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1. Introduction

In this document we define the syntax and abstract opcrational semantics of the programming
language "1d Nouveau". 1d Nouveau is an an cvolutionary successor to id [3, 9] and 1d/83s [12],
languages used to program the MIT T agged-Token Dataflow Machine [2, 1}

Our underlying motivation is the design of general-purpose computer architectures that achicve
high performance by cxploiting paralielism. Buta paralicl architecture is not enough-- we nced to
explore programming languages, programming mcthodology and compiling technology that will
make effcctive use of such architectures. Indeed it is our belief that these rescarch directions must
be pursued together-- the architecture will depend heavily on the choice of programming language
and compiling technology. '

A programming Janguage for parallel machincs must admit the division of a problem into smaller
tasks that can be performed in parallel. Axiomatic in our approach is the belicfl that the
programmer should be insulated from the details of this division. We are thus led to certain design
choices:

o The programmer should not have to annotate the program to specify what can be done
in parallel. This information is implicit in the data-dependencics in the program and
should be recognized and exploited automatically (by the compiler/architecture).

» The programmer should not have to change the program when the machine
configuration changes (e.g. doubling the number of processors, faster technology,
different interconnection, failure of one processor, etc.). Preferably, the program
should not even have to be recompiled for a new machine configuration,

Surprisingly, very few other researchers (and no commercial products) aim for this degree of
machine independence.

An important consequence of these requirements is that the language be determinate, ie. that the
result computed by a program be independent of the particular schedule chosen by the machine for
executing paratlel tasks. Without this property of the programming language, we believe that the
programmer will be hopelessly bogged down, battling the vagaries of machine configuration and
technology-dependent timing considerations.

For these reasons, functional programming languages have attracted many researchers in this
field. The semantics of functional languages admits much parallelism, and these languages are
determinate (they are Church-Rosser). Indeed 1d [3], a predecessor of 1d Nouveau, was a functional

language.

But experience with functional tanguages reveals a serious problem-- the treatment of data-
structurcs. In functional languages, there is no concept of in situ update, and this can lead to
excessive copying and lack of parallelism in data-structures. However, unrestricted in situ updaics
would bring us back into the class of imperative languages, and thercfore reintroduce
indeterminacy. It was to solve this problem that a new data-structuring mechanism called "[-
structures” was introduced in [5] and subsequently refined. I-structures are a non-functional data-



structuring mechanism, but the operations on I-structures are regulated so that determinacy is
preserved. ‘The bechaviour of I-structures is analogous to the behaviour of first-order terms in a

logic programming language such as Prolog.

The language Id has been running for many years, first on simulated dataflow machines and more
recently on a real multi-processor emulation of a dataflow machine. 1d/83s was a first cut at a
major redesign of the language based on that experience (July 1985). Id Nouvcau, the language
described in this document, is roughly the same as 1d/83s-- but it is now accompanied by an
abstract operational semantics, and we have a new understanding of compilation techniques for all
its constructs [14].

There arc two documents that may be considered companions o this one. "I-Structures”
[4] concentrates on the basic dala-structuring mechanism in Id, comparing it with structuring

mechanisms in other imperative and functional languages. "Dataflow Graphs from |d Nouveau”
[14] describes how to compile Id Nouveau programs into Dataflow Graphs. These documents

together supercede [12].

The MIT Tagged-Token Dataflow Machine, the programming language Id Nouveau and
Dataflow Graphs reflect our current thinking on architectures, languages and compiling techniques
for parallel machines. This is a very active and exciting area of rescarch and so it would not be
surprising 10 scec many changes as our understanding of these issues decpens.

L.1. Document Outline

In Section 2 we present the subset of Id Nouveau that is purely functional {ie. without |-
structures). It is a fairly typical functional language.

In Section 3 we introduce I-structures. This takes 1d out of the class of purcly functlional
languages-- I-structures have similaritics to so-called “logic variables™ of languages such as Prolog.
We revisit some of the affected language constructs as necessary, and discuss the motivations for
and implications of introducing such a non-functional feature.

In Section 4 we describe an operational semantics-- based on rewrite rules-- for a simple subset of

Id Nouveau called Id Kemel. The kemncl language is chosen to facilitate the exposition of the
semantics without losing any of the powcr of the full language. In Section 4.4, we describe the

translation of an Id Nouveau program into Id Kernel.

Appendix A contains numerous example Id Nouveau programs. Appendix B contains the
collected syntax and semantics of Id Kernel,

Syntax Conventions: In the following, we use the usual syntax notations of "{..}" to denote 0 or
more occurrences of a construct, "[..]" to denote 0 or 1 occurrences of a construct (ie. optional
items).

Acknowledgements: Vinod Kathail has inspired much of the evolution of Id to Id Nouvcau. In
particular, the sections on [-structures and rewrite rule semantics owe much (o the insights he
gathered while writing the 1d compiler.



2. Functional Id Nouveau(or 1d Nouveau without I-structures)

1
An 1d Nouveau program is a. a collection of definitions and b. an expression (also %callcd the
"query"). Synlactically, a definition gives a name-to an cxpression, The named expression may
optionally be parameterized. Here is an cxample of an Id program with four definitions and a
|

query: |
def p1 = 3.14159 ;

def power x y = if (x = 0) then 1 :
else y * (power (x - 1) y) ;

def square = power 2 ;
def circarea r = pi * (square r) ;
circarea 14.56

We see some similarities and some striking differences from programs in conventional languages.
L.ike most languages, some definitions are clcarly recognizable as defining procedures (c.g. power,
circarea) because of the syntactic presence of formal parameters, Unlike some languages,
however, definitions need not define procedures at all (c.g. pi)! And again unlike most languages,
some definitions define procedures even though there are no formal parameters to signal this (e.g.
square).

An interesting point is that procedures like power take their arguments one at a time, which is
why we were able to say power 2, supplying 2 as the value for power’s formal parameter x, but not
yet supplying any vatue for the formal parameter y. Such procedures are called "Curried”
procedures, after H.B.Curry, a prominent logician who studied such procedures (more about this in
Section 2.9).

These nuances are explained uniformly in functional languages by the fact that procedures are
themselves values and can be computed as results of expressions. Thus, just as the cxpressions
3.14169 and 2 * 1.670795 compute a particular floating-point value (a point in the space of
floating-point numbers), the expression power 2 computes a procedure value: that point in
procedure space that is the procedure that squares numbers.

Thus semantically speaking, all definitions uniformly bind names to values. Every expression (in
definition bodies or the query) may refer to any of the defined identificrs. In other words, the
definitions may be mutually recursive.

A program thus represents a value to be computed -- the answer to the query. The definitions are
a convenient way to name valucs that are useful in computing the value of the program (later we
shall see that they also are useful in implementations).

Dijkstra-like-comment
[n mathematics, the concept of a "function” is very clear, It is a value that can be applied to
an input value to produce an output value; it afways produces the same output value for a



given input valuc (ie the output value depends only on'l.he input value); and it has no
mcaning other than this mapping.

In most programming languages. this terminology is abused-- things called functions are
not really functions in the mathematical sense. First, the output value depends not only on

the input valuc, but also on the "slate” of the computation at the time of application. In
addition to producing an outpul value, they may also have side-effects, ie change the state of

the computation.
In Functional 1d Nouveau, what we are calling "procedures” are indeed "functions” in the

mathematical sense. The reason we call them procedures instead of functions is that later,
when we introduce [-structures, they will have additional effects and cannot be identified

with mathematical functions anymore,
tnemmoc-ckil-artskjiD

Expressions are central to Functional Languages, and we shall now examine the various forms
they may take,

2.1. Numbers, Strings, Booleans and nil
We follow the usual syntax for numbers -~ a sequence of digits with an optional decimal point.

For strings, we allow any sequencc of characters enclosed in double-quotes. For example:
"God was dead"

There are two Boolean constants, written true and false.

There is a distinguished value called n11 different from every other value. 1t is most useful in
building finite recursive structures such as lists and trecs,

2.2. Wentifiers, or Names

We follow the usual programming language rules for identifiers, ie. a letter followed by zero or
more letters, digits. underscores, question-marks, ctc. We do not distinguish lower- and upper-case

letters. For example:

b
x1

]

cosine
Max_Salary
average_hiccup
Good_Guess?



2.3. Grouping with Parenthescs

:[

[ ' When one wishes to make clear the textual extent of a construct (either for legibility or to

| override certain defaults), one can always surround it with parenthescs. For example:

f e

| 3*4+H

; (3 *4+6)

| ((3 * 4) +5)

| (((3) * 4) +8)
are all equivalent expressions (assuming that * has a higher operator precedence than +), and none
of them are equivalent {o:

3+ (4+85)

This is the only rule for use of parcntheses in the language.

2.4. Applications

Applications1 are expressions written by merely juxtaposing the two parts: a function-part on the
left and an argument-part on the right. Some examples: '

sine 2.4
cosine pi
square 2.46
power 2

The application notation associates to the left. For example,

powar 2 4
(powsr 2) 4

are equivalent expressions. This left-association may be overridden with parentheses, as in

square (square 2.4b)
cosine (2 * pi)

2.5. Conditionals
The conditional construct is also an expression, ie. it represents a value. The syntax is:
if expr, then expr, else expr,

expr, should cvaluate to a Boolean value, 1f true, the value of the entire conditional expression is
the value of expr,. If false, the value is that of expr,.

The conditional can be viewed as special syntax for the application of a function op_ 1if to 3
arguments:

1Alz-‘.n catled Combinations.



op_1f eXpr, expr, expr,

2.6. Infix Opcerators

Infix operators are special identifiers. In addition Lo denoting a value (as afl identificrs), they also
play a syntactic role. For every infix operator x, let us assume another identifier op_x that denotes
the same value, but is devoid of any special syntactic role. Then the notation

8Xpr, X expr,
can be considered syntactic sugar for
Op_Xx expr, expr,

ie infix operators always denote functions of two arguments, and are just a syntactic convenience?.
Of course, one must be wary of the usual pitfalls with infix operators: precedence and associativity.
If we wish to override defaults or if we lose-our nerve, wc use parentheses for explicit grouping.

Anothcr example:
3+4"*5
is just another way of writing

op_+ 3 (op_* 4 ©b)

2.7. Let-Blocks
A Let-Block is an expression with two parts: a set of Bindings, and a Return-Expression. First, a
simple example:
let
aSq =3 * 3 ;
bSq = 4 * 4
in
sqrt (aSq + b3q)

Here, there are two Bindings3, introducing identifiers aSq and 4Sq representing the values 9 and 16
respectively. The value of the Let-Block is the value of the Return-Expression: sqrt (9 + 16),

ie b.

Let-Blocks are like begin...end blocks in Algol60: the Birdings correspond to local variables
declared in such a block, With this basic intuition, therc are several complications that we will now
explore,

2’I‘hcy are also used as hints for the compiler 1o gencrate belter code.

3ln previous versions of Id, the symbol =" was wrilten "+".



First, Let-Blocks can be nested, and follow the usual static scoping rules for identifiers that are
redefined in inner Let-Blocks. For example:

let
X =2
in
let
y=3;
X =4
in
X +y
is an expression representing the value 7. The x in the inner Return-Expression x + y represents
the value bound in the nearest statically enclosing scope, i.e. 4.

An identificr may be defined only once in the Bindings of a Let-Block. Thus the foilowing block:

let

in

- is meaningless.

Let-Blocks may be nested in many ways. For example:

let
XxQuad = /et
X8q = x * x
in
x5q * x8q
in
xQuad * xQuad

In general, a Let-Block may appear anywhere that an expression may appear.

The values bound in a Let-Block may be arbitrary values, including procedure values. For
example:

let
square x = x * x
in
sqrt (square 3 + square 4)
binds a local squaring procedure. This is analogous to the Pascal facility for defining local
procedures,

The Bindings in a Block may be recursive and mutually recursive, For example:



let
pi = 3.14169 ;

power X y = if (x = 0) then 1
else x * (power (x - 1) y) ;

square = power 2 ;

circarea r = pi * (square r)
in
circarea 14.56
from which it should be evident that the top-level of an Id program is just different syntax for a
Let-Block!*

The textual ordering of the Bindings in a Let-Block is unimportant. The only ordering, if any,
arises out of data-dependencics, i.e. the binding of an identifier vs. the use of that identifier. So, the
above block could also have been written:

let
square = power 2 ;

power x y = if (x = 0) then 1
else x * (power (x - 1) y) :

circarea r = pi * (square r) ;
p1 = 3.14159

in
circarea 14,6

which is just a textual re-ordering of the bindings.

2.7.1. Renaming ldentifers in Blocks

Identificrs introduced via bindings in a block are sometimes caltled "dummy identificrs” because
they can be renamed uniformly without changing the meaning of the program. Consider the
following program,

let

N

X =
. ¥y=3
Z =

in

4, . . ae .
The only reason we use differcnt syntax at the top level is Lo facilitate interactive program developmen! where we can
edit and compile individual 1op-level definitions in isolation.



Using standard "static scoping” rules, we scc that x in the inner Return-Expression represents the
value 4 whercas x in the outer Return-Expression represents the value 2. The y's in both Return-
Expressions represent the value 3. To avoid worrying about scope rules, we can uniformly rename
identifiers so that a given identifer has exactly one binding in the entirc program. For instance, we
can rename the identifiers above as follows:

let
xl =2,
y1 =33
z1 = let
X2 = 4
in
x2 + yi
in
x1 + yl1 + 21
Each identifier now has exactly one binding in the entire program. While the meaning of this
program is identical to that of the previous one, it is a lot more transparent to the reader. From now

on, we take for granted the transformation:
rename : Source-Program — Source-Program

which renames the identifiers in the program to unique names so that each identifier has exactly
one binding.

2.8. Tuples

Tuples are a basic data-structuring mechanism in the language : they allow us to build compound
objects. The primary means of constructing an n-tuple is to write n expressions separated by
commas. For example:

"One®, 2, "Many",
is a 3-tuple with three components: astring. a number and a string.
Arbitrary expressions may be placed in a tuple-construction. Thus
2 + 3, square 2.6, ("a gauche™, "a droit"), power 2

is an expression representing a 4-tuple containing the number 5, the number 6.25, a 2-tuple
containing two strings, and a procedure that is the squaring function.

Components of tuples are selected by binding names to them, using tuple-structured bindings.
For example,
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let
X, y= 23, 46 ;

a, (b, c), d»o
in
In the first Binding. the right-hand side is an expression that represents a 2-tuple; the binding then
assuciates the names x and y with the first and sccond components of that tuple, ie. it associates x

with the value 23 and y with the value 45,

In the second Binding, the right-hand side e should be an expression which represents a 3-tuple
whose sccond component is itself a 2-tuple. The binding then accociates a with the first
component, b with the first component of the second component, ¢ with the second component of
the second component, and d with the third component.

The left-hand side of a tuple-structured binding can also be viewed as a "pattern” describing the
structure of the valuc of the right-hand side, and the names that should be given to the components

of that structure,

Note that our syntax docs not allow us to build 1-tuples! For completeness, we could imagine a
built-in function mk-1-tuple that takes any object and returns a 1-tuple containing that object, and
a built-in function select-1-1 that selects the single component of a 1-tuple. But 1-tuples are
never used, and so these functions are unnecessary.

2.8.1. Simplifying Tuple-structured Bindings
Tuple-structured bindings may be considered as just a syntactic convenience. Consider this
example again:

let
X, y = 23, 46 :

a, (b, c),d=e
in

For every pair of intcgers / and jsuch that 1 < i < j, let seTect-1-J be a built-in function that
extracts the /A component of a ftuple. Then, the program above can be re-written as:

let

= 23, 4b ;
select-1-2 p ;

setect-2-2 p

%o
n

f x ;
select-1-3 q
select-2-3 q :
selact-3-3 q
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which, in turn, can be wrilten as:

let

= 23, 46 ; -
= s9lect-1-2 p
= sglect-2-2 p ;

w xw

fx;

selact-1-3 q
selact-2-3 q
salect-3-3 q

[ = ar I - - N =]
#r n N

select-1-2 r
select~-2-2 r

o
n

[+]
#

in

which has no tuple-structured bindings. Here p, q and r are new identifiers,

Thus, in general, an arbitrary tuple-structurcd binding of the form

t Lt = expr

1+ n

may be replaced by a collection of bindings of the form

t = axpr ;
new
t’.1 = select-1-1 tn“ :

tn = select-n-n tn.'

where t___ is a new, previously unused identifier. If any of the t,’s are themselves tuple-structures,
we simply repeat the process on those bindings, until there are no tuple-structured bindings left. In
fact, this is how a compiler handles tuple-structured bindings.

Analysis of the left- and right-hand sides of tuple-structured binding quite often enables a
compiler to gencrate code that does not involve tuples at all. For exampie, in the expression
discussed above, it could generate code for the binding

X, y =23, 46 ;

as if it ‘had been defined as

X = 23 ;
y = 46 ;

2.8.2. General Recursive Definitions

One final nuance. We are all used to sceing recursive procedures in modern programming
languages: but recursive bindings, whether at the top level or deep inside a Block, nced not define
procedure valucs at all! For example
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let

X = "Lara"™, X
in

select-1-2 x

binds x to:

a 2-tuple whose -
first component is the string Lara, and

second component is
a 2-tuple whose
first component is the string Lara, and

sccond component is
a 2-luple whose
first component is the string Lara, and

sccond component is

Le a 2-tuple nested infinitely to the right:
("Lera", ("Lara", ("Lara", ... )))

Whether we can actually implement such a beast is another question {and in fact we will show later
that we can indeed!), but semantically there is no problem! The Return-Expression of the Block
selects the first component of this tuple, which is the string "Lara". And so the Block as a whole is
a perfectly meaningful expression and represents the string "Lara®.

(Incidentally, "Lara™ stands for " Lara’s another recursive acronym™; perhaps you already know
about Eine, Fine, and Zwei? Gnu? Ah well ...)

2.9. Curried vs. Multi-Argument Procedures
We must be careful not to confuse Curried procedures with so-called "Multi-Argument"
procedures, Thus the two definitions: )

def max1 xy = if (x > y) then x else y ;
def max2 (x,y) = if (x > y) then x else y ;
have identical bodies, but their parameterization makes them guitc different procedures.

max1 is a Curried procedure. When applied to a numeric argument (x), it returns a new
procedure; when that procedure in turn is applicd to another numeric argument (y). it rcturns a
number (the larger of x and y).

On the other hand. max2 is a procedure which, when applied to an argument that is a 2-tuple of
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numbers {x, y), returns a number (the larger of x and y).

max2 may be viewed as syntactic sugar for

def max2 z = Jet
X,y = 2
in
if (x > y) then x else y ;
Here we have explicitly named the 2-tuple argument by z, and then separately bound x and y to the
two components of z,

There is another uniform principle behind this: Al procedures take exactly one argument, But
that argument could be an arbitrarily complex object! Thus what we usually think of as an
"n-argument” procedure is really a procedure that operates on asingle n-tuple argument.

The difference between the two procedures is sometimes explained in this more formal way: they
have different fypes:

max1l : number — (number — number)

max2 : (number X number) — number

Thus the domains of the two procedures are quite different. It makes sense to apply max1 to one
numeric argument, but not to apply max2 to one numeric argument -- the latter simply is rejected as
an attempt to apply the procedure to something outside its valid domain.

The following example using max1 demonstrates the use of Currying:
def c1ipBelowb vec = forall (maxl 6) vec ;

Here, ¢11pBalowb is a function that takes a vector of numbers vec as argument, and returns a
vector of numbers as result which is an image of vec except that components of vec less than 5
have been "clipped” up to 5. The application of max1 to a single argument 6 returns a function
which, when later applied to any number y, returns 5 or y, whichever is larger. The forall
expression applies this function to each component of vec, returning the "clipped" image.

Procedures like max1 are also called Higher-Order procedures: they return procedures as results
or take procedures as arguments. We also say that max1 has "arity" 2.

It may appear that there is some inefficiency involved in the use of functions like max2, ie. the
overhead of cxplicitly building an a-tuple just to pass arguments. However, a good compiler can
generate codc that elides this entirely. In sequential implementations, the caller may leave the tuple
components at fixed offsets on a stack where they are accessed dircctly by the callee. in dataflow
implementations, the caller may send the component tokens directly to separate recciving points in
the callec. But it is important to realize that these are only optimizations.
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2.10. Loops
Loops are expressions that encapsulate a certain common control structure.  For cxample the
following expression uses a loop (o compute the 20" Fibonacci number:

let

X
.
in

while § <= 20 do

new X, new y = y, xt+y ;
new J = j+1

return x

Wy = 1,1
= 1

This is just a convenient way of writing the following equivalent expression:

let
fibloop (x,y.J) = if J <= 20 then
fibloop (y, x+y, j+1)
else
3

in
fibloop (1, 1, 1)
fibloap is a classic example of a tail-recursive procedure, a special class of recursive procedures
that are characterized by the property that the recursive call is the /as activity performed by the
body. i.e. the value returned by the recursive call is passcd back untouched and uncxamined to the
caller. Tail-recursion corresponds exactly Lo iteration, and 1.oop expressions are a convenicnt way
to express iterations (they also provide good optimization hints for implementation),

As in most conventional languages, in addition to unbounded iteration (While-Loops), we also
have bounded iteration (For-Loops). For example:

let
x,y=1,1
in
Jor 3 from 1 to 20 do
new x, new y =y, x+y
return x

is a more succincl way of writing the same program.

Each Loop has three parts: an ltcration Control, a Loop-Body and a Loop-Return-Expression.
The Iteration Control has one of the following three forms:

while o do

Jor 3 from e; 0 a, by e, do

Sor 3 from e, downio 8, by e, do
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In the for-to form, the loop index takes all values o,, 0,+0,, 8,+2%0,, clc. as long as it is not
greater than e,. In the for-downto form, the loop index takes all values e,, e,-0,, 8,-2%0,, elc.
as long as it is not less than e,. The forms

for § from e, to e, do

Jor 3 from e, downio e, do

are abbreviations for the full forms where the step ey is 1.

The Loop-Body contains Bindings, similar to the Bindings in a Let-Block, except that the
identificrs introduced in the left-hand sides of bindings may be prefixed by the keyword new (we
call such bindings New-Bindings).

The Loop-Return-Expression of a Loop is evaluated after the last iteration (if any), and that value
is the value of the entire loop.

Informally, the semantics of a Loop can be explained as follows. The identifiers in a Loop fall
into three disjoint categories:

1. those bound in the Loop-Body and qualified by new,
2. those bound in the Loop-Body without the keyword new, and

3. all others.

Imagine the loop being unfolded (perhaps infinite times) into separate copies of the body, one for
each iteration. Identifiers in category 3 represent values bound in the scope surrounding the entire
loop and hold through all iterations; they are thus also known as "Loop Constants”. Identifiers in
category 2 represent values bound within the Loop-Body for a particular iteration, and their scope
is just the Loop-Body for that iteration, ldentifiers in category 1 are values bound in the Loop-
Body during a particular iteration, and their scope is the next iteration of the loop.

More formally, the semantics of a Loop are explained by their correspondence to an equivalent
expression without Loops; this equivalent expression will involve a tail-recursive procedure. We
had an example of this in the Fibonacci progam above, but here is a systematic procedure to
perform this transformation:

Suppose the loop has the general form:

Jor-or-while ... do
.». Loop-Body ...
return ret-expr

Step 1: If the Iteration Control is a for-to iterator;
Jor 3 from e, to &, by o4 do

convert it into a whi1e iterator like this:
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let
A a3
bound = e, ;
step = 9,
in

while J <= bound do
.». Loop-Body ...
new j = § + step
return ret-expr
If the Iteration Control is a for-downto iterator:
for § from e, downto 8, by e, do

convcert it into a while iterator like this:

let
J -8,
bound = g, ;
stap = 8,
in

while § >= bound do

. Loop-Body ...

new J = j - step
relurn ret-expr

From now on, let's assume we're dealing only with while-loops of the form:

while do_next? do
. Loop-Body ...
refurn ret-expr

Step 2: Separate the L.oop-Body into ordinary bindings and New-Bindings.

while do_next? do
+v.. Ordinary-Bindings ... ;
. New-Bindings ...
return ret-expr

This may involve breaking up tuple-structured bindings into a collection of separate bindings as
shown in Seclion 2.8.1.

Step 3: The while-loop can now be replaced by the following tail-recursive definition:
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fet ‘
loopfunction(...,x,...) = i do_next? then
let
. Ordinary-Bindings ...
in
toopfunction(...,e,...)
else
ret-expr
in

Toopfunction(...,x,...)
where, for every New-Binding of the form
new x = @
in the Loop-Body,

* loopfunction should have a formal parameter x,

o the recursive call to loopfunction should have e as the corresponding actual
parameter, and '

o the initial call in the Return-Expression of the outer Let-Block should have x as the
corresponding actual parameter,

The reader is invited to confirm that the scope rules for this transformed version of the loop are
exactly those outlined informally earlier.,
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3. I-structures

We now introduce a new data-structuring mechanism called /-structures.  Unlike tuples, i-
structures are not functional; in fact, they are closer in spirit to first-order lerms in a logic
programming language such as Prolog. The introduction of [-structurcs complicates the language to
some extent. and some nice properties of functional languages such as referential transparency arc
lost. The motivation for this departure is to permit more efficiency, avoiding the excessive copying
that is often implied by purely functional operations on data structures. Nevertheless, the
introduction of I-structures does not complicate the detection of parailctism in programs, Programs
remain "determinate” in the sensc that the output of a program does not depend on the order in
which computations in the program are performed. A primitive form of I-structures was first

proposed in [5].

3.1, I-Structure Operations

I-structures are similar to arrays in conventional programming languages. There are three basic
I-structure operations: allocation, component assignment and component selection.

3.L.1. I-structure Allocation
An I-Structure is allocated by an expression of the form

array(1..u)

The operational meaning of this expression is: allocate an "empty" I-structure with the specified
lower and upper index bounds, and return a pointer to it. The index-bounds expressions 1 and u
may be arbitrary numeric expressions (with 1 < u).

Note that this is an expression with a side-effect, i.e. every execution of this expression produces a
new I-structure and returns a pointer to it. Thus the expression

fet

X = array(1..5)
in

X, X

is not equivalent to the expression
array(1..5), array(1..6)

The former returns two copies of a pointer to one I-structure, whereas the latter returns two
pointers to two distinct I-structures.

3.1.2. I-structure Component Assignment
A component of an I-Structure may be set to a valuc, provided it is empty. using the following
familiar construct:

afj] = expression
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a imust be an identifier bound to an I-structure’ and J must be a numeric expression,

S

A component of an I-Structure can be assigned at most once;, an attempt to assign twice to the
same component of an [-structure results in a run-time error, and the program returns the value
“error”, This is one difference from the usual concept of arrays in imperative languages in which a
componcnt may be assigned any number of times. We will describe the motivation behind the
"singlc-assignment” restriction in Section 3.3.

The assignment statement is our first example of a "Command”, i.e. a construct exccuted only for
its side-cffect. It is different from, and may not be used as an "Expression”,

3.1.3. I-structure Component Sclection
A component of an I-Structure may be selected using the following familiar syntax:

a[]]

This is an Expression, and represents the value stored in the designated component of the I-
Structure. ais an I-structure-valued expression, and j is a numeric expression.

Because of concurrency, an execution of a program may attempt to evaluate an array-selection
expression while the designated component is still empty, ie. before it has been assigned a value by
some other concurrently executing part of the program. In such a situation, the evaluation of this
cxpression is deferred-- it merely waits until the component is assigned, after which it returns the
value. If the component is never assigned by other parts of the progam, the evaluation of this
sclection expression hangs forever, and it can be considered to have an undefined value. This is a
sccond difference from the usual concept of arrays.

3.1.4. I-structure Index Bounds
The index bounds of an I-structure may be queried using the built-in function bounds which
returns a 2-tuple containing the lower and upper bounds. For example:

let

1,0 = bounds x
in

x[(1+u) div 2]

is an expression that returns the middle element of an [-structure x, and

5'In principle, a could be an expression that evaluates (o an [-structure, but we restrict it to be an identificr to simplify
parsing. There is no loss in generality. since any assignment of the form

expression[j] = ...
can always be wrilten as

a = gxpression ;

a[j] = ..

to meet our syntaclic restriction,
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def upper x = let
_ 1,0 = bounds x
in
u;

defines a function that returns the upper index bound of an I-structure.

3.1.5. Nested I-structures
The components of an I-structure can be any values; thus multi-dimensional arrays can be
modelled by I-structures whose components are themselves I-structures. For example,

let

X = array(1..5)
in

Jor 3 from 1 to 6 do

x[§] = array(1..5)
return x
allocates an cmpty 5-by-5 matrix. This common construction may be abbreviated

array(1..6, 1..8)

(with generalizations to any number of dimensions and any index bounds).

The i, component of this matrix can be assigned using

y = x[1] ;
y[i] = expression

The first line binds y to Lhe M component of x which is a S-array, and the second line assigns to the
 location of this array This common construction may be abbreviated

x[1.J] = expression

The i/ component of the matrix can be selected using the expression

x[1]1(31

ie
(x[11)[3]

which may be abbreviated
x[1,]]

611 it were not for our syntactic restriction that the I-structure reference on the lefi-side of an assighment st.ahen'u:nt must
be an identifier and not an expression, we could have expressed this in one line as

x[11[§] = expression
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In both the above abbreviations, the "1, §" is only a syntactic shorthand, and may rof be replaced
by an arbitrary 2-tuple expression,

3.2. Using I-structures in Programs

Given these primitive I-Structure operations, lct us examine how they zire used in Id Nouveau.

3.2.1. Expressions Revisited
It is important to keep in mind that Expressions, which previousty represented only values, now
may also have side-effects,

We call Expressions that have no side-effects "Pure Expressions"”.

3.2.2. Let-Blocks Revisited
So far, Let-Blocks contained only Bindings and a Return-Expression. We now also allow
Commands to appear in Let-Blocks. For example,

let
prime = array(1..5) ;
prime[1] 2
primef2] = 3 ;
prime[3] = &
prime[4] = 7
prime[6] = 11
in
prime

contains one Binding, five Commands, and a Return-Expression. As before, the textual ordering is
unimportant; all components may be executed in parallel.

There is an important difference to keep in mind between the following two similar-looking
expressions:

et let
X =5 _ y[1] = &
in in
X y

The former contains a Binding, Le. it introduces a new identifier x that hides any x extant in the
current scope. The x in the Return-Expression refers to this locally-introduced x.

The latter contains a Command, and does not introduce a new identifier; the y must already be
cxtant in the current scope, bound to an I-structure, and all it does is to assign a value into this
existing I-structure. The reader should note that the "effect” of the component assignment is not
restricted to the extent of the et - thus, the expression y[ 1] will now return the value 5 even in an
outer scope.

Somctimes we wish to use a Let-Block only for the side-effects in its Bindings, and we are not
interested in any value from the Return-Expression. We express this using the special symbol "()".
For ¢xample:
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let
prime[1] = 2 ;
prime[2] = 3 ;
prime[3] = 6 ;
prime[4] = 7 ;
prime[6] = 11
in
9

Such Let-Blocks are called “"Command-Blocks".

3.2.3. Procedures Revisited

We have alrcady seen how to define a Procedure by abstracting over an expression,
paramelterizing it with respect to some of the identificrs occurring in it. So far, procedures were
functions in the mathematical sense, because expressions only represented values and had no side-
effects,

Since expressions can now also have side-effects, procedures built out of expresssions can no
fonger be regarded as pure functions, ie the application of a procedure to its arguments not only
represents a value but may also have side-effects.

At the cxtreme, if we abstract over a Command, parameterizing it with respect to some of the
identifiers occurring in it, we get a Procedure that represents only side-effects. For example,

def zero_diag_6 a = let

af1,1] = 0 ;

af[2,2] = 0 ;

af3,8] = 0 ;

af4,4] - 0 ;

8[6.6] = 0
in

Q0

is a procedurc executed only for its side-effects: it zeroes the diagonal of its 5-by-5 matrix
argument.

Such procedures are called Command Procedures. An application of such a procedure is itself a
Command. For example:

let
x = array(1..8, 1..6) ;
= zoro_diag_ & x

in
b

uscs a procedure-call to perform the side-effect of zeroing the diagonal of I-structure x.

In general, any expression e may be treated as a Command and executed purely for its side-effect,
as follows:
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let
« e ;

in

which can be viewed as syntactic shorthand for

let
dummy = o ;

in

where dummy is an identifier not used anywhere in the program.

3.2.4. Loops Revisited

A Loop-Body, in addition to containing Bindings and New-Bindings, may also contain
Commands (and, as indicated earlier, Expressions treated as Commands). Here is an expression
that defines and returns an array of the first twenty Fibonacci numbers:

let
f1b_20 = array(1..20) ;
x,y = 1,1
in
Jor 3 from 1 to 20 do
fib_20[31] = x ;
new x, new y = y, x+y
return Tib_20

We can also write Loops that are Commands. For example:

Jor § from 1 to upper(a) do -~ a isasquarematrix {1..n,1..n]
a[},j} =0
return ()

is a Command-Loop that zeroes the diagonal of a square matrix a.

3.3. Discussion’

To understand I-structures better, it is useful to contrast them with functional data-structures
such as tuples or functional arrays. A tuple is defined by writing down the expressions whose values
will be its components. Thus, the entire value of a tuple is defined "in one place” in the program.
In contrast, the allocation of an I-structure is scparate from the operations of filling in its
components. For example, an I-structure may be allocated in one procedure and then passed to a

TFora dctailed exposition on I-structures, the reader is invited (o read [4].
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number of other procedures cach of which is responsible for (illing in one of its components, Thus
functional data-struclures are completely defincd "all at once”, whereas 1-structures bcgin as

“"empty"” structurcs and are then incrementally refined.

3.3.1. Efficiency

I-structurcs allow us to avoid the excessive copying often implied by purely functional opecrations
on data-structures. To illustrate this, consider the following problem. Supposc we have an array x
with index bounds 1 to 10, and we wish to produce an array y that is a "shifted" version of x, ie

yi1)=x{2].yf2]=x[3].... y[9]=x[10], y[10]=x[10].

A functional array assignment is an expression of the form

fassign a 1 v

which returns a new array containing the same componcnts as array a, except at index 1 where it
contains value v. Note that fassign conceptually copies all but the qth component of a into the

new array.?

We can now write a purely functional program to solve our problem;

Jor 3 from 1 to 9 do
new x = fassign x j x{jJ*+1]
return x

Notc that this program atlocates 9 arrays, only the last of which is the result array. The remaining 8
arrays are intermediate, "temporary” arrays existing only during loop execution. Each component
of the final array arrives there only after it has been copied 9 times through the intermediate arrays.
In cach itcration, there is only onc "useful” component assignment, and nine "unneccssary” copies
ol the other components. Each iteration is responsible for defining only one component of the final
array. What we would like is for each iteration to write its component value directly into the final
array, independent of the other iterations. The final array would thus begin as a collection of 10
empty slots, which are then filled incrementally by 10 independent activities.

It was in recognition of this need for data-structures that can be directly and incrementally filled
that a primitive version of I-structures was first proposed in [5]. The current syntax and semantics
of I-structures reflects considerable refinement of that early plroposal.9

With I-structures, we would write the program as follows:

8This may be alleviated somewhat by Lree-structured representations of arrays,

9A refinement that owes much 1o Vinod Kathail,
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let
y = array(1..10) ;
Jor j from 1 0 9 do

yLi1 = x[3+1]

return () H
y[10] = x[10]
in
y
which allocates only one array (the result array), copies each result component exactly once, and
potentially performs.ali the assignments in parallel.

Onc may be tempted to refute such examples as follows: we first extend the language to include
functional array operators that are more powerful and complex than the simple fassign shown
above (for cxample, the languages APL and TALE [6] have such operators). We then try to make
our compiler clever enough to generate code for such operators that matches the storage efficiency
and parallclism of the I-structure solution.

For example, suppose (following the language TALE) we had a "tabulation” function to create
new arrays:

tabulate (1,u) f

which creates a new array with bounds 1. .u and components £(1), f(1+1), ..., f{u) respectively,
A program to solve our problem is then:

let
£ § = if § <10 then x[j+1]
else x[10]
in
tabulate (1,10) f
A clever compiler may be able generate code that allocates only one array (the result) and, in
parallel, executes £(1), £(2), ..., £{10), and writes all the components, (There is still some
incfficicney in that each activity £(j) executes a conditional.)

But it is as yet unclear whether this general approach is feasible-- i.e is there a repertoire of array
operations and associated compilation techniques that will always produce code as efficient as the
I-structure solution? Furthermore, while functional programs with such operators retain referential
transparency, they are sometimes hot very petspicuous (APL one-liners ate functional, but can be

very hard (o read!).

It is evident that we can implement operators such as tabulate very efficiently in Id Nouvean
using I-structures, so that the programmer can choose to stay within the functional paradigm as long
as it is convenient. On the other hand, it is clear that even if I-structures are omitted from the
language, the architecture must support something like 1-structures if the compiler is to generate
cfficient code for operators like tabulate.
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3.3.2. Determinacy

The separation of data-structure allocation from component assignment cannot be done
indiscriminately, as in imperative languages. Since a single [-structure x may be referred to by
scveral concurrently exceuting parts of the program, this raises two threats to the determinacy of the

program:

1. One part of the program may try to select x[ 1] before some other part, responsible for
assigning x[1], has completed. This is a race condition-- without some form of
synchroniZation, the sclect operation may read garbage from that location, ‘The
"deferred select” rule is exactly such a synchronization mcchanism-- the sclection

always returns the same, valid value.

2. Two (or more) parts of the program may attempt to assign x[ 1] with different values.
Consider the following (concocted) program:

let
x = array(1..10) ;
xf1] = 2 ;
x[1] = 3 ;
¥ = xl1]
in
y

Depending on what order the assignments and the selection are done, y may reccive the
value 2 or 3. The "single-assignment™ rule ensures that such programs are in error-- if
multiple writes ever occur in any component of an I-structure, the entire program

aborts, returning the result "error”,

3.3.3. Implementation

While a full understanding of how I-structures are implemented requires some knowledge of
dataflow, we provide the following overview for the curious reader. 1-structures are implemented in
I-structure storage which is a tagged memory with a smart memory controller [8]. An !-structure
with bounds 1..u is implemented as (u-1+1) contiguous locations in I-structure memory. Each
location has a tag consisting of status bits to indicate that it is in one of three possible states :

e ALLOCATED : no data is present in the location and no attempt has been made to
read from it. The location may be written to as in a conventional memory.

» PRESENT : the location contains data which can be read as in a conventional memory.
An attempt to write new data into this location is signalled as an error.

e READ PENDING : no data is prescnt in the location but at least one attempt has been
made (o read its contents. When (and if) the location is written to, all reads waiting for
this value are notified.

There are various ways to implement this. In the dataflow computer, each select request
comes with a "destination address” where the result value is to be sent. For each such
request that arrives before the location is written, the destination address is simply
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appended to a list associated with the location in a special portion of [-structure
memory. When a value gets written into that location, a copy of the value is forwarded

to all destinations on that list.

The 1-structure memory controller is responsible for the allocation of I-structures, and it changes
the states of locations in the obvious way when presented with read and write requests.
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4. A Rewrite-Rule Operational Semantics for Id Nouveau

In this scction we describe a simple operational semantics for Id Nouveau, We use an abstract
"Rewriting Model"-- Dataflow and Graph-Reduction Machines may be regarded as lower-level
implementations of this abstract model. 1d Nouveau has been implemented on the Tagged-Token
Dataflow machine [14] and this implementation is "congruent” with the semantics given here.

The operational semantics of Id Nouveau are described in terms of a subset of the language called
Id Kernel. While I1d Kernel does not have loops, nested procedure definitions and some other
"featurcs” of 1d Nouveau, any Id Nouveau program can be easily translated into an Id Kernel
program-- this simple transformation is given in Section 4.4. The meaning of Id Kerne! programs is
given by rewrite rules. Thus, the meaning of an Id Nouveau program can be determined by first
transforming it to a corresponding Id Kerne! program, and then applying the rewrite rules for Id
Kernel. While this two-step process of giving the semantics may seem a little indirect, it enables us
to concentrate on the essentials of the rewrite semantics, and to ignore features of 1d Nouveau
which are there mainly for programming convenience.

To introduce the reader gently to rewrite rules, we first give the semantics of a simple functional
subsct of td Nouveau, i.e. a subset without I-structures,

4.1. Operational Semantics for a Functional Subset of Id Nouveau

4.1.1. The Language
The functional subset that we begin with is very simple. As before, programs have the form:

def £, x, ... x =a,
f 1 %1, 1, 1
def f, x“I1 . xml| =9,

8

but cach expression 8y, 9 ... , e, hasa certain "simplified” form, recursively defined as
follows:

atoms : constants and identifiers
1.2, 3, *, "fony", phud, ...

conditionals
if e, then 8, else e,

applications
Bf ea
As before, free identifiers in @, must be from the set PR f,.» and free identifiers in cach of the

other expressions e, must be from the sct ¢ o B Xy e Xy
j 1 n jl Jn

The circarea program discussed in Section 2 is a program in this language. It is reproduced
below.
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def pi1 = 3.14169 ;

def power x y = if (x = 0) then 1
else y * (power (x - 1) ¥) i

def square = power 2 ;
def circarea r = pi * (square r) ;
circarea 14.6

4.1.2. Reduction Rules and Redexes

The query expression in a program in some sense "represents” the answer to be computed.
Reduction rules can be regarded as a method to compute that answer-- they are simplification rules
that specify how to repeatedly rewrite the query expression until it becomes the result of the
program,

For each built-in operator, we imagine a (possibly infinite) set of reduction rules that defines its
behavior. For example,

0+0 =20
0 +1 =1
523 + 1062 — 1686

16 * 3 = 48

if true  then e, else 8, = @,
if false then e else o, = @,

Each of the top-level definitions in the program can also be regarded as a Reduction Rule. For
example,

def power x y = if (x = 0) then 1
else y » (power (x - 1) ¥y} ;

can be regarded as the reduction rule

power X y = if (x = 0) then 1
else y * (power (x - 1) ¥)

The right-hand side of such a rule is also called the "body" of the rule.

A Redex (for reducible expression) is an expression that matches the left-hand side of a reduction
rufc. Paramecter identifiers on the left-hand side of a reduction rule are "wild-cards” which match
any cxpression. For example, the expression (circarea 14.5) matches the lefi-hand side of the
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reduction rule
circarea r = pi * (square r)

with r matching the expressidn 14.5.

A redex may be Reduced by replacing it with the corresponding right-hand side of the rulc, with
each parameter identifier replaced by the expression it matched. For example, the redex
(circarea 14.6) may be replaced by the expression

p1 * (square 14.§)

(Somctimes the resulting expression may be larger than the original, so the use of word
"Reduction” is admittedly strange!)

4.1.3. Computation, Answers and Normal Forms

To compule with a program, we begin with the query expression and repeatedly rewrite it by
reducing redexes contained in it. Hopefully, this process terminates with the expression in some
kind of "simplified"” form. At this point we say that we have computed the answer.

There are various choices for what this "simplified" form for answers should be. A typical choice
is for the expression to be in its so-called Normal Form. An expression is in Normal Form if it
contains no redexcs, ie neither it nor any of its subexpressions is a redex.

We urge the reader to work through the following example to get a feel for computation using
reduction rules. In each line, we have underlined the redex to be reduced next.

circarea 14.5

= .
pt * (square 14.5)
—
3.14159 * (power 2 14.5)
=3
3.14169 * (if (2 = Q) then 1
etse 14.6 * (power (2 - 1) 14.5))
=
3.14169 * (1f false then 1
else 14.5 * (power (2 - 1) 14.5))
=
3.14169 * (14.6 * (power (2 - 1) 14.5))
=

3.14169 * (14.5 * (power 1 14.6))

————
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=

3.14159 * (14.6 * (if (1 = 0) then 1

else 14.6 * (power (1 - 1) 14.6)))

= .

3.14169 * (14.56 * (if false then 1

else 14.6 * (power (1 - 1) 14.5)))

—]

3.14169 * (14.6 * (14.6 * (power (1 - 1) 14.5)))
- :

3.14159 * (14.6 * (14.56 * (power 0 14.5)))
—_—

3.14169 * (14.5 * (14.6 * (if (0 = 0) then 1

else 14.5 * (power (0 - 1) 14.5))))

=3

3.14169 * (14.56 * (14.56 * (if true then 1

else 14.6 * (power (0 - 1) 14.5))))

]

3.141569 * (14.5 * (14.5 * 1))
- .

3.14169 * (14.5 * 14.5)
==

3.14169 * 210.26
=

660.61936

4.1.4. Computation Rules, Detcrminacy, Termination and Ffticiency

One subtle point is that an expression may have more than one redex in it. For example, in the
expression (power (2 - 1) 14.8), there are two redexes: the sub-expression (2 - 1) which
can be reduced to 1, and the entire expression itself, which can be reduced to the expression

if ((2 -~ 1) = 0) then 1
else 14.56* (power ((2 - 1) -1) 14.5)

by matching x with (2 - 1) and y with 14.6 in the reduction rule for power.

Thus, we have left unspecified the question of which redexes of the expression are to be reduced
at cach step. Any rule that spccifies this choice is called a "Computation Rule”. For example, we
might specify that at each step, the "leftmost innermost” redex must be reduced.

But this raises the following important question: does the choice of computation rule affect the
answer computed for a given program? One nice feature of functional languages is that they are
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Determinate-- normal forms are independent of the computation rule, e the answer for a given
program is unigue, and any computation rule that produces an answer will produce that answer.
This property of functional languages is also called the Church-Rosser property, and is what makes
them attractive programming languages for parallel machines-- the exact schedule chosen for

parallel activities does not affect the answer.
On the other hand, computation rules may differ with respect to

1. termination: for some expressions. one computation rule may lead to a normal form
while another computation rule may not

2. efficiency: the number of reductions performed to reach the normal form.
3. parallelism: the number of redexes which are reduced at each step

These differences are illustrated by the so-called "applicative-order” and "normal-order"
computation rules. An applicative-order interpreter always chooses the lefumost-innermost redex
for reduction: thus, it evaluates the arguments of a function before invoking the function itself, On
the other hand, a normal-order interpreter always sclects the lefimost redex for reduction: thus, it
invokes a function before evaluating its arguments. Applicative order interpreters also give special
treatment to the conditional operator-- they do not reduce any redex that is in either arm of a
conditional {thus the conditional expression must be reduced to one of the arms first, before any

redex in that arm is reduced).

Termination: It can be shown that a normal-order interpreter is safe in the sense that it always
terminates whenever any rule of computation does so. An applicative-order interpreter is not safe;

considcr this example:

def runaway x = runaway x

def power x y = if {x = 0) then 1
else y * (power (x -~ 1) y) ;

powsr O (runaway 3)

A normal-order intcrpreter would terminate with answer 1 because it would not even attempt to
reduce (runaway 3). On the other hand. an applicative-order interpreter would keep reducing
(runaway 3) (to itsclf) because it is the innermost redex, and thus would never terminate,

FEfficiency: The two interpreters differ with respect to efficiency as well. A normal-order
interpreter may evaluate the arguments of a function-application many times over. Consider the

expression
power (2 - 1) 3

A normal-order interprcter would substitute the expression (2 - 1) twice (for the two occurrences
of the parameter identificr x in the body of power) and thus reduce it twice. On the other hand, an
applicative-order interpreter would reduce it to 1 first before substituting for x, and thus evaluate it
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just once.

In Section 4.2 we will see that when we include I-structures, it becomes important to control
preciscly how many times a redex is reduced. :

Parallelism: Both interpreters are completely sequential in the sense that they reduce exactly one
rcdex at each step.

4.2. Identifier-Bindings and Expressions When There Are Side Effects

In Id Nouveau, a variable identifier may be bound to an expression and used multiplc times,
'This occurs in two situations, First, in a situation like this:

def makepair x = (x, x) ;
makepair expression

x is bound to expression and is used twice in the body of makepair. Second, in a situation like
this:
let
X = gxpression
in
(x. x)
Again, x is bound to expression and is used twice in the body of the Let-Block. These two
situations are actually semantically equivalent.m In both cases, the semantic intent is that x denotes
the value represented by expression and that the x’s in the bodies may be replaced by denotations
of this value. ' ‘

In a purely functional language, an expression represents a value and nothing else. Therefore, it
makes sensc to replace each x by the expression it is bound to, Thus, given the expression

let

x = (2 + 3)
in

(x, x)

it makes sense to replace it by
((2 + 3), (2 + 3))

The fact that the expression (2 + 3) may be evaluated twice is certainly a concern about
cfficiency, but it does not change the meaning of the expression.

In summary: /n a functional language, an identifier may freely be substituted by its binding
expression,

m’lhis is in fact Landin’s famous "Principle of Correspondeace”™,
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When we extend our language to include constructs that have side-effects (such as I-structures
opcrations), our view of expressions and bindings must change. There are now fwo important
aspects about an expression-- the side-cffect it performs and the value it represents, For example,
the expression array(1..10) has a side-cffect (allocating a new array in storage) and a value (the
pointer o that array). When an identifier is bound to an expression, it represcnts only the value
denoted by the expression, and not the side-effect. Thus it no longer makes sense to replace an
identifier by its binding expression-- it can only be replaced by a denotation of the walue of its

binding cxpression.
For example, the expression

let

X = array(2..6)
in

(x, x)

is not equivalent to the expression
(array(2..56), (array(2..5))

[n the former: we allocate one array in storage; x is bound to the value of the expression, ie the
pointer to this array; and the entire expression returns two pointers to this single array. In the
latter: we allocate two arrays in storage; and the entire expression returns two pointers to these two
scparate arrays. The meanings of the two expressions are thus quite different.

In summary: When expressions can have side-effects, an identifier may not be substituted by its
binding expression, but only by a denotation of the value represented by its binding expression.

Our rewrite rules must take this into account, i.e. when an identifier is bound to an expression, the
rewrite rules must separate the value and the side-effect of the expression, after which the value part
can be substituted for the identifier wherever it is used.

But this seems to imply a certain restriction on parallelism. Consider a rewrite fule and
application
P X= ... X ... X ...

T e

‘where e has a side-effect. We cannot reduce the application before evaluating e, because we must

first discharge the side-effect of e and rewrite it to a denotation of its value, and only then may we
substitute this value for the multiplc occurrences of x on the right-hand side. In other words, the
possibility that argument expressions have side-effects seems to imply that we cannot invoke a
procedure until we have evaluated its arguments,

But consider the following procedure and its application:
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def £ x = let
a = array(1..2) ;
af1] = x ;
a[2] = x A
in
a;

t array(i..10)

We should not have to wait for the evaluation of array(1..10) before we begin exccuting the
body of f-- we can go ahead and allocate the array a, and return the pointer to a immediately.

To allow this kind of parallelism in our rewrite rules, we must separate the reduction of an
application from the subslitution of formal-parameter identifiers by actual values. In a pre-
processing step, we first replace an application of the form

o, 91 8, ... On

with the form

let
dummy, = o,
dummy, = 8,

we ww

dummy, = @
in
6, dummy, dummy, ... dummy,

Function applications can then be reduced as before: the application is rewritten to its body with
the dummy 's substituted for formal parameter identifiers. Evaluation of the body can then proceed
concurrently with the evaluation of actuals 0.

4.3. Opcrational Semantics for |d Kernel

4.3.1. The Language
The syntax of Id Kernel is given in Figure 4-1.
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Figure 4-1: Id Kcrnel Syntax
Programs:

def t, x11 xln -9,

def f, x"1 x.' e, ;
let

in
8

None of the definitions have arity 0, ie. they all have at least one parameter.
In each o, (i > 0), ali free identificrs must be from the set PP S x-‘:' e Xy
n

In the query-expression, all free identifiers must be from the set LETR

Expressions:
atoms : constant or identifier conditionals
1.2, *, phony, .. _ if o, then e, else o,
I-structure allocations I-structure selections
array (e, .. o,) 8,[e,]
applications Let-Blocks
e, atom , let

Xy =0, ;
xi[oj] =0

in
8

Motivated by the discussion of Scction 4.2, there are a few differences from the functional subset
considered earlier:

e The reintroduction of Let-Blocks, with Commands such as I-structure assignments. The
query-expression is always a Let-Block,

e The arguments in procedure applications must be atoms, Le., constants and identifiers,

e All top-level definitions must have arity > 1. (0-arity definitions are moved into the
query-expression Let-Block).
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e The introduction of 1-structure allocations and selections
Section 4.4 describes how to translate an 1d Nouveau program into this kernel language.

4.3.2. Reduction Rules, Redexes, Substitution Rules and Subexes

In the functional subset, the substitution of an identifier by its binding expression was just
another reduction rule. In light of the discussion in Section 4.2, this is no longer possible. We thus
consider "Reduction Rules” and "Substitution Rules” as separate topics.

Reduction Rules
The reduction rules for built-in and user-defined procedures are the same as in the functional

subset.

To mode! 1-structure operations, we introduce a new sort of names called L-identifiers. To
distinguish L-identifiers from ordinary (functional) identifiers, we will write all L-identifiers
beginning with a capital L. Intuitively, these identifiers stand for I-structure locations and cnable us
o avoid mentioning addresses, descriptors, etc.

The reduction rule for I-structure allocations is:

array(1..h) = array-1-h{Lnew,, Lnew, ., ..., Lnew,}

(provided 1 and b are integers and 1 < h)

In fact, this is a reduction rule scheme in that conceptually there is one such tule for every pair of
integers 1 and h such that 1 < h, and each application of the rule produces a right-hand side with
new identifiers Lnew,. Note that the identifiers Lnew, on the right hand side of the rewrite rule do
not occur on the left hand side. Such a rewrite rule takes our language out of the class of functional
languages- cognoscenti will recognize the similarity between I-structures and first-order terms in a
logic programming language such Prolog.

Here is an application of the rewrite rule:

let = let
x = array(2..6) x = array-2-6{tx, Ly, Lz, Lw}
in in
(x, x) (x, x)
The intuitive idea is that array~2-6 is the descriptor which keeps track of the index bounds of the
I-structure, and the identifiers within curly brackets are "new" L-identifiers that stand for the
components of the I-structure.

We refer to forms like array-2-6{Lx, Ly, Lz, Lw}as I-structure forms.

Note that each application of the rule produces new L-identificrs, because cach evaluation of
array(1..h) allocates a new array with new component locations. Thus
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LI = * e
a = array(1..2) ; a = array-1-2{Lal, La2} ;
b = array(1..2) ; b = array-1-2{iLb1, Lb2} ;

where tal, La2, Lb1 and Lb2 aré new, distinct identifiers. It would be incorrect to reduce it instead
to

v w

a = array-1-2{L1, L2} ;
b = array-1-2{L1, L2} ;

because that would indicate that the two I-structures share the same cells, ie that they are
supcrimposed in storage.

Because of the uniqueness of L-identifiers, they may be considered to have global scope, ie
extending over the entire program. All occurrences of a given L-identifier in a program refer to the

same location.

Storing a value into a component of an I-structure is modeled by assignment to the L-identifier
that stands for that component. Selecting a component of an I-structure can then be modeled as
looking up the value associated with the L-identifier that stands for that component of the |-

structure.

The reduction rule for I-structure selection is the following: |
array-1-h{L,, ..., L}1] = L, | provided ! < i< h
Here, 1 matches any integer.
For example,
array-2-6{Lx, Ly. Lz, Lw}[3] = Ly

We do not introduce any new reduction rule for I-structure assignment. Given an assignment of
the form

afj] = e

a must be bound elsewhere to an I-structure form, so that we can substitute it to get
array-1-h{L;, ..., L,}[J] = o

We then reduce the left-hand side using the I-structure selection fule to get
L g =@

after which we can treat is as an ordinary identifier binding.

The rules for Let-Blocks are a little more complicated. We first give reduction rules for lifting



Let-Block bindings out of conditionals, applications, I-structure allocations and I-structure

selections,
conditionals: ‘
if (let ... in o)) then o, else o,
p——1
let ... in (if o, then e, else o,)
applications:
(let ... in o,) atom
=

let ... in (o, atom)

I-structure allocations:

array((let ... in e,) .. @,)

==

let ... in (array(e, .

I-structure selections:

(let ... in o)) [e,]

_

let ... in (e,[6,])

(and similarly for e,)

(and similarly for e,)

Notice that for conditionals, we lift Let-Block bindings out of the predicate but not the arms.

let
x = let
Bindings
in
e?st ;

in

let

a[let
Bindings
in
819t] * Oppg

in

Let-Blocks may be nested in various ways, and they may be collapsed using these reduction rufes:

let
X = @ H
Bindings ;
in
9

let

afe, . .] = o :

B1n}:|?ltngs :Nls
in

e



let =3 let
in Bindings
let in
Bindings %10t
in
°1at
In each of the Let-Block transformations, identifiers that were local to the inner scope must first
be renamed to new, unique identifiers in order that they do not clash with identifiers in the outer
scope. Because L-identifiers have global scope, they are never renamed.

Some examples of this renaming:
if{(let x = 3iny < x)then x + 4 else x - &
let x1 = 3 in (if y < x1 then x + 4 else x - 4)

let = let
X = 2 X =2 ;
y=3; y=3;
z = let z=x1+y;
X = 4 X1 = 4
in in
X+ y X+y+2
in
X+y+z

In cach case, the x in the inner Let-Block has been renamed to x1 in order that it not clash with the
x in the outer scope.

As before,

* A redex is an expression that matches the left-hand side of 2 reduction rule,

* A redex can be reduced by replacing it the right-hand side of the corresponding rule,
with parameter identificrs (if any) replaced by the expressions they match,

Substitution Rules

Substitution for an occurrence of an identificr is permitted only after its binding expression has
been evaluated for its side-effect and reduced to a denotation of its value, e after the binding
expression has becn reduced to a "Substitutable Form",

Substitutable Forms are defined in Figure 4-2,
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Figure 4-2:  Substitutable Forms
Constants: 0, 3.14, "Butragueno", +, true, ...

Partial applications: £ sf, ... sf 3
(where arity of £ > J)

I-structure forms: array-1-h{L,, L;,4, «.os L}

A subex (for substitutable expression) is an identifier x for which there is a binding x = sf in the
query-cxpression Let-Block, where sf is an expression in substitutable form.

Substitution Rule: A subex x may be substituted by its binding (substitutable) expression sf.

4.3.3. Computation and Answers
To compute with an Id Kernel program, we begin with the query expression, and repeatedly
rewrite it in two ways:

1. reduction: apply a rewrite rule to a redex (such as replacing (1 - 1) with 0) if it is not
within either arm of a conditional.

2. substitution: apply the substitution rule to a subex (such as replacing x with
- array-1-3{La,Lb,Lc} ifit is not within either arm of a conditional.

In the purely functional subset discussed earlier, we did not need this qualification on
conditionals. There, it was only a matter of efficicncy, and so we left it up to the computation rule
(e.g. the Applicative Order rule) to decide whether reductions inside arms of conditionals should be
performed. In Id Kernel, because of the possibility of side-effects in the arms of conditionals, this
degree of freedom can lead to indeterminate answers, We therefore decrec that every correct
interpreter (i.e. all computation rules) must not look inside the arms of conditionals.

Again, hopefully this rewriting process terminates until the query-expression is in some sort of
"simplified” form-- we call such forms Final Forms. Final Forms are defined in Figure 4-3.
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Figure 4-3: Final Form of the Query-Expression

let
X, = 1'91 H

x[y] = foj :

in
fo,
where each fe is a "final expression”, ie an expression which is not a redex or a subex and is of the
form:

1. Constants: 0, 3.14, "Butragueno”, +, true, ...

2. Partial applications: £ fe, ... fe i
(where arity of £ > j)

3. I-structure forms: array-1-h{L,, Ly, ... L}

4. Conditionals: if’ fe then e, else o,
(where e, and e, are arbitrary expressions_) :

3. Istructure sclections: fe [fe,]

As discussed carlier, it is possible that a programmer may assign twice to the same I-structure
location. 1In this case, when the query-expression reaches final form, the bindings in the Let-Block
will contain more than one definition for the L-identifier corresponding to that location.

Note that the following expression does not result in multiple assignments to the same L-
identifier:

t:f';'ihen let Lx = 3 in ...
else let Lx =6 in ...

because we were carcful to prohibit any computation inside the arms of a conditional. Thus e must
be reduced to true or false first, the conditional must be reduced to one or the other arm, and

thus only one of assignments to Lx will remain.

We can now specify what is the answer computed by a program. Answers are defined in Figure
4-4,
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Figure 4-4: The Answer Computed by a Program
The query-expression Let-Block must be rewritten to final form; the answer is then:

» "Error", if there are multiple assignments to any L-identifier in the bindings of
the Let-Block,

e The Return-Expression of the Let-Block, otherwise.

4.3.4. The Dataftow Computation Rule _
The Dataflow Computation Rule is defined in Figure 4-5.

Figure 4-5: Dataflow Computation Rule

» reduce zero or more redexes which are not inside either arm of a conditional

¢ substitute for zero or more subexes that are not inside either arm of a
conditional

To ensure that we make progress in the computation, we will insist on some "fair-scheduling"--
no reduction or substitution can be postponed indefinitely.

The computation rulc followed by a dataflow interpreter is neither applicative-order nor normal-
order. A dataflow interpreter begins the evaluation of all arguments to a function before invoking
the function. However, it docs not wait for the evaluation of the arguments to complete-- instead, it
can begin the execution of the body of the function before the execution of any of the arguments
has terminated. Not surprisingly, an interpreter that follows this "dataflow rule of evaluation™ must
either be parallel or must simulate parallelism. Like an applicative-order interpreter, a dataflow
interpreter gives special treatment to the conditional form-- it does not attempt any evaluation
inside cither arm of the conditional until the predicate has been evaluated. A dataflow interpreter is
a safe interpreter; moreover, it evaluates the arguments in any function application exactly once.

4.3.5, An Example
Consider the following Id Nouveau program:



def table = array (1..3) ;

def t111 x = let
x[1] = 3.14 ;
x[2] = 6,28 ;
x[3] = 2.41

():

in

let
= 111 table
in
table[1] + table[2]

Transformed to Id Kernel, we have

def £111 x = let
x[1] = 3.14 ;
x[2] = 8.28 ;
x[3] = 2.41
in

():

let
table = array(1..3)
in
let
~ dummy = 7111 table
in
table[1] + table[2]

We rewrite the query expression as follows:

let
table = array(1..3)
in .
let
dummy = 111 table
in
table[1] + table[2]

let
teble = array(1..3) ;
dummy = 111 table

in
table[1] + table[2]

(Collapse Let-Block)
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(I-structure allocation)

let
table = array-1-3{Lx, Ly, Lz} ;
dummy = f§11 table

in
table[1] + table[2]

(substituting for table)

let
table = array-1-3{Lx, Ly, Lz} :
dummy = f111 array-1-3{Lx, Ly, Lz}

in
array-1-3{Lx, Ly, Lz}[1] + array-1-3{Lx, Ly, Lz}[2]
(rewriting £411 application)
let
table = array-1-3{Lx, Ly, L2} ;
dummy = let
array-1-3{Lx, Ly, Lz}[1] = 3.14 ;
array-1-3{Lx, Ly, Lz}[2] = 6.28 ;
array-1-3{Lx, Ly, Lz}{3] = 2.41
in ‘
_ 0
in :
array-1-3{tx, Ly, Lz}[1] + array-1-3{Lx, Ly, Lz}[2]
(collapsing Let-Blocks)
let :
table = array-1-3{Lx, Ly, Lz} ;
dummy = () ;
array-1-3{Lx, Ly, Lz}[1] = 3.14 ;
array-1-3{Lx, Ly, Lz}[2] = 6.28 ;
array-1-3{Lx, Ly, Lz}[3] = 2.41
in
array-1-3{Lx, Ly, Lz}[1] + array-1-3{Lx, Ly, Lz}[2]
(I-structure selections)
let

table = array-1-3{L-x, L-y, L-Zz} ;
dummy = () ;
Lx = 3.14 ;
Ly = 6.28 ;
Lz = 2,41
in
Lx + Ly



(substituting for Lx, Ly)

let
table = array-1-3{L-x, L-y, L-z} ;
dummy = () ;
lx = 3.14 ;
Ly = 8.28 ;
Lz = 2,41
in
3.14 + 68.28
(Reduction rule for +)

let
table = array-1-3{L-x, L-y, L-z} ;.
duemmy = () ;
Lx = 3.14 ;
Ly = 6.28 ;
Lz = 2,41
in
9,42

which is in final form. The answer is thus 9. 42.

Note that at many points we had several choices of reduction/substitution for rewriting the
expression. A dataflow interpreter would do some or all of them in parallel.

The striking difference between ordinary (functional) identifiers and L-identifiers can be seen in
this example. The introduction of an ordinary identifier is inseparable from its definition: for

example, the Let-Block

let
= 3
= 3

+ .

X
y x
in
X +y
introduces two identifiers x and y and gives them definitions as well. In contrast, an L-identifier
can come into cxistence through array allocation without having any definition attached to it, and
may get defined at some other point of program execution through array assignment, More
operationally, an L-identifier can be considered to be a "place-holder" for a value: creating an
L-identifier creates the place-holder in which a value may be written in at a later point in the

program,

4.4. Translating an Id Nouveau Program into an Id Kernel Program
Although we have given an operational semantics for only the Id Kernel subsct of Id Nouveau, it
is simple to translate any Id Nouveau program into this subset. This is done as follows:

1. Loops are transformed into Let-Blocks with tail-recursive definitions, as outlined in
Scetion 2,10,
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2. All tuple constructs are replaced by I-structure constructs, as described in Section 44.1.

3. The Renaming transform described in Section 4.4.2 is applied to remove potential name
ambiguities and to namc the arguments of alt user-defined procedures.

4. The Lambda-Lifting transform described in Scction 4.4.3 is applied to close and lift all
inner procedure definitions (within Blocks) to the top-level.

4.4_.I. Implementing Tuples Using I-structures
All tuple constructs in an 1d Nouveau program may be transformed into I-structure constructs, as

follows:
Step (i) Replace all occurrences of tuple constructors of the form
(51. 0,0 o0y 8)
by a Let-Block of the form:

let
new-1d = array(l..n) ;
new-id[1] = e, 3
ﬁé&-1d[n] =8
in
new-1d
where new-1d is a new identifier that does not occur in the program.
Step (ii) Replace all tuple-structured bindings of the form
LYTIR PR t, =0
by aset of bindings
new-id = 8 ;
t, = new-id[1] ;
t, = new-1d[2] ;
i;.- new-1d[n] ;

where new-1d is a new identifier that does not occur in the program.,

Note that since tuple constructors and tuple-stuctured bindings may be nested, these
transformations may have to be repeated recursively.

An example. The expression

frabjous, borogoves(snark), joy

can be replaced by the expression



let i
arzoo = array(1..3)
arzoo[1] = frabjous ;
arzoo[2] = borogoves(snark) ;
arzoo[3] = joy '
in
arzoo

4.4.2. Naming Copyable Subexpressions
In this step, we ensurc Lhat the arguments to all procedures arc atoms (identifiers or constants).

Consider any application of the form:
(eg e, ... 8,)
Replace this expression with the form:

let
nem-‘ldl e i

row-1d_ = o
in
(e, new-1d, ... new-id))

An "optimization” here is to avoid renaming an argument e, if it is already an atom, ie itisa
constant or an identifier.
4.4.3. Lambda-Lifting

In id Nouveau, as in many languages, a procedure definition can use an identifier that is defined
in some surrounding scope. For example, in

et
f x = Jet
gy y+x
in
. g
in
(f 2) 3

the inner procedure g uses the non-local identifier x. x is also called a Free Identifier of procedure
g.

A procedure with free identifiers is meaningless without an accompanying specification of what
values the free identifiers represent. This "accompanying specification” is called an Environment
for the procedure. A procedure together with its environment is called a Closure, and this structure
truly has a meaning in the space of functions.

In {anguages like Pascal and Algol, the Environment for a procedure is implemented very
cheaply, using mechanisms such as Displays, Static Chains, etc. But such straightforward solutions
are no longer possible when procedures may be values returned as results of other procedures, as in
Id Nouveau. If one thinks of an Algol-like implementation, the representation of a procedure
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returned as a value must not only refer to the code for the procedure, but must also capturc the
bindings of all its free variables currently on its static chain. Many language implementations in
fact use exactly this mechanism to handle free identifiers (e.g. Scheme [13], Unix ML [7]). The
run-time activitics of building closures and accessing arguments from closures can be expensive,
Many languages preclude procedures as values for precisely this reason.

Note that if a procedure does not contain any free identifiers, we needn’t bother about an
environment for the procedure-- it will never be looked up anyway! Such procedures are called
"Closed Procedures”. Il we could cnsure that a/f procedures were closed. the implementation
would become correspondingly simpler because it would never have to worry about building and
accessing environments and closures.

Turner [15} suggested a method to transform a functional program into another equivalent
functional program in which all procedure definitions were closed, so that the implementation did
not have (o handle environments and closures, This technique was subsequently refined in [10] and
[11]. We will now outline the tatter method.

"l,ambda-lifting"ll is a source-to-source transformation that achieves two effects: first, the
resulting program contains only closed procedures, and sccond, since procedures are now closed,
they are all lificd out to the top level, and the resulting program has no nested procedure
definitions. For example, the program above could be transformed into the equivalent program:

let

f x = let
gXxXy=y+x
in

_ (9 x)

in

(r2)3

- Here we have made x an explicit parameter in the definition of g; since g now has this extra
parameter, the occurrence of g in the return-expression is converted into an application of g to x.

The function g is now closed, and so we can further transform the program into the form;

defgxy=y+x;
let

f x = (g x)

in

(r 2)3

by "lifting” the newly-closed procedure g to the top-level, without any danger of violating scope-
rules.

A more complicated example (after [11]):

n'l‘he name alludes (o the Lambda Calculus, which is (he "canonical” functional programming language.
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def a = 2 ;

defb = 4 ;

let

ce- :
fx=..x..-g..8..3
gy~ y..T..b..
in

!fl’g

Here there are two nested procedure definitions f and g, and they contain free identifiers a and b
respectively. Further, £ and g are mutually recursive.

We first attempt to close £ and g by supplying their free identifiers as parameters, and changing
every use of £ and g to an application of these new functions to those parameters:

def a = 2 ;

def b = 4 ;

let

c= .. 3
fax=,.x..(ghb) .. a..;
_gby-..y..(fa) .. b ..
in

.. (f a) .. (gb) ..

But in the process, we have introduced new frec identifiers: b into f and a into g! We thus repeat
the process to get

def a = 2 ;

def b = 4 ;

fet

C'..; )
fbax= .. x..{gab).,a.,:
gaby=..y..(fba)..b..

in
return .. (f ba) .. (gab)..

Now the nested procedure definitions are truly closed, and they may be lifted to the top-level:
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def a = 2 ;

def b = 4
deftbax=..x..(gab)..a..:;
defgaby=..y..(tbha)..b..;
let

c = ..

in

.. {fba) .. (gab)..

A detailed algorithm to perform this transformation efficiently in one pass is given in [11].

4.5, Conclusion

Id Nouveau is not a toy language. A compiler for Id (a predecessor to Id Nouveau) has been
running for over two years, generating code for the MIT Tagged-Token Dalaflow Architecture
{T'TDA), via Dataflow Graphs. The compiler was begun by Vinod Kathail and later modified and
maintained by Kcn Traub. Several large scientific codes such as SIMPLE, which is a 2000 line
FORTRAN program for hydrodynamic simulation, have been coded in Id and run both on a
TTDA simulator and on an emulation of the TTDA on the MIT Multi-Processor Emulation Facility

(MEF).

After some modifications, the compiler has begun to generate code from Id Nouveau programs.
The transition from Id to Id Nouveau has been remarkably smooth-- the main effort was in

handling partial applications (Id did not support partial applications and higher-order functions).

Ken Traub is in the midst of a complete rewrite of the compiler for Id Nouveau, with a new
modular structure to facilitate experiments on code generation, optimization, types and lype-
checking, ete., and incorporating our latest understanding of dataflow graphs.

Id is supported by a interactive, integrated programming environment called "1d World". Sitting
at a high-performance workstation, the programmer may

o Write programs, using an editor customized for Id.
e Sclectively compile Id procedures,

 Specify a TTDA configuration (number of processors, timing parameters, performance
data 10 be collected, etc.).

¢ From the user’s workstation, load, execute and debug the program on any of three
facilities:

1. The local workstation.

2. GITA (Graph Interpreter for the Tagged-Token Architecture), a multi-processor
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emulation of the TTDA on the Muiti-processor Emulation Facility.
3. A hardware-module level simulator running on a mainframe,

(All three facilitics execute the same compiled code.)

¢ Analyse and plot performance data collected during the execution.

These experiments have strengthened our conviction that Id Nouveau is a good programming
language for running scicntific codes on parallel machines. We beficve that it is also suitable for Al
and databasc applications, but such an evaluation is difficult because of the lack of accepted
benchmarks in these fields.
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Appendix A. Example Programs

Here are some example of 1d Nouveau programs to familiarize the reader with the programming
language. ' |

-- Average of two numbers

def average2 x y = (x +y) / 2

-- Roots of a quadratic equation given coefficients

def roots a b ¢ = let
twoa = 2%a ;
| = gqrt (b*b - 4*a*c) / twoa ;
bBy2a = b / twoa
in
(- bBy2a + x, - bBy2a ~ x) 3

-- Absolute value of a number

def abs x = if x >= 0 then x else - x ;

-- Square Root by Newton's Method (after Abelson/Sussman)

def sqrt x =
let
guess = 1 ;
not-good-enough? guess = abs (guess * guess - x) < 0.001
in
while not-good-enough? guess do
new guess = average? guess (x / guess)
relurn guess ;

-- Greatest Common Divisor of two positive numbers

def gcd x y = let
a, b=x,%
in
while a <> b do
new a, newb = ifa > b then (a - b), b
else a, (b - a)
relurn a ;
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-~ Pointwise product of two vectors

def pointwiseProduct vli v2 = /et
1.h = bounds v1 ;
prod = array(1..h) ;
=« for § from 1 to h do
prod{§] = vi[4] * v2[j]
return ()
in
prod ;

«~ Inner Product of two vectors

def innerProduct v1 v2 = let
1,h = bounds v1 ;
ip =0
in
Jor 3 from 1 to h do
new 1p = 1p + vi[4] * v2[}]
return 1p ;

-~ Matrix transposition

def transpose mat = Jet
n = upper mat ; :
resuitmat = array(1..n, 1..n) ;
= for 1 from 1 to n do
= for J from 1 lo n do
resuitmat[{,J] = mat[].1]
return {)
return ()
in
resultmat ;

-- Matrix multiplication: (m by n) matrix with (n by p) matrix

def matrix* m1 m2 =
let
m = upper ml ;
n = upper (mi[1]) ;
P = upper (m2{1]) ;
resultmat = array(1l..m, 1..p) ;
= for 1 from 1 to m do
= for J from 1 to p do
sum = 0 ;
resultmat[{1,J] = for k from 1 to n do
new sum = sum + mi[1,k] * m2[k, 3]
return sum
return ()
return ()
in
resultmat ;
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-- Matrix relaxation (next value depends on four neighbours)

def relax cornarop edgeop insideop terminate? m =
let
S ™ upper m ;
relax m ml =

let
mi[1,1] = cornerop(m{1,1], m[2,1], m{1,2]) ;
mif1,s8] = cornerop(mf1,s], m[2,s], m{1,s-1]) ;
mi[s,1] = cornerop(m[s,1}, m[s-1,1], m[s,2]) ;
mifs,s] = cornerop(m[s,s], m[s-1,s], m[s,s-1]) ;

= for § from 2 to (s-1) do
mif1,j] = edgeop(m[1,j], m[1,3-1], m[2,]], m[1,]+1])
refurn () ;
= for § from 2 (o (s-1) do
mi[s,j} = edgeop(m{s,j], m[s,j-1], m{s~1,3], m[s,j+1])
return ()
= for 1 from 2 to (s-1) do
mi[1,1] = edgeop(m[1,1], m{1-1,1], m[1,2], m[1+1,1])
return () ;
= for 1 from 2 to (s-1) do
mi[1,s8] = edgeop(m[i,s], m[1-1,s], m[1,s-1], m[i+1,5])
return () ;

= for 1 from 2 to (s-1) do
= for J from 2 to (s-1) do
mi[1,3] = insideop(m[1,3],
m{1-1,3]. m[1+1,43,
m[1,3-1], m[1,J+1])
return ()
return ()
in

. 0
in

while not (terminate? m) do
ml = array(1..s, 1..8) ;
= relax m ml ;
new m = ml

return m ;

-- LISTs

-- We can model lists (as in Lisp) by using 2-tuples and using the
-- special value nil to represent the empty 1ist,

def cons x y = (x,y)
def null 1 = (1 = ail) ;
def car (x,y) = x ;
def cdr (x,y) = y ;
def atom x = (number x) or (boolean x} or (string x) ... :
def Tength 1 = {f null 1 then 0
else 1 + (length (cdr 1)) ;
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~= reverse a Tist

def reverse 1 = Jet
rev = nil
in
while not (null 1) do
h,t = 1;
new rev, new 1 = (cons h rev), ¢t
return rev ;

-- flatten a tree-structure

def flatten struc =
let
traverse struc leaflist =
if null struc then leaflist
else if atom struc then cons atom leaflist
else let
hd, t1 = struc
in
traverse hd (traverse t1 leaflist)
in
traverse struc nil ;

-- Some useful higher-order functions on 1ists

defmap £ 1 = if null 1 then nil
else map (f (car 1)) (cdr 1) ;

def tilter p 1 » if nult 1 then nil
else let
hd, t1 = 1
in _
if p hd then cons hd (f1lter p t1)
else t11ter p t1 ;

def fold f unit 1ist = if nu11 1ist then unit
else ¢ (car 11st) (fold f unit (cdr 1ist)) ;
-- Sum, product and average of a 1ist of numbers
def addup 11st = fold op_+ 0 Vist
defmti1t1p1yup Tist = fold op_* 1 1ist ;
def average 1ist = let
accum (sum, count) x = (sum + x), count + 1 ;
total, number = fold accum (0,0) 1ist
in
total / number ;
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-- another definition for average of a list of numbers

def average 1ist = let
total = 0 ;

number = 0
in
while not (nultl 1ist) do

h,t = 118t ;

new numbeéer = number +

new total = total + h

new 1ist = ¢t
retfurn total/number ;

1

-- sort a 1ist of numbers into ascending order

def mergesort 1ist =

let
merge (11,12) = if null 11 then 12
else i nutl 12 then 11

else let
~(h1,t1), (h2,t2) = 11,12
in

if (h1 <= h2) then
cons hl (merge (t1, 12))

else
cons h2 (merge (11, t2)) ;

divide 11st = if null 1ist then ni1,nil
else if nu11 (cdr Vist) then 11st, nit

else let

hi,(h2,t) = 1ist ;

t1,t2 a divide t

in

(cons h1 t1), (cons h2 t2) ;
sort 1list = let

11, 12 = divide 11st
in
merge (sort 11, sort 12)

in
sort 11st :



58

Appendix B. Id Kernel: Collected Syntax and Semantics

B.1. Id Kernel Syntax
Programs:

def T, x, ... X
f 1 M, 1,
def 1, X, Xy "0,
let

in
@

where
. Arity(fj) >0
Free ldentifie PV 4 R
e Free Iden rs(ej) ef, - x.11 1
» Frec Identifiers(query-expression) ¢ f, .... f

Expressions:

atoms : constant or identifier
1.2, *, phony, ..

I-structure allocations
array (e, .. o,)

applications
e, atom

B.2. Reduction Rules
Built-in Procedures

+0 =0
+1 =1

r OO

623 + 1062 = 1685

conditionals
if e, then o, else o,

I-structure selections
°1[°z]

Let-Blocks
let

;t;[ej] =8



59
16 * 3 = 48
;ftrue then o1 else 82 = o1
if fatse then o1 else 92 = o2

User-defined Procedures

Fach definition in the id Kernel program:
deffx1 cee X, @

is treated as a reduction rule:
L Xy voe X, = @

I-Structure Allocation

array(1..h) = array-1-h{Lnew,, Lnew, ., ... Lnow,}

for every integer 1 and h such that 1 < h. Each application of the rule produces new L-identifiers
Lnewj.

I-Structure Selection

array-1-h{L,, ..., L)1) = L,
for every intcger 1 such that 1 £1<h
Lifting Let-Blocks

From Conditionals:

i (let ... in e;) then e, else 8y = let ... in (if e, then e, else o,)

Let-Blocks are nor moved out of e, and 9,

From Applications:
(let ... in o)) atom = ler ... in (e, atom)
From I-structure allocations:
array((let ... in &;) .. 9,) = let ... in (array(e, .. o,))

and similarly for 0,.

FFrom I-structure selections:

(let ... in e;) [0,] = let ... in (e,09,])



and similarly for o,

From Let-Blocks:

let ' = let
x-; [et X = ‘1.t '
Bindings Bindings ;
in B LR BN
Oygt ¢ n
L e
in
e
let = let
;tiﬂt ;i;1 ] -0 H
Bindings B1nd’ltnas ;™
in e
ellt] - orhs d n
. .
in
[
let = let
in Bindings
let in
Bindings ®1et
in ‘

%0t

Before a Let-Block is lifted out, local identificrs (but not L-identifiers) are renamed to new, unique
identifiers,

B.3. Redexes and Reduction

A redex is an expression that matches the left-hand side of a reduction rule.

A redex is reduced by replacing it with the right-hand side of the rule, with parameter identifiers (if
any) replaced by the expressions they match.

B.4. Substitutable Forms

Constants: 0, 3.14, "Butragueno®, +, trus,

Partial applications: ¢+ sf, ... sf 3
(where arity(f) > )

structure forms: array-1-ba{L,, Ly,4, ..., L}
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B.5. Subexes and Substitution

A subex is an identifier x for which there isa binding x = sf in the query-expression Let-Block,
where sf is an expression in substitutable form,

Substitution Rule: A subex x can be substituted by its binding (substitutable) expression sf.

B.6. Computation

Begin with the query expression and repeatedly rewrite it by:
L. reduction: apply a rewrite rule to a redex if it is not within either arm of a conditional.

2. substitution: apply the substitution rule to a subex if it is not within either arm of a
conditional,

B.7. Final Form of the Query-Expression

et
X o= 1’91 H

x[.Y] = fej i
in o
fo,
where cach fe is a "final expression™,
Final expressions are expressions which are not redexes or subexes and have the form:
1. Constants: 0, 3.14, "Butragueno®, +, true, ...

2. Partial applications; ¥ fe fo

(where arity(f) > §) 1o

J

3. I-structure forms: array-1-h{L,, L,.., ..., L.}

4. Conditionals: if e then e, else o
(where o, and 8, are arbitrary expressions)

5. I-structure selections: fe,[fe,]

B.3, The Answer Computed by a Program

The query-expression Let-Block must be rewritten to final form; the answer is then:

« "Error”, if there are multiple assignments to any L-identifier in the bindings of the
Let-Block,

e The Return-Expression of the Let-Block, otherwise.
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B.9. Dataflow Computation Rule

o reduce zero or more redexes which are not inside either arm of a conditional

o substitute for zero or more subexes that are not inside either arm of a conditional
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