341 has been developed to facilitate high-quality graphic representation of
performance data.

Steve Brobst, David Culler and Gino Maa are currently in the midst of a software
engineering effort to tighten up the interfaces between simulation modules, as well
as 1o strengthen the abstractions between the architectural, scheduling, and data
collection components of the simulator. This will be the last stage of our software
development effort before we release the simulation facility software to the IBM
Research Center at Yorktown Heights. In the near future we will be upgrading the
simulation hardware resources to an IBM 4381 in an attempt to increase the
performance of simulation experiments.

Most of our experimentation to date has been directed at verifying the simulator
and the code produced by the compiler. Some of the benchmarks we employed are
mentioned above. A variety of experiments were conducted to verify claims
concerning processor performance. For machine configurations of up to 16 PEs
(the largest we are currently able to simulate on the IBM 4341), good scalability was
demonstrated. We also observed that independent threads of computation interlace
nicely within the processor pipeline, as expected. Until the PE becomes fully
utilized, additional threads of computation can be processed with no increase in
processing time. A humber of experiments were conducted to verify claims made by
Culler on the resource requirements of loops. We observed that (1) the resource
requirements of loops do increase essentially linearly with the amount of unfolding,

)
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(2) for simple inner loops pipeline constraints serve to restrict the unfolding, (3) for
loops that involve a significant amount of parallel computation in each iteration, the
unfolding is dramatic and independent of the amount of parallelism the machine can
exploit, (4) foops can be constrained using the techniques presented in 2] to
achieve substantial reductions in resource usage without performance degradation.
For large programs, it appears neccessary to constrain program unfolding to keep
the resource requirements within reason. We are currently modifying the compiler
and the simulator to support new graph schemata which allow parameterized. This
unfolding will allow us to study strategies for controlling dataflow programs in the

large.

2.4. Resource Management

Our recent work in resource management focuses on certain differences between
the U-interpreter and the TTDA. The model of computation embodied in the U-
interpreter is extremely powerful; it places minimal constraints on the execution
order, and thereby allows maximal parallelism. It imposes no resource constraints
whatsoever; an unbounded number of activities may be performed concurrently,
unbounded queuing of tokens on the arcs is permitted, and activity names may grow,
i.e., if a greedy schedule is followed, programs unfold in accordance with whatever
parallelism is present. The U-interpreter also provides a convenient framework for
reasoning about dataflow programs and for proving properties of programs. In part,
the ease with which the U-interpreter lends itself to formal analysis stems from its
rather idealized view of computational resources. The U-interpreter also provides a
convenient framework for reasoning about dataflow programs and for proving
properties of programs, The TTDA captures the essential execution mechanism of
the U-interpreter, allowing programs to unfold in accordance with whatever
parallelism is present in the program, but imposes rather strict resource constraints;
tokens must reside in the waiting-matching store, activity names are represented by
fixed-size tags, etc. David Culler and Behrouz Vafa have attempted to overcome the
differences between the model and the machine in regard to resources through a
mixture of techniques: program analysis to deduce the resource requirements of
sizable portions of dataflow programs, dynamic resource management to distribute
work over the machine without overcommitting individual resources, and program
transformation to make programs more suitable for execution on the TTDA.

Last year we reported on a dynamic resource management system, developed as
part of the simulation and emulation efforts. That system provides a means of
distributing work and data over the machine (using fairly straight-forward load-
leveling techniques) and takes care of allocating and deallocating all explicitly
managed resources. Deallocation of resources requires embellishing the program
graphs to detect when certain resources are no longer in use. Basically, this
requires augmenting the graph for each code-block with arcs so that a certain node
is guaranteed to be the last activity in the code-block.

12
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The hardware allocates implicitly certain resources (notably, waiting-matching
storage) on demand. When a code-block is invoked, a certain collection of
processing elements are designated to perform the invocation. These processing
elements must provide storage for waiting tokens generated in the course of the
invocation. The load on the waiting-matching store is particularily crucial; if the
matching store fills up and the overflow is used, performance degrades
considerably; if the overflow store fills up, the program deadlocks. One of the
motivations for developing the simulation and emulation was to determine how large
the waiting-matching store would have to be for large programs to run efficiently on
the machine. It became clear that the resource management system should not
ignore the load on the waiting- matching stores when distributing work over the
machine. However, in order to account for the load placed on the waiting- matching,
the token storage requirements of code-blocks must be determined in advance. As
the token storage requirement depends on the order on execution, it was necessary
to deduce from the program graph the worst-case storage requirement under all
possible legal execution orders. The basic idea is to model the space of legal
configurations as a linear program and to solve for the maximum number of tokens
on the arcs. For acyclic blocks without conditionals, this can be solved efficiently.
For blocks with conditionals, tight bounds are NP-complete, but approximate bounds
are easily computed wuth branch-and-bound techniques.

Loops present another class of problems. One of the virtues of the U-interpreter
and the TTDA is that loops unfold automatically, exposing what parallelism is
present. Iterations are destinguished by an iteration number carried as part of the
activity name or tag. However, this automatic unfolding introduces cerain
complications. Since tags are of fixed size in the TTDA the iteration number field
may overflow. Moreover, the resource requirements of an activation (in particular,
the token-storage requirements) increase linearly with the number of concurrent
iterations. To overcome these difficulties, we desired a mechanism for controlling
the extent of unfolding and automatically recycling iteration numbers. The key result
is that a loop has bounded unfolding if and only if the graph forms a single
connected component. Working from this, David Culler developed techniques for
augmenting loop code-blocks so that the degree of unfolding is controlled by a
single run-time parameter.

Finally, we considered measures for constraining the automatic unfolding of
programs in order to reduce the resource requirements. A greedy scheduling
strategy tends toward breadth-first unfolding, which offers maximal paralielism, but
has large resource requirements. A depth-first strategy reduces the resource
requirement, but aiso reduces the amount of parallelism. Of the variety of
techniques developed for controlling the evaluation strategy, the most promising
relies on the resource manager to queue invocation requests when the machine is
saturated with work.

13
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2.5. Reduction Systems and Combinators

During the last year, we have continued our investigation of reduction systems and
combinators. In particular, Keshav Pingali has been examining the relationship
between supercombinators and dataflow. A supercombinator can be thought of as a
closed A-abstraction whose definition is of the form AX.Ay...Aw.e where e is a
A-expression without any nested A-abstractions. The number of leading A’s in the
definition of a supercombinator is called the arity of the supercombinator. There are
many techniques, such as A-fifting and mfe-abstraction, for converting conventional
functional language programs into supercombinatory form, ie., into a set of
supercombinator definitions and an expression involving supercombinator

applications.

To evaluate supercombinator programs, the definitions of the supercombinators
can be used as rewrite rules - any application of a supercombinator to as many
arguments as its arity can be replaced by the body of the supercombinator with the
arguments substituted in. This is a straightforward reduction implementation of
supercombinators. it was noticed by Johnsson that is possible to do better than this.
Each supercombinator definition can be compiled into code for a stack machine (or
for that matter any sequential machine), so that many intermediate steps of the
reduction can be avoided altogether. He calls this process "short-circuiting” graph

reduction.

We have found that the essence of short-circuiting the reduction of a
supercombinator application is captured by converting the body of the
supercombinator into continuation-passing style. The code generated for the stack
machine is an implementation of this transformed program. This view of short-
circuiting has two advantages. First, it relates the work done by Johnsson [JOH83] to
the work done by Sussman and Steele, Wand and others on compiling Scheme-like
languages [STE75; WAN78]. Second, it is easy to extend this idea to parallel
impiementations of functional languages. We are currently trying to understand
dataflow implementations in this light. If successful, this will permit us to relate

dataflow to reduction.
3. MULTIPROCESSOR EMULATION FACILITY PROJECT

3.1. The Hardware Laboratory

During the previous reporting period, Robert lannucci, James Pinkerton, Gregory
Papadopoulos and others put together the plan for a new MEF Hardware Laboratory
(Tanglewood Design Note 4) This year we saw the dream come to life in the form of a
600 sq. ft. room on the second floor which now provides

14
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» Two AED 767 color VLSI layout stations running CAESAR, HPEDIT, and
(soon) MAGIC, interfaced to a Hewlett-Packard 8 pen plotter.

e Two Apollo design workstations for schematic capture, simulation,
timing verification, and component placement. We are also adding a
500 MB file server to our Apollo ring network.

» A drafting table (when all the fancy electronic stuff fails).

e Four fully instrumented logic design / debug stations, each with an
oscilloscope, a logic analyzer, function generator, counter, digital
multimeter, programmable power supplies, an instrumentation
computer, and a full set of hand tools. In addition, we have a high
performance digitizer and a time domain reflectometer.

o A stockroom.

+ A VLSI microprobe station.

We also recently learned that our request for a grant of $200,000 worth of
additionai Apollo workstation hardware has been approved; we will take delivery on
the equipment before the end of the summer.

3.2. Packet Switch

Bart Blaner, Michael Mack, and David Lowther joined the MEF team from IBM
during the summer of 1984. During the last year, they have made noteworthy
progress on the development of the packet switch. Major accomplishments include

» Development of a protocol for the high speed serial links of the switch,
which is an improvement over the echo-acknowledge protocol
previously reported. Bart's contributions here are very significant; he
will be continuing his work on protocol verification over the next few
months.

» Development of the central switching mechanism for the packet switch
card. Michael’s high-level and detailed designs are sufficiently far along
that we expect to release a chip description to the manufacturer by the
end of the summer. The result will be an 8-in, 8-out, 4-bit-wide crossbar
on a single 84-pin chip. Performance will far exceed the requirements of
the packet switch.

o Partitioning of the card’s function down to the chip level. The
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partitioning is such that the high-speed serial logic is entirely modular
and is separate from the central switch. This makes it conceivable to
design both smaller and larger packet switches which are protocol
compatible with the existing design; such redesigns would be nearly
trivial. This opens the possibility of using the sgrial link as a building
block for many other applications e.g. datafiow processor cards,
backbone local area networks. We expect to have a working link in
prototype form by early Fall 1985, with the cMOS version to follow in the

second quarter of 19886.

« Selection of our target technology. We are currently planning on using
LS! Logic’s LL7600 series and LL5220 series for the high speed serial
logic and the central switch, respectively. We will also be using several
components available through IBM to make the design task simpler.

» Design of a set of very high performance PLA cells for custom VLSI. We
have just received our first test chip from MOSIS. Measurements will be

taken within a month.

Performance of the switch is dominated by two major factors: the speed of the
serial links (target is 32 Mbits/sec) and the latency of allocating a path through each
switch upon the arrival of the head of a message. The switch is optimized for high-
traffic message-passing communication where total throughput is more important
than per-message latency. We are currently re-investigating design enhancements
that will noticeably improve our ability also to support a remote memory reference
model of communication /i.e., shorter messages, with round-trip delay more

important than total message throughput.

During the next year, the packet switch team will continue to grow. It is likely that
we will have our first prototype card by summer of '86; we expect to be running
packet switch / NuCA test shortly thereafter. Between now and then, a significant
amount of effort will be required to impiement the necessary NuCA microcode,
Explorer microcode, and LISP code to make efficient data transfer accessible from

LISP,

3.3. Circuit Switch and NuCA

We have adapted the BBN Butterfly circuit switching network as an interim
communications medium until the packet switch becomes available. The primary
contributors to this effort have been Gregory Papadopoulos, Gregg Bromley, Chih
Lee, and Frank Park. The BBN switch node is a 4x4 4-bit serial, globally
synchronous crossbar. The raw bandwidth of each link is three megabytes per
second, and a maximum utilization of 20% of this raw rate is expected. This yields an
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aggregate useful bandwidth of over one gigabit per second for a 32-processor
configuration.

We have added error detection, noise immunity, and electrical isolation to make
the BBN switch more suitable for a higher integrity and more physically dispersed
multiprocessor. The circuit switch can be attached directly to the TI NuBus,
controlled by Lisp or Explorer Microcode. In addition, Saed Younis has engineered
a high precision distribution network designed to deliver the globally synchronous
six megahertz clock to sixty-four Tl Explorers, within a 25 nanosecond maximum
skew,

To off-load the Lisp processor from low level message formatting and protocol we
are developing a microcoded 1/0O processor, the NuBus Channel Adapter, or NuCA.
Gregory Papadopoulos, Erik Hagersten and Nils Skoglund (the latter two on loan
from Ellemtel, Sweden) have developed the NuCA. The NuCA provides an intelligent
DMA interface between the NuBus and a local bus. The local bus is a simplified byte-
wide block oriented bus consisting of an input and output link, each capable of
delivering or receiving ten megabytes per second, and an asynchronous Spy bus for
diagnostics, error recovery, and configuration. The NuCA will support both the
circuit and packet switches simultaneously. Internally, the NuCA provides two 5
Mips 64-bit micromachines, 4096 bytes of high speed FIFO buffering, 64K bytes of
scratch pad memory, in addition to an autonomous, muitiported NuBus master
interface capable of four-way request interleaving and burst transfers without Lisp
processor intervention.

In- Fall 1984, we demonstrated a re-engineered circuit switch prototype for the
Symbolics 3600. The circuit switch in its standalone NuBus configuration should
enter production by Fall 1985, becoming available to MEF users during the first
quarter of 1986. A NuCA prototype should be operational by the first quarter of 1986.

3.4. MEF Software

The MEF software development in progress is comprised of three parts, (1) generic
software for emulating multiprocessor architectures on the MEF, (2) the software for
the TTDA experiment, and (3) a general-purpose text illustration program called
ILLUSTRATE.

3.4.1 Generic Software

Early in the year, we found that the low speed of the dataflow emulation (less than
100 dataflow instructions per second per processor) was at least partially due to
design decisions taken in the MEF generic architecture emulation code. Richard
Mark Soley (the original author), Mike Beckerle, and Dinarte Morais did some to
speed tuning up this substrate. Due to these efforts, we are now emulating datafiow
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instructions at the rate of about 500 instructions per second per processor. Scaling
of this speed by increasing the number of processors, however, is severely
bandwidth-limited by the current interconnection hardware (10 Megabit ethernet

running Chaos and TCP protocols).

in order to support stepped-up use of the MEF substrate software at MIT and
elsewhere, Richard Soley’s thesis covering the theory and practice of its use is now
available for distribution. LCS TR 339 describes the basic abstractions of the MEF
software, as well as extensions and examples of its use. Among our future plans are
the upgrading of the MEF substrate software for more speed, support of the Texas
Instruments implementation language for portability, and support of the NuCA
network interface. This work will be performed over the next six months by Richard

Soley.

3.4.2 Datatlow Emulation Experiment

In Spring 1985, we decided to halt work temporarily on the dataflow emulation
software. First, we knew that the upcoming switch to the Ti Lisp Machines from the
Symbolics machines would require some changes to the software. Since the
dataflow emulation software is in need of some major revisions, it seemed best to
wait until the new software environment was available before undertaking major

changes.

In addition, within the next few months there are two sources for potential
modifications to the architecture. At the spring meetings with researchers from
i.B.M., we formed a committee to simplify the instruction set for the architecture.
Also, with the simulator now producing real results, we feit that the simulation
experiments might lead to some design changes for the architecture. Therefore,
rather than completing the emulator for the current architecture, it seemed more
practical to wait for a new specification, and in the mean time, to concentrate on
learning as much as possible from simulation experiments.

3.4.3 The ILLUSTRATE Program
During the past year, work has continued on the ILLUSTRATE graphical illustrate

program. Dinarte Morais, the original author, carried out most of it, with the
assistance of Dawn Clarke and Richard Soley.

ILLUSTRATE is a highly interactive object-oriented graphical illustration program,
designed primarily for adding illustrations to theses, reports, books, etc. Built
originally around the Alto Draw concepts, design ideas have been added by many
members of the group. Running on the Symbolics 3600 Lisp Machine processor,
lllustrate is becoming quite popular at MIT and other sites around the country. Over
the next year, Hiustrate will also be ported to the Tl Explorer processor.
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