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Abstract

A new method of solving tridiagonal systems of linear equations is proposed which
introduces parallelism in a way that may be effectively exploited by a suitable parallel
computer architecture. The scheme is based on the program transformation techniques
which can produce machine code to be executed in a maximally pipelined fashion.
Compared to the existing parallel solution techniques such as the cyclic reduction
algorithms, the new method has the following advantages: (1) it eliminates the substantial
data rearrangement overhead incurred by many existing parallel algorithms; (2) it sustains
a relatively constant parallelism during various phases of program execution; (3) the code
generation is independent of the length of the vectors to be computed, hence is more
flexible; (4) in general the size of machine code is much smaller and hence is more efficient
in terms of memory usage. The new method is also numerically stable. Using the new
method, we outline the code structure of a maximally pipelined tridiagonal linear equation

solver for a static data flow supercomputer.

1. The rescarch described in this paper and its two companion papers [12, 13] was supported by the
Department of Energy and the National Science Foundation.
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1. Introduction

Tridiagonal systems of lincar equations form a very important class of linear algebraic
equations. For example, the heart of finite difference solutions of PDEs (partial
differential equations) consists of tridiagonal systems of equations. Consequently, efficient
sotutions for such equations become crucial for many numerical algorithms.

It is well known that a tridiagonal system of linear equations can be solved on a
conventional computer using the classical Gaussian elimination algorithm, which, though
has been proved most effective on serial computers, is sequential in nature and hence
unsuitable for parallel computers without drastic alteration.

In the past decade, new techniques have appeared for solving tridiagonal systems of
equations with parallel computers {16, 20]. The best known parailel algorithm is based on
the cyclic reduction technique, first proposed by Golub and Hockney and applied by
Buzbee et al, for solving tridiagonal system of equations efficiently [14,3]. One approach is
using such parallel technique 1o solve the recurrences established by the
LU-decomposition method of Gaussian elimination algorithm. One such algorithm,
known as recursive doubling suggested by Stone [23] and criginally designed for llliac IV,
was later modified for other vector computers {24]. Another approach has resulted from
considering the needs of parallel processing in the first place and trying to design
fundamentally new algorithms which are inherently morc purallel. The odd-even cyclic
reduction algorithm is base on such a principle. As will be discussed in section 2, a major
difficulty with the algorithms based on cyclic reduction technique is the overhead of data
rearrangement between computation steps which may lead to considerable performance
degradation in its implementation on vector computers, such as Cyber 205 and Cray.
Another problem is in the considerable variations of degree of parallelism between
computation steps. This may raise the speculation that, for sufficient small vector size n,
the sequential algorithm would run faster than cyclic reduction.

In this paper, a new method for solving tridiagonal systems of equations is proposed
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which introduces parallelism in a way that may be effectively exploited by a suitable
parallel computer architecture. The algorithm is based on the maximally pipelined solution
of linear recurrences presented in a companion paper [12]. It performs a program
transformation of the recurrences generated in the Gaussian climination method to
produce machine code which can be executed in a maximally pipelined fashion.
Compared to the existing parallel solution techniques such as cyclic reduction algorithms,
the new method has the following advantages: (1) it eliminates the substantial data
rearrangement overhead incurred by many existing parallel algorithms; (2) it sustains a
relatively constant parallelism during various phases of program execution; (3) the code
generation is independent of the length of the vectors to be computed, hence is more
flexible; (4) in general the machine code size is much smaller and hence is more efficient in
terms of memory usage. The new method is also numerically stable. Based on this scheme,
the code structure of a maximally pipelined tridiagonal equation solver is outlined for a
static data flow supercomputer.

In Section 2, following a brief statement of the problem, we present the major
recurrences established by LU-decomposition technique. These recurrences are important
to later discussions. We survey related work on parallel tridiagonal solution methods, with
particular emphasis on the cyclic reduction technique. This discussion includes both the
recursive doubling algorithm for solving the linear recurrences generated in Gaussian
elimination and the odd-even cyclic reduction algorithm. The disadvantages of these
algorithms are discussed. In section 3, we present a basis for the pipelined tridiagonal
system solver, i.e., the pipelined solution of linear recurrences, which is based on the
principles developed earlier in {4, 9], followed by an extension described in one companion
paper [12]. Section 4 develops the machine code structure of a fully pipelined tridiagonal
solver and outlines its advantages over other parallel solutions. In Section 5 we discuss a
future extension of the pipelined solution scheme, Section 6 briefly addresses the

numerical stability aspects of the new method based on the result of a second companion
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paper [13]. The conclusions and future research suggestions are in Section 7.
2. Background and Related Work

In this section we state briefly the problem of tridiagonal system of linear equations
and review the directed methods for solving them — such as the Gaussian elimination
algorithm, in particular the linear recurrences established by the LU-decomposition
technique which are the starting point of our new approach. We also survey the related
work of parallel tridiagonal solution methods, such as the well-known cyclic reduction
technique. Our discussion includes both the recursive doubling algorithm for solving the
recurrences directly established by the Gaussian elimination method and the odd-even

cyclic reduction algorithm. The disadvantages of these algorithms are discussed.
2.1 Statement of The Problem

We consider the solution to the following tridiagonal set of linear equations:
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or expressed in matrix-vector notation



Ax = k Q.1

In this paper, our major concern will be the case where the coefficient matrix A is

positive definite or at least pivoling is not required.
2.2 LU-Decompusition

There are a number of serial methods for solving the tridiagonal system as expressed
in (2.1). The maximally pipelined solution method to be developed in this paper is based
on the well-known LU-decomposition technique [8]. The Stone’s recursive doubling
algorithm to be discussed later is also based upon such technigue. In this method, we find

two matrices, L and U, such that

(1) LU = A;
(2) Lis a lower bidiagonal matrix;

(3) Uis an upper bidiagonal matrix with 1 on its principal diagonal.

When A is non-simpler, its LU decomposition is unique. In fact, it is shown that
1
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where
uy = cllb1
u, = ¢/(bau, ) i=23.n"1 (2.3)

e = ui/ci

After computing L and U, it is relatively straightforward to solve the system of

equations by a two-step process. First, letting Y = Ux, we have

Ly =K @.5)
Ux =y 2.6)

and together, we have Ax = LUx = Ly =k

The equation Ly = k can easily be soived for y as follow.

¥y = kb
y; = (kay, )/(brau; ) i=23.n Q2.7



Note that in the solution process, as indicated by (2.7), there is no need to compute e,
explicitly unless the matrix L is needed in other places. Next, we solve Ux =y for x by

noting that

xn:yn

Xo = Yo UXi g i=n1n2.1 (2.8)

The two steps of (2.7) and (2.8) are often called forward-elimination and
backward-substitution. The recurrences (2.3), (2.7) and (2.8) constitute a complete solution
for Ax = k. and a sequential algorithm to perform such a solution is the so-called Gaussian
elimination algorithm. We can observe that these recurrences cannot be evaluated directly
using vector operations or on array of processors. Hence new solution techniques have

been proposed, such as the cyclic reduction algorithms which we will presented next.
2.3 Cyclic Reduction Technique

In this paper, we make no attempt to survey all paralfel algorithms for tridiagonal
linear equation solvers, but review only two well-known methods which will be compared
with the pipelined solution algorithm. These methods are based on the cyclic reduction

technique,

2.3.1 Recursive Doubling Algorithm

Ll

The recursive doubling algorithm proposed by Stone [23] began with the observation
that the formula required by LU factorization, such as (2.7) and (2.8), are first order linear
recurrences. The equation (2.3) appears not to be a linear recurrence. However, if we

introduce a new variable g; such that u, = -q,/q then (2.3) can be transformed into the

i+1
following second-order linear recurrence:
0 i=23,..n1 (2.9)

a0,y + bg; + €541 =
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where q; = 1, q, = -b)/¢,

We note that (2.9) can be expressed in the matrix notation as follow:

= (2.10)

q a. /¢, b /¢, q .
i+1 1 1 i i 1

Stone pointed out that (2.10) is similar to a first-order linear recurrence except that
the sequence is now a set of vectors instead of scalar values. The recursive doubling
algorithm [23,24] treats (2.7), (2.8) and (2.10) as general first-order linear recurrence and
using standard cyclic reduction method for handling linear recurrences to solve them.

It is helpful to review the cyclic reduction technique for solving linear recurrences
before we outline its disadvantages. For instance, we consider the evaluation of the
sequence of x, from the following first-order linear recurrencc relation.

X, = ax.; + b fori = 2.n (2.11)

where ST PR and bl""’bn are known values. The basic idea of standard cyclic reduction
technique is to back up the recurrence in (2.11) such that a new recurrence can be obtained
which relates every other term, every fourth term, every eighth term, etc.

For example, from (2.11) we have

X = a3 %, T ab, +b;

—_ i
= aly,, + b 12)

wherea’ = aa. b = ab. | + b, The superscript (1) denotes the fact that this is a first
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level backup. Such a backup process can be repeated (in a cyclic fashion) and we obtain a

set of equations as follow,

— A ()
X, = a’x, oM + b} (2.13)
where
af’ = af Pl (2.14)
bl = al bt + b{D (2.15)

with 1 = 0,1..Jog,n, 1 = 2,3..n. An important observation is that if any of a, b, or x, is
outside the defined range, its value can be taken as zero. Therefore, when 1 = log,n, all x;

are solved by
— pllog,n)
X, = bnogz

At level 1, m—the number of operations for generating corresponding coefficients is

roughly given by m, = 3(n-2H). This suggests the following observation:

(1) high parallelism exists at certain phases (steps) of the algorithm, i.e., at a fix level
1, (2.14) and (2.15) can be evaluated for all 1 in parallel;

(2) the parallelism grows roughly linearly with the size of the vectors — i.e. n in this
case;

(3) the useful parallelism decreases as the computation progressing through

different phases.

Several difficulties with the above standard cyclic reduction solution for linear
recurrences exist. First, the amount of parallelism varies between phases of computation.
This will increase the difficulty of fully utilize the parallelism of the machine. For a

pipelined vector computer, this requires that the machine should efficiently support vector
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operations of variable vector lengths, For processor arrays with n < N (N is the number of
processors), it does not produce a balanced work foad on all processors during the program
exccution. When n > N, the allocation of the vectors becomes a challenging task to assure
both high speed of computation and good utilization of resources. Moreover, the number
of operations is O(nlogn), a significant increase from O(n) for sequential Gaussian
elimination methods. As pointed out by Lambiotte & Voigt [19], for vector computers the
total number of operations is also an important factor. Therefore, even though vector
operations may be applied, at some point the nlogn operations become the dominate factor

and the vector algorithm will be slower than the scalar algorithm.
2.3.2 Odd-even Reduction Algorithm

The odd-even cyclic reduction algorithm is perhaps the most successful cyclic
reduction algorithm applied to solve tridiagonal systems [3, 15, 7). It starts directly from

the system of equations defined by 2.1), i.e,,

ax,, +bx +ex,; =k i=12.n!

The algorithm first eliminates the odd numbered variables in the even numbered
equations by performing elementary row operations. In each level, we cut down the total
number of equations by 1/2, hence, in log,n levels, the middle element x_,, can be
computed directly from the coefficients. The remaining unknowns can be found by a
refilling procedure. This algorithm also involves the recursive calculation of coefficients
for equations at each level. One important advantage of the odd-even reduction over the

recursive doubling algorithm is that it reduces the number of operations considerably at

each level, and the total number of operations is on the order of O(n).

1. In the remaining discussion of this scction, we assume n is a power of 2, but this is not an essential
assumption,
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One major difficulty with odd-even reduction is the data rcarrangement of variable
and coefficient vectors between phases of computation. For example, on the Cyber 205
one cannot apply vector operations directly to every other elements of the vector. Thus
extra operations must be employed to reformat those elements into a new vector [19]. On
the Cray it is possible to access elements of a vector at a fixed increment, but this may result
in a performance degradation {2, 17]. Because of the overhead of data rearrangement, the
cyclic reduction algorithm may run slower than a serial algorithm for sufficiently small n
[20].

Another problem is the degree of variation of parallelism between different phases of
computation. Because the parallelism decreases very rapidly, this problem becomes more
serious than that for the recursive doubling algorithm. A parallel version of odd-even
reduction algorithm has been proposed to keep a high parallelism throughout the
computation. However, it increases the number of operations significantly to O(nlogn)

[16].
3. Pipelined Solution Scheme for Linear Recurrences

The chatlenge of mapping numerical algorithms onto parallel computers 15 devising
the method and arranging the computation so that the architecture features of a particular
machine can be fully utilized.

The model of parallel computers for the pipelined algorithm developed in this paper
is based upon computers built on data flow principles. In particular, we use the static daia
flow machine as a target machine to develop the machine code structure. The readers who

are unfamiliar with the basic concept of data flow architecture are referred to [5,6).
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3.1 Overview of the Pipelined Solution Scheme

In cyclic reduction scheme, the goal is to increase the speed through fully exploiting
the parallelism in the original problem. High concurrency is obtained by replicating the
operations as much as necessary to compute all elements in the result vector in parallel.
Unfortunately, this technigue incurs significant overhead of data rearrangements.
Moreover, it requires varying amount of parallelism during different phases of
computation.

In contrast, we propose a new method of solving tridiagonal systems which can
explore and organize the parallelism in a way that best malches a suitable computer
architecture. The new algorithm, named pipelined tridiagonal solver, is developed from a
maximally pipelined mapping scheme for solving linear recurrences. In this section we
briefly outline the key idea of the basic scheme.

The maximally pipelined code mapping scheme for linear recurrence is based on the
principle established in our previous work {4,9}. A more thorough treatment of mapping
linear recurrences along this line can be found in {12]. A key step in a pipelined mapping
of (2.11) is backing up the recurrence in a manner similar to that in cyclic reduction as
described in section 2.3.1. However, a fundamental difference exists in the philosophy —
the backup procedure here is taken as a way to allow multiple elements to be computed by
the same piece of machine code in a maximally pipelined fashion. Therefore, instead of
fully expanding the recurrence to the end, the backup is only performed to an extent that a
constant degree of parallelism can be maximally and gracefully explored throughout the
computation. The maximally pipelined throughput is the major concern of this scheme,

The form of parallelism which is of most interest to us is the potential of maximally
pipelined execution of machine level data flow programs [4]. The power of pipelined
computation in the data flow computer lies in the possibility of machine level programs
that form one large pipeline in which many instructions in various of stages are in

concurrent execution. It is beyond the scope of this paper to discuss such scheme in detail,
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a background review can be found in [4,9,10]. In the following, we present an example to

illustrate how such scheme is used in the pipelined mapping of linear recurrences.
3.2 Maximally Pipelined Mapping of Linear Recurrences

An attractive way to implement recurrence on data flow computers is to introduce
feedback paths in the data flow graph. This, however, presents particular problems when
maximum pipelining of the program is desired. A direct translation of the first order
recurrence is shown in Fig. 1. The value x; depends on the value of x . therefore, a
feedback path, such as the one marked in the graph, is generated. The key is to understand
the role of the merge operator (denoted by M in Fig. 1): (1) under the merge control input
values (CFT...T>), the initial output value of the loop is taken from the second input of the
merge, i.e., X;. (2) the upper output of M is routed under the feedback control values, ie.

<T...TF>, therefore all but the last two elements of the array will be fed back; and (3) the

Fig. 1. The Pipelined Mapping of a First-Order Linear Recurrence

fecdback path
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lower output of the merge is forwarded as the output of the loop unconditionally, Due to
the existence of cycles, the instruction graph produced by such a scheme, in general, cannot
be fully pipelined. More specifically, the feedback link between the output of cell 3 and
the input of cell 1 prevents the whole graph from being fully pipelined.

The problem of the above example and its solution have been studied by Dennis and
Gao in [4, 9]. As indicated by the author in a companion paper [12], the problem is
essentially a mismatch between the dependence delay— the dependence inherent in the
recurrence (i.e., X depends on x, |, therefore, at least a two-stage feedback delay is
required) and the computational delay—the actual length of the loop in the data flow graph
generated by the direct translation scheme (3 stages in this example). In [12], the author
described a solution for such a problem on a static data flow computer, based on the
concept of companion functions [4,18]. 1t is essentially a way to remove the dependence of
X, on X, ,, thus, easing the feedback constraints in order to match the computational delay

of the data flow graph. For the above example, we have:

Xp = by
X, = b + b,
X, = a@ 1%, + ab; + b, wherei > 3 (3.1)

We can note that (3.1) is the same as (2.12). This transformation is interesting to us
because x; now depends on X, instead of x; ;. Therefore, we can map our example, now
expressed as in (3.1), into a data flow graph as shown in Fig. 2. Note that we have
introduced two additional pipelines a; and b; as denoted by the dotted lined box C, where

o _
A7 = aa

b =ab, +b, wherei> 3.

This added pipeline is named the companion pipeline in [4}, and its structure is shown

in Fig. 3. To understand how the scheme works we first examine the loop. The role of the



_17-

Fig. 2. Maximually Pipelined Mapping of First-Order Linear Recurrences

feedback path

FFT..T

merge operator is as before except that two initial values are presented to the second input
of the merge, ie. x; = by, x, = a,b, + b,. The ID cell plays the role of a FIFO of size 1.
It is inserted to achieve the computational delay needed in the feedback path to match the
dependence delay. The rest of the graph is self-explanatory and the reader should be
convinced that the graph is maximally pipelined.

The transformation shown in the above example is equivalent to dividing the
first-order linear recurrence into two equivalent classes of computation, In fact, since x

now depends on X, ,, we may split the sequence of results into two subsequences:

X = (XI,X3,KS...K2i_1...>
X" = (xz,x4,x6...x2i...>.

Either sequence can be computed independently by sharing the same loop, and the

companion pipeline provides the appropriate input coefficients.
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Fig. 3. 'The Companion Pipeline fo Example (3.1)

0

)
b

-

— FFL.T

The advantage of this scheme is obvious. First, it does not require data
rearrangement during the computation. In fact, it even eliminates the requirement that the
input vectors be completely filled before the computation starts. If the input coefficient
vectors themselves are generated by some preceding code block in a pipelined fashion, the
producer-consumer type of interface technique (as described in [9]) can be applied to save
considerable storage space for the intermediate values. Moreover, we observe that the
degree of parallelism remains constant (5 floating point arithmetic operations and several

other operations) in the computation.” The high throughput is achieved by the maximally

1. Here the variation of the parallclism during the start and finish time of thc computation is not considered
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pipelined exccution of each actor in the data flow program, hence, the storage usage by the
machine code is very efficient. Finally, there are no essential limitation on the length of the

vectors which can be computed.
The principle of maximally pipelined solution described in this section can also be

applied to a general linear recurrence {12].
4. A Maximally Pipelined Tridiagonal Solver

In this section, we apply the principle of pipelined solution of linear recurrences
described in the last section to develop the machine program structure for a maximally
pipelined tridiagonal system solver.

Starting from LU-decomposition, we can observe that the major equations, such as
(2.7) and (2.8), are first-order linear recurrences. Therefore, the pipelined method as
described in the last section can be applied directly. Now consider (2.9) which can be

transformed into the following second-order linear recurrence.
q = G, + Biqi-Z i=34.n (4.1)
whereq; = 1,q, = -b;/c, and

@ = b1 /C

B; = -3.4/¢,
Performing one level backup we obtain
q = a?’qi.z + ,B?)qi_:; i=4,5.n 4.2)
whereq; = 1,4, = -b;/c;, Q3 = b,b, /¢ ¢, - a5/, and

™ _
o = ey + B,
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BY = aB. i=45.n (4.2.1)

Fig. 4 shows a maximally pipclined data flow machine level program for mapping
(4.2.1). The loop in the middie of Fig. 4 can easily be understood by noting its similarity
with the loops in Fig. 2. The code in the dotted lined box is the companion pipeline
generating values for a{” and B{". The node labeled N performs a negation of its input.
The boolean value sequences C0 - C5 can be found in Fig. 6. The boxes denote the FIFO
buffers which are introduced for balancing the graph [6,9] to achieve maximum pipelining,
and the number written inside the box is the number of stages in that buffer. It is easy to
check that Fig. 4 correctly computes (2.9) and it is maximally pipelined.

We rewrite the first-order linear recurrence in (2.7) as

Fig. 4. Pipelined Tridiagonal Linear Equation Solver -- Part 1
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Fig. 5. Pipelined Tridiagonal Linear Equation Solver - Part 2

y, =gy t Iy i=23.n 4.3)
where y; = k;/b, g = -a/(brau. ), by = k./(b, - au, ;). Performing one level
backup we obtain
y; = gy, + h{V i=34.n 4.4

wherey, = k;/by, v, = (-ak, +b1k2)/ (b2 - azul)bl’ and
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Fig. 6. Pipelined Tridiagonal Linear Equation Selver -- Part 3

I~ CO0:FT..T
— CL:T.TF
— C2FI.T
— C3:T.TF

C —  C4 FFFI.LT
— CS:T..TFFF
p-  C6: FT..TF
= CIFFT.T
— CR&T.TFF

Fig. 5 shows a maximally pipelined mapping of (4.4). The dotted lined box is the
companion pipeline and the boolean sequences C1,C2,C7,C8 can be found in Fig. 6.

Finally, (2.8) can be conveniently treated as a first-order linear recurrence by

introducing new variables x e YUy such that x S X Y T Ve Ui = Upigr
Hence, (2.8) can be rewritten as
X;=TX.  +5§ i=23.n 4.5)

whereX, =y, r, = -u,ands, =y, Wecan note that (4.5) is a standard first-order linear

recurrence, hence we can solve it by one level backup:

X, =K, + Ci=34.n (4.6)

wherex | = yl,x2:u2y1+yzand
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D
= h

(M _
SRES

Fig. 6 shows a maximally pipelined mapping of (4.6).

Now we have constructed a complete machine code structure for a maximally
pipelined tridiagonal solver as shown by Fig, 4 - Fig. 6. Fig. 4 and Fig. 5 can be combined
into one maximally pipelined data flow graph by observing that the sequence of values of
u produced by Fig. 4 can be directly fed into Fig. 5. The interface between the outputs of
Fig. 4 and Fig. 5 and the inputs of Fig. 6 cannot be connected directly. The main reason is
that the order in which the elements y, and u; are gencrated by Fig. 4 and Fig. 5 is opposite
to the order in which they are used for the maximum pipelining of Fig. 6. Hence, we
should first store the values of u,, y; into two arrays. Then, Fig. 6 will access the arrays in a
reverse order. The code in Fig. 4 and Fig. 5 will sustain a constant parallelism such that
there are 20 floating point operations and a number of other operations are concurrently in
pipelined operation. When only the code of Fig. 6 is in execution , the parallelism will be
reduced to a constant of 5. Although there is such a change of degree of parallelism
between the forward elimination and backward substitution phases of the computation,
they are entirely stable during each phase, hence are easily to be handled by the processors,
Furthermaore, 1n Fig. 4 - Fig. 6, the pattern of runtime data routing is regular, thus
eliminating the data rearrangement problem for cyclic reduction. Moreover, it essentially
can work for tridiagonal systems regardless of their size, hence, has more flexibility and
generality than the cyclic reduction scheme. _

The reader may wonder if the 5 to 20 folds of parallelism available in the pipelined
algorithm may not meet the appetite of a supercomputer. We argue that the major concern
should be how the parallelism in the algorithm can be most effectively used by a suitable
architecture. First, the new scheme maintains a relatively constant amount of parallelism
and relatively simple data routing pattern. Thus, the resource management and allocation

problems are more easy to handle, thereby providing better opportunity of parallel
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processing when the machine has extra power. Second, one is often faced with solving a set
of m independent tridiagonal systems (say, m=64), as frequently occurs in the solution of
PDEs [16]. In this case, the new scheme can be best used by generating m independent
pipelines for each system to obtain 20xm folds of parallelism (near 1000 if m=64 ).
Finally, the new scheme is flexible enough to be extended to obtain more parallelism when

such a requirement does occur. We will briefly address such extensions in the next section.

5. The Multi-level Pipelined solution Scheme—An extenssion

In the last section, we have presented a tridiagonal linear system solver based on
maximally pipelined solution technique for linear recurrences. A fixed amount of
parallelism is obtained in the implementation illustrated in Fig. 4 - Fig. 6 where one level
backup is performed. A natural question now arises: how far can we push this technique to
get more parallelism, and what is the trade-off?

Take the first-order linear recurrences, such as (2.11) or (3.1), as an example. As
pointed in [12], the pipelined solution does not change basic structure of the loop. It
increases the parallelism by maximally utilizing the few instructions in the loop. Backing
up one level, as shown in Fig. 2, is equivalent to multiplexing the computation of odd and
even elements with the same code. In [12], it is also shown that this code is saturated with
activities so that further backups with one copy of the code do not help in improving
performance. In addition, it may cause extra overheard in terms of both delay and memory
space. What should we do if the machine still has extra processing power? Naturally

enough, we should construct multiple pipelines in the code.

Fig. 7 shows a high-level view of an example of the machine code structure which has
4 times as much parallelism as that in Fig. 2. The key is to introduce more concurrency by
performing one more level of backup and utilizing multiple copies of code. For example,

we can first transform (2.11) into the following form:
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Fig. 7. A Multiple Pipeline Solution
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a§2) = 8@y 8,584 (5.2.1)

2) _
b = aa, ja b, +aa b, + b +b | (5.2.2)

The code modules RL1-RL4 are used to compute the subsequences <x;, X, Xge-s
<xé, X X| e Xyo Xq, Xppe? and <x,, Xg, X;5...2 respectively. Each box is a copy of the
code in Fig. 2.

The boxes N1 and N2 are code which generate the coefficient sequences of (5.2.1)
and (5.2.2), splitting them into subsequences to be used by RL1-RL4. The construction of
N1 and N2 should be straightforward. In Fig. 8 and Fig. 9 we include a mapping of N1.
The code for N2 is more tedious and is omitted. Also omitted are the FIFOs for the
purpose of simplicity.

We can note that, with both multiple levels of backup and multiple copies of
pipelined code, a significant gain in the amount of parallelism can be achieved, while still
retaining the major advantages of the pipelined solution scheme, as illustrated in the
previous sections.

The overhead with the multiple pipelined scheme includes (1) more operations to be
performed due to the multiple backup; (2) the requirement that input coefficients should
be generated (or stored) in a way which can be efficiently accessed in the desired order.

The selection of an adequate number of copies of pipelines and suitable backups

should based on both the performance tradeoff and the machine architecture.
6. The Stability Aspect of the Solution

In developing new parallel algorithms, high importance attached not only to the
speed of the greatest computation rate, but to the numerical stability problems as well,

The stability aspect of the pipelined tridiagonal solver has been studied by the author
in a second companion paper [13]. Based on the technique of forward error analysis [22},

the author has shown that the pipelined tridiagonal linear equation solver is numerically
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Fig. 8. A Mapping of the Interface Code
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Fig. 9. A Mapping of the Box P in Fig. 8
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fully stable. The author has also shown that this algorithm has the same degree of stability
as a sequential Gaussian elimination algorithm,

As a remark, we note that the nonlinear recurrence expressed in (2.3) can also be
directly solved in a maximally pipelined fashion, because it is easy to show that it has a
companion function. However, it is due to the stability reason we prefer the solution

proposed in this paper [13].
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7. Simulation Results

The entire code for the pipelined tridiagonal linear equation solver has been
translated into the machine code of a proposed static data flow supercomputer, and a
preliminary simulation results of the code can be found in [21], which shows that the

maximally pipelined throughput can be sustained for each of the three loops.
8. Conclusions and Future Research Suggestions

A maximally pipelined approach for solving tridiagonal systems of linear equations is
proposed and a complete machine code structure for the algorithm is constructed. The new
scheme has several important advantages over other existing parallel algorithms. Although,
the primary target machine used in this paper is a static data flow computer, we expect that
the principle can also be applied to other data flow computers, such as the dynamic data
flow machine [1], although a different perspective of pipelining may required [11]. It is my
belief that the basic ideas may also be useful for a conventional parallel machine
architecture.,

Future research is needed to implement such an algorithm on a real static data flow
machine yet to be built. An automatic program transformation for both multiple backup
and multiple copies of code presents an interesting challenge to the compiler construction

for such computers.
9. Acknowledgements

The author is indebted to the constant encouragement and direction from Prof. Jack
Dennis at MIT. Dr. Bill Ackerman and Kevin Theobald have read the draft and made
interesting comments. Natalie Tarbet has provided valuable helps in the improvements of
the English for this paper. Finally, the author is grateful to his wife, Gao Ping, for her

typing of the entire manuscripts and preparation of the figures.



References

[1]

[2]

(3]

4]

7]

[8]

9]

[10]

{11]

Arvind, Gostelow,K.P. and Plouffe,W, “An Asynchronous Programming Language
and Computing Machine”, TR-114a, Dept. of Information and Computer Science,
Univ, of California, Irvine, Dec. 1978.

Boris, J., “Vectorized Tridiagonal Solvers”, Naval Research Laboratory Report No.
3048, 1976.

Buzbee, B. L. Golub G. H. and Neilson C. W., “On Direct Methods for Solving
Poison's Equations™, SIAM Journal of Numerical Analysis, 7., 1970.

Dennis, J. B. and Gao, G. R. "Maximum Pipelining of Array Operations on Static
Data Flow Machine”, Proceeding of the 1983 International Conference on Parallel
Processing, Aug 23-26, 1983.

Dennis, 1. B., “Data Flow for Supercomputers” To appear on the Proceeding of 1984
Compcon., March, 1984.

Dennis, J. B., Gao G. R. and Todd, K., “Modeling the Weather with a Data Flow
Supercomputer”, IEEE Trans. on Computers, ¢-33, No. 7, July 1984.

Ericksen, J., “Iterative and Direct Methods for Solving Poisson’s Equation and Their
Adaptability to ILLIAC 1V, Center for Advanced C.mputation Document No. 60,
University of Iltinois at Urbana, Champaign, 1972,

Forsythe, G. E. and Moler, C. B., “Computer Solution of Linear Algebraic Systems”,
Prentice-Hall, Englewood Cliffs, N. 1., 1967.

Gao, G. R. “An Implementation Scheme for Array Operations in Static Data Flow
Computer” MS Thesis, Laboratory for Computer Science, MIT, Cambridge, MA,
June 1982.

Gao, G. R. “Homogeneous Approach of Mapping Data Flow Programs”,
Proceeding of the 1983 International Conference on Parallel Processing, Aug, 1984.

Gao, G. R, “Maximally Pipelined Throughput and Its Token Storage Requirements
for Dynamic Data Flow Processors”, IBM Research Report, RC-10785, Computer
Science, T.J. Watson Research Center, Oct. 1984,



[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

21]

{22]

(23]

[24]

-3] -

Gao, G. R. "Maximum Pipelining of Lincar Recurrence on Static Data Flow
Computers”, Computation Structure Group Note 49, Lab. for Computer Science,
Aug. 1985.

Gao, G. R. “Stability Aspects of a Pipelined Tridiagonal Linear Equation Solver”,
Computation Structure Group Note 48, Lab. for Computer Science, Aug. 1935.

Hockney, R. “A Fast Direct Solution of Poisson’s Equation Using Fourier Analysis”,
J. ACM. 12. 1965.

Hockney, R., “The Potential Calculation and Some Applications”, Methods
Computational Phys. 9, pp. 135-211, 1970.

Hockney, R. W. and Jesshope, C. R., “Parallel Computers”, Adam Hilger Ltd., 1981

Kershaw, D. “Solution of Single Tridiagonal Linear Systems and Vector Rization of
the ICCG Algorithm on the Cray-1", in “Parallel Computations”, Ed. by Rodrigue,
G. et al., Academic Press, 1982

Kogge, P. M. “A parallel Algorithm for Efficient Solution of a General Class of
Recurrence Equations.” IEEE Trans. Comput., Vol. ¢-22, no. 8, Aug. 1973.

Lambiotte, I. and Voigt, R., “The Solution of Tridiagonal Linear Systems on the
CDC Star-100 Computer”, ACM Trans. Math Software 1., 1975.

Ortega, ]. M. and Voigt, R. G., “Solution of Partial Differential Equations on Vector
and Parallel Computers™, NASA ICASE Report No. 85-1, 1985.

Redkey, D. H., “Simulation Resuits for a Pipelined Tridiagonal Linear Equation
Soiver on a Static Data Flow Computer”, Computation Structures Group Note 30,
Lab. for Computer Science, M.L.T., Aug. 1985.

Ronsch, W., “Stability Analysis in Using Parallel Algorithms”, Parallel Computing,
Vol. 1, No. 1, Aug. 1984,

Stone, H., “An Efficient Parallel Algorithm for the Solution of a Tridiagonal Linear
System of Equations”, J. ACM, 20., 1973,

Stone, H., “Paralle! Tridiagonal Fquation Solvers”, ACM Trans. on Math. Software,
Vol. 1, 1975.



