MASSACHUSETTS
LABORATORY FOR INSTITUTE OF

COMPUTER SCIENCE 5 T TrCcENOLOGY

An Engineering Implementation
of the TTDA

Computation Structures Group Memo 270

February 12, 1987

Gregory M. Papadopoulos

THIS MEMO IS FOR LIMITED CIRCULATION WITHIN THE LABORATORY FOR
COMPUTER SCIENCE ONLY AND NO PART MAY BE QUOTED, DISCLOSED OR
REPRODUCED WITHOUT THE PERMISSION OF THE AUTHOR.

This regort describes research done at the Laborator{afor Computer Science of the
Massachusetts Institute of Technology. Funding for the boratory 1s provided in part by
the Advanced Research Projects Agency of the Department of Défense under the Office
of Naval Research contract NO0014-84-K-0099.

e P .
545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Table of Contents

L. Overview
2. 'I'ranslating the TTDA into Practical Hardware
2.1. Preserving TTDA Tag Semantics
2.2, The TTDA Abstract Pipeline
2.3. First Order Implementation Issues
2.4. The Waiting-Matching Problem
3. The Explicit Token Storage Model
3.1. The Static Dataflow Machine.
3.2. Separating Templates and Slots
3.3. Queue Tokens, Not Addresses
3.4. Eliminating Half of the Operand Slots
3.5. Instruction-Specified Slot Addresses
3.6. Instruction-Specified Slot Operation
4. Compiling Dataflow Programs for an Explicit Token Store
4.1. The SEND instruction.
4.2. Implementing I-Structures
5. Representations
3.1. Basic Data Types
3.2, Using Tags as Pointers
5.3. Instructions
3.4. Nano-instructions
6. Proposed Pipeline

GO~ ON LA B L Lo b

Figure 2-1:
Figure 3-1:
Figure 3-2:
Figure 3-3:
Figure 3-4:
Figure 3-5:
Figure 4-1:
Figure 4-2:
Figure 4-3:
Figure 5-1:
Figure 6-1:

List of Figures

The TTDA Abstract Pipeline

A ennis-Like Static Dataflow Machine

Scparating Templates from Operand Slots

Avoiding Deadlock with Instruction. Activity, and Token Queues
Firing Sequence of Two-Input Operator With Single Stot Rendezvous Point
Explicit Token Store Pipeline Overview and Memory Model

The SEND Instruction .

Calling an Instance of £

I-Structure Operator Without Deferred Read List

Token, Tag, Data, and instruction Representations

Proposed Pipeline Block Diagram

10
11
12
14
15
16
18
23

An Engineering Implementation
of the TTDA

Gregory M. Papadopoulos
Massachusctts Institute of Technology
Cambridge, Massachuselis 02129

1. Overview

This document provides the preliminary design for a dataflow multiprocessor prototype based on
the M.ILT. Tagged Token Dataflow Architecture (TTDA). The goal is a practical experimental
vehicle consisting of 256 processing clements and structure controllers and a suitable multistage
communication network to yicld an overall performance in excess of 1000 MDIPS.! We expect the
facility, used in conjunction with the Id programming language, to become the first truly
general-purpose mulliprocessor which will significantly out-perform current von Neumann
supercomputers on a broad range of applications, By using relatively conservative TTL and CMOS
gate array technology, a complele prototype array should be available by January 1990,

Mecting this ambitious goal requires extraordinary attention to design risk management. We
therefore use the “pure”™ dataflow model provided by the TTDA due to our experience with the
architecture and in spite of recent creative ideas of hybridizing a von Ncumann
machine [Izmnux:cij.2 Furthermore. there is limited opportunity for oplimization. For example, the
current compiler and instruction set vields a dynamic inefficiency of about 2:1 as compared to
optimized FORTRAN code on a scquential machine, For the purposes of the prototype, this
incfTiciency is tolerable.’

The TTDA is not itself a specification for a practical hardware design. If the prototype is to form a
basis for futurc competitive parallet machines, then the prototype implementation must address the
possibility of good cost/performance. We are critical of mechanisms that might tead to an ¢xpedient
prototype but do not lay a sound foundation for future work. For example, a bit-sliced microcoded
processing element would be relatively easy to implement and provide a large degree of
experimentat flexibility. However, it is still an interpreter for the TTDA. It lacks an efficicnt

TMDIPS = Million Datatlow [nstructions Pet Second.
2ptiD dissertation in preparation.

3Wc certainly hope and expect that further improvements in compiler technology will gain some of this back, bul little
effort will be made at the hardware level.

2

implementation of data synchronization that we claim is fundamentally important and is unable to
exploit the clcan pipeline propertics of data-driven evaluation. We search for a design with the
following properties:

« ‘T'echnological Scalability. As the technology is scated to ECL and GAAS, the cycle time
of the machine shouid decrease in direct relationship to improved propagation delays.

o Pipelined Architecture. In the RISC tradition, a simple non-blocking pipeline. Single
cycle throughput. No complex instructions.

o Completeness. The processor state can be effectively manipulited by the datallow
instruction set. There is no “controtler™ microprocessor associated with each node.

The preliminary design to be presented largely meets these objectives and should provide an
cflicient yet relatively fexible research vehicle. The highlights are:

o Explicit token storage yiclding a three-stage pipeline waiting-matching section that
sustains 10 million wait/extract operations per second.

» Single hardware design for both processing elements and structure controllers, unifying
tags and pointers.

 Fixed 64 bit data size with 8 bit type. Fixed size instructions. unary and binary, with at
most two destinations.

e Two megawords of token/instruction storage per module (DRAM). Token and
instruction caches.

« Seven-stage pipelined TTL/CMOS Gate Array Design, 100ns. instruction cycle time.

» Multistage packet switching network, 256 ports at 400 Mbits/sec/port

A key feature of the machine is the explicit token storage mechanism that replaces the associative
waiting-matching section with conventional single-port memory. The token storage can also be
imperatively manipulated like standard memory while avoiding any data constraints. This feature
should provide the necded support for coding resource managers and /0 drivers, as well as
opening the architecture to the “mulii-threaded™ parallel processing paradigms.

2. Translating the TTDA into Practical Hardware

By restricting the operating principles to TTDA-style dataflow, we leverage our existing
investment in software tools and analysis. We are being faithful to TTDA if the compilation
strategy is the same, the various schemata are closely related, and the internal structure of the
machines is roughly cquivalent. Mceting the compilation constraint means that the semantics and
manipulation of tags arc thc same. The intcrnal structurc of the TTDA can be maintained by
providing the samc abstract pipcline. Thus, the translation of the TTDA into a practical machine

requires developing of a consistent set of representations for the vatues manipulated by instructions
and mechanisms for the realization of pipeline stages.

2.1. Preserving TTDA Tag Semantics

TTDA tag scmantics ar¢ a bounded variety of U-interpreter tag semantics. The TTDA tag is
esscntiafly a tripte of context (U), iteration (1), and statement (S). The GET-CONTEXT operation
guarantees a4 unique context identifier. The iteration field is reaily an extension to context,
providing a structure that can be interpreted by the compiler. One view is that GET-CONTEXT
returns a sct of unique names paramcterized by iteration. This allows code blocks, primarily loops.
lo generate unique names locally. Ignoring loop constants for a moment, we argue that iteration is
an ¢fficiency optimization that is unnccessary if GET-CONTEXT is inexpcnsive."'l‘he statement
ficld specitics the instruction to be excculed. relative to the code block associated with the context.

The relationship between a tag and a particular processing efement is intentionally obscured from
the compiler. The maintenance of this mapping is the responsibility of the run-time system. In
general, ail three fields, U, 1. and S. are used to determine the PE number. The mapping of all
statements for a given context and itcration onto a single processor5 has been explored with good
results. However, to require all iterations of a loop to be on the same processor appears to be overly
restrictive. Even so, it is probably premature 10 design-out subdomain sizes greater than one.
Accordingly, we propose a tag/PE number scheme that can be made sensitive to statement number.

2.2. The TTDA Abstract Pipeline

We intend to preserve the gencral pipeline flow of the TTDA. This pipeline exploits a non-
blocking execution of enabied activities. potentially yielding very high performance designs. This
pipeline is abstract to the extent that the mechanisms employed at each slage are unspecified.
Morcover, the stages arc not particularly well balanced. As shown in figure 2-1. incoming tokens
cnter the waiting-matching section. The resuit will either be a match. in which case two tokens are
emitted, or a non-match, meaning that no tokens are emitted and the token waits for its partner.
Unary operations bypass this section. In the instruction-fetch stage, the tag-specified statcment is
fetched from the instruction store. ALU operations may be performed simultaneously with
destination-list processing. New tokens are assembled in the form-token stage. Finally, a large token
qucue provides bufTering for excess parailetism,

4Wc argue further that consuming a name for a context on demand is a more efficient way of managing a physical
namespace. |7 the names were virtual (Le. physical resources are not necessarily bound (o the name), then we would
reverse our position here.

5 . L
Thit is. subdomain size is one.

I

Wait-Match
Section

v

Instruction

Fetch
Token
Queue

Compute
Tag
—P Form)
e From
loken Network

v

1o Network

Figure 2-1: The TI'DA Abstract Pipeline

2.3. First Order Implementation Issues

The transiation of the abstract pipcline into a practical design raises a host of design issues. The
most dilTicult issues to resolve are ones concerning resource limits. Taking very conservative upper
bounds at this time might make the design unwieldy. However, “blowing out™ a resource might
seriously undermine the utility of the machine. We attempt wherever possible to paramecterize
particular resource limits at run-time as a subdivision of some larger resource pool. For instance,
the relative amounts of instruction and token storage have not been carefully studied. By having
onc memory for code and tokens (with appropriate caches). we can translate this into a single
resource limit, the amount of primary storage per processor. and we make it as large as feasible (two
to cight megawords).

The issucs which have a first-order effect on the design are as follows:

1. Pipeline Balancing. Are the stages composed of roughly the same levels of logic? Are
the flow rates through the different stages consistent?

2, Resource Limits. There are many finite resources to exhaust. The following parameters

nced binding:

+ Waiting-matching store size.

e Token queue total size.

o Maximum number of contexts.

+ Maximum number of code blocks.
e Total siz¢ of code blocks.

e Maximum number of structures.

e Total size of structures.

» Total size of deferred read queues.

3. Representations. Should data values be of variable or fixed-size? Can instructions be
made fixed size with a fixed number of destinations?

4. Input/Output. What kind of 1/0 is best? Direct I-structure access through channels?
Input/Qutput instructions in the processor? Memory (token or I-structure) mapped?

2.4. The Waiting-Matching Problem

A clear virtue of the datatlow scheduling mechanism is the non-blocking pipeline once an activity
has been enabled. However. a fundamental problem arises when trying to implement the waiting-
matching scction. Not only must the waiting-matching have a relatively large token capacity, but to
balance the pipeline properly, it must also have a throughput up to twice that of the ALU. An
efficient implementation of the wailing-matching section is central to the goal of translating the
TTDA into practical hardware,

If a graph consists mainly of dyadic operators, then most instructions require two inputs and, on
average, produce two destinations. ‘The destinations of an instruction are processed independently
by the wait-match section. So the ALU can consume and produce two valucs in a single time step,
but the wait-match section takes two time steps to consume wo values. Similarly, the wait-match
scction, on average, can produce only one value per time step. In this scenario the ALU is ar best
fifty percent utilized. In practice we sce about seventy percent utilization due to the large number of
identities used in termination trees.®

There are three approaches to solving this imbalance. The first, and casiest, is simply to accept it

6!1 might be {convincingly) argued that identitics shouldn't be counted as Al.U operations since they are strictly
overhead. 'The fact is they consume ALU cycles so for the purpose of pipe balancing a Jou of identities really do help.,
Better compiler technology ought to recuce the number of identities, though, so we head bick (o tifty pereent.

and assign it to copying overhead inherent in data-driven computation. Second, make a wait-match
section that runs twice as fast as the ALU. If you take the technological scalability goal seriously,
this is.really achieved by slowing down the ALU 1o half of the waiting-matching speed. Finally, we
can [ook for wait-match structures that have internal parallelism. In essence, multiple or interleaved
wait-match sections.

This problem might scem a bit contrived, but the reality is many times worse. Although fully
associative wait-match sections were proposed first, hashing schemes are actually employed in
almost all dosigns. Even the very best hashing function requires the following steps for a
wait/exiract operation:

1. Hash and Compare. Hash the incoming tag. read the hashed-to location.
2. Insert. If the location is not occupiced, then inscrt (write)

3. Extract. if the location is occupied then. extract (write empty)

it appears the cven this ideal hashing scheme takes two cycles. As soon as collision logic is
employed (this complicates the extract). only the very best of implementations can boast (hree-cycle
performance. In this case a pipelined ALU with a single cycle throughput will be utilized less than
twenty percent of the time,

3. The Explicit Token Storage Model

A novel approach to the wait-match problem is to treat the wait-match section as ordinary
random access memory where cach word has a presence bit and which is atlocated and deaflocated
with procedure activation and deactivation, respectively. This explicitly managed token storage can
be eclficicntly implemented as a multi-stage. single-cycle throughput pipefine that employs
conventional memory technology.

This approach was jointly developed by David Culler and the author, and largely inspired by the
VIM dataflow model of Dennis. Stoy, and Guharoy.” As such, the mechanism is related to the static
dataflow architecture of Dennis. The semantics. however, are firmly entrenched in the TTDA and
thus the U-intcrpreter of Arvind. The synthesis presented here relates the fundamentaily more
cxpressive tagged-token model to the-implementation efficiencies of the static paradigm. To the
extent that our solution is also compictely pipclined with only single-port access to the token
storage, we believe it to be a significant advance in datallow machine cnginecring.

7“VIM: An Experimental Muiti-User System Supporting Functional Programming.” Proceedings of the International
Workstop On Higl-Level Computer Architecture 84, pp. 1.1-1.9

From Network

I

I

Operand
Store

v

ADD

' operand A
> operund slots
'l operand B

presenee o~
fugs S

Instruction Template - -
[Address | Memory dest 1 —» MULI
- Quewe (Dual Ported) dest 2 "l operand A
‘ Pl operand B
Operand destingtion < dest |
Fetch list dest 2 ——>
Tag
Form Token = <8, poro<atad
l'oken /
® (—/ak-.wmaﬁon instruction
auddress
A 4
1o Network

Figure 3-1: A Dennis-Like Static Dataflow Machine

3.1. The Static Datallow Machine.

Dennis’ static machine is distinguished from the tagged-token architecture by its restriction to
one-token-per-arc. This permits token storage ailocation prior to execution. since the number of
arcs is fixcd for any graph. The storage required by a token traversing a given arc can be statically
allocated in a conventional memory. Each such location is called an operand slot, and each stot has a
presence flag to indicate whether or not a valuc has been stored. The slots are convenicntly related
to the instruction template as shown in figure 3-1. Thus, when a token is stored. it is straightforward
to determine il alt the other required operands for the associated instruction are present. [f so, the
address of the instruction template is inscrted into an instruction address queue. The exccution

cycle of an cnabled instruction invoives fetching the operands from the template (token) store,
performing the indicated operation, and distributing the results as specified by the instruction’s
destination lisi. For the purposes of this discussion, we assume at most two operands per instruction
and ignore acknowledgments.

A tag in this machine is simply represented as <S, port>, where S is a physical address of a
tcmplate in the template stored and port idcntifies the operand number within the destination
template. This machine is rclatively efficient and employs conventional technology. Superficiaily,
it seems 1o pipeline well, but only assuming that the template storage is truly a dual port memory.
This is a troubling assumption because the template memory is apt to be farge, and large dual port
memorics are relatively slow and expensive. If this memory is to be impiemented as a multiplexed
stingle port memory, then the pipeline can only run half as fast as the memory access time, and a
purely dyadic instruction rate is four times slower than the memory access time. This is because
cach dyadic instruction requires four memory accesses; two (0 store the operands and two to fetch
them. '

The static architecture is fundamentally less expressive than the TTDA model in that the one-
token-per-arc restriction prohibits the recursive application of a function and precludes dataflow
graphs, which are first-class objects. One solution is to copy the instruction templates associated
with a function for each application; every time a function fis evatuated. the code for fis copied to
a region of memory and the particular arguments are inserted into the new graph. Such a machine
would no longer be strictty static as the solution implies a run-time manager of the template storage.
Note that the destination lists can no longer refer to absolute instruction addresses. but must instead
be relutive to the particular instantiation of £ One tag format would be <C,S, port>, where C
points to the base of the new £ and $ is a statement number that selects a template relative 0 €.
The port sclects one of two operand slots. This contextual information is analogous to the TTDA
tag, Working oul the details of argument/result linkage, token-store (tag namespice) management,
and unfolding control are the same challenges facing a tagged-token machine. The obvious
deficiency of this approach is the excessive overhead implied in the need to copy the graph every
invocation.

3.2, Scparating Templates and Slots

One easy way to mitigate the copying overhead is to separate the static part of an instruction
templite (the opecode and destination list} from the operand slots. See figure 3-2. Here an invocation
of finvolves the allocation of a set of slots for the corresponding instruction templates. The lag
contains four items, <C,R,S, port>, where C is a pointer to the instruction templates of f(sans
operand slots), R points to the base of the operand slois for an instance of £ and § is a statement
number that sclects an instruction relative to € and a pair of operand slots ielative to R. So the
address of the instruction is given by C+8, and the address of the associated slot is given by R+S.

A token is processed as follows:

8111(: processing element number is implicily embedded in §. That is, § is a global address.

<C.R,S> N

| .
w “ v | A4S
+5
I [T Activation of |
> [0 130
P FY3
ﬁ 0 AL 7 <— p;
hd ! B (1]
4
> 1: MLUIL T
3
+S /.\/"
2: SLHY

R ETTTT : é—J /_/

- AlWY R’

EAL S0
320

5 COND [165,34

4 Another Activation of f

-
-

w

N TN

Template (Program) Memory Opcrand (Slet) Memory

Figure 3-2: Separating Templates from Operand Slots

1. Store Operand. Add R and S to compute the effective address of a pair of operand slots.
Write the data part of the token into the appropriate slot as indicaled by port.

2. Queue Tag If both operands are present, then queue the instruction/data addresses,
<C+S,R+5>,

3. Fetch Operands. Dequcue the instruction and operand addresses, fetch the instruction .
destination list, and the two opcrands.

4. Exccute. Perform the indicated operation on the operands and produce a result value.
5. Process Destinations. Construct result tokens by substituting new S and port ficlds as

indicated by the destination list, substituting the original code-base, €, and opcrand-
base, R.

10

This approach does climinate the copying overhead of the templates, but still requires four slot
operations per instruction. In addition, the operand memory is sparsely populated with tokens.
Most slots are empty. Perhaps there are more efficient uses of this physical resource.,

3.3. Qucue Tokens, Not Addresses

Any dataflow processor pipeline is cyclic and, because operators may have more outputs than
inputs. some form of queue is required to prevent the processor from deadkxking. The queue
accommodales the “excess parallelism™ beyond the number of simultancous activitics that keeps the
pipcline completely busy. In the static machine above, this qucue was in the form of an enabled
instruction FIFO; the entries in the buffer keep track of those temptates that have enough operands
to fire. As shown in figure 3-3, there are two other places to insert a queue in the pipeline.

1. 1 d=h

Inst Operand Operand Operand
Queve Slore AL Store ALY Slare AU

| Nl !

A, Instruction/Operand Addresses B Enabled Instruction and Operands C. Unmatched Tokens

Figure 3-3: Avoiding Deadlock with Insteuction, Activity, and Token Queues

Supposc that when an operand is written it is discovered that the associated instruction becomes
enabted. Instead of qucueing the address and then later fetching the operands. the operands are
immediately extracted. In this case there is no necd to write the second operand just to fetch it
again, Rather, the first operand is written into the token store and when the second one arrives, the
first operand is read. This cuts the number of operand accesses in half: an operand is either read or
written each cycle.

Undecr this model the excess parailclism can be absorbed immediately after the operand store in
an enubled activity queue, a queue that holds the operands, instruction, and tag. Alternatively, a
gueue can be placed immediately aller the ALU in a token queue, a bulter that holds result tokens
consisting of lags and data values. On balance. the storage requirements of both queues are roughly
equivalent. The activity queue is about wice as wide as the token queue but, assuming two
destinations per instruction, the token queue has twice as many entries.

The dcecision of which type of queue to use, activity or token, is really an implementation issue.
While we prefer the token queue. the important contribution of either approach is to convert the
operand stare into a single-port memory that is accessed as a reud or write at only one pipeline stage.

11

34. Eliminating Half of the Operand Slots

Another advantage of the single-port operand store is a simple optimization that can eliminate
hall” of the operand slots, AL any time. we have 10 store at most one operand of a 'wo-input
instruction. When the first token arrives we store its value into the slot computed from its tag and
cnable the associated presence bit. When the second operand arrives the presence bit is inspected
and is tound o be set. Now the slot is read and the presence bit is cleared. Figure 3-4 illustrates the
firtng sequence of a two-input operator using a single slot.

1.53 -16
yd p 1.53
lrf‘ud
A. No operands. slot is initially emply C. Second operand arrives. read shot
1.53 lwn’!c
p 153 yd
-5.508
1. First operand areives, write into slot . tixecute instruction, clear presence flag

Figure 3-4: Firing Sequence of Two-1aput Operator With Single Slot Rendezvous Point

3.5. Instruction-Specificd Slot Addresses

The slot represents a rendezvous point for the instruction rather than storage for an arc. Under
the model presented so far, therc is a one-lo-one correspondence between the instance of an-
instruction and a slot. That is. the statement ofTsct S is used to index the code as well as the operand
store. We can extend this idea by permitting the destination instruction 1o specify the slot to use
rather than deriving it from S, This actually simpiifies the tag while permitting a more general and
ciTicient use of operand storage.

Considcer the tag <S, port,R> where S represents a global instruction address, and R represents a
global slot base pointer. The destination instruction provides r, a relative adjustment to R, in order
to compute the stot address R+r. Because the slot firing rule is self-cleaning, a particular slot can be
re-uscd within a given activation. By providing other firing rules, as we shall sce shortly, a
mcchanism is provided for the cfficient sharing of constants,

12

One obvious implication of this model is that instruction fetch must occur before the waiting-
matching operation. This new pipeline and memory model is shown in figure 3-5. The destination
instructions are computed by making adjustments to § as specificd by the destination list. The new
lag is constructed from the old by using the same R, incrementing $ by the instruction-specified s,
and substituting the instruction-specified port.

/\/ incoming Tug

<§,port,R>

Instruction
IFetch A2
/
* e
7
Operand //
Fetch

Token /__/

Queue Instruction Store /\/

Op r):3 Dests

— ol

149765

" -64H- Y

Form

portd | st portl

From 248,50

| 154

s0
Token Nemwork / / \\

P ap

<S+s0, port0, R> <S+s1, portl, R>

l Result Tags /_/

Operand Store

1o Nerwork

Figure 3-5: Explicit Token Store Pipeline Overvicw and Memory Model

3.6. Instruction-Specified Slot Opcration

Prefetching the instruction allows more control over the operand fetch (waiting-matching
scction). The destination instruction could specify an operation different from the standard self-
cleaning firing rule. For example, leaving the presence bit set alter a match creates a “sticky™ or
constant value. In general, the instruction specifies a waiting-matching opcode such as NORMAL,
READ, WRITE, NOP (unary), CONSTANT., efc. An important aspect of any waiting-matching
opcode is whether the ALU opcration and destination processing is performed conditionally. In the
NORMAL firing rule, the ALU operation is conditioned upon the presence of both operands. But
the READ, WRITE, and NOP cascs unconditionally execute the ALU operation. This gives risc to a

13

different view of a dataflow machine; instructions are executed unless inhibited by a
synchronization constraint.

We can further generalize the operand store by associating morce than one bit of state for each
tecation, permitting more states than empty/present. In general, the waiting-matching opcode
specifies a state-transition function

new-state, alu-inhibit, read-write := WAIT-MATCH-OP(state, port),

where new-state is the new state to be associated with the slot, alu-ianibit is a predicate that
can inhibit further instruction execution, and read-wr 1 te specifies an operation on the data part of
a stot: read, write, or exchange. Notice that port is used as an input 0 the state machine. The
proposed machine has two bits of state associated with each slot.

The explicit specification of the slot operation permits highly imperative control of machine
resources. it desired. One can view R as a frame pointer 10 a scl of synchronizing registers, The
register number relative to the frame pointer is specilied by e, The data value on a token can be
selectively written into a register. or the contents of the register may be read and combined with the
incoming data value to produce a new result data value. Thus. the data value carried on a token is
analtogous to an accumulator, the $ field an instruction pointer. and the R field a frame pointer. An
instruction with two destinations creates a fork, the R and accumulator are copied and a new S is
supplied. A dyadic operator that specifies a NORMAL wait-match opcode is cifectively a join.

4. Compiling Dataflow Programs for an Explicit Token Store

The explicit token store provides a4 TTDA-equivalent programming model for acyclic code
blocks. A token is composed of a tag and a datum:

Token = <§,port,R><{Datumd>

The R component of the tag <3,port,R> is a pointer into the machine’s operand memory, while
the § part is a pointer into the instruction memory. Thus, a tag is also a pointer with two
components: a data pointer and an instruction pointer. The normal tag construction rules only
involve the manipulation of § and port. R is simply passed through to the result tags. R is thus the
- context of the particular invocation of the block rcferenced by S, equivalent to the U-interpreter
context, Y.

The only difference in code gencration for acyclic blocks is the assignment of the r field for cach
instruction. A simple approach is to assign a unique r in a one-to-one correspondence with the
instructions in the code block,

4.1. The SENID instruction.

Each invocation of some function frequires (1) the allocation of a new context R, , (2) the transfer
of arguments to the function. (3) the gathering of rcsults from the function, (4) the termination
detection of the function, and (5) the reclamation of the contexL

14

Suppose. for now, that step (1) has been accomptished. That is. a program has somehow obtained
a fresh area of token memory as pointed to by R,. A tag can itself be a datum (of type tag)
manipulated by a program, so a tag is constructed of the form <8, ,port,R,>, where S, is the first
instruction in the function we want to invoke. How are we to supply the arguments, say x and y, to
this instance of f?

Tag Value Tag Value
<S5.0,R><S"',port,R'> <S.1,R><Datum>
S:
SEND
+n
| ,
Tag Value

$ ¢S'+n,port,R'><Datum>

Figure 4-1: The SEND Instruction

The basic requirement is the ability to take a valuc {rom the current context and send it to another
context. If the target context is represented by a value of type tag, all that is rcquired is the
construction of a token whose tag is this value and whose value is the argument we wish to send, As
shown in figure 4-1, the SEND instruction is a dyadic operator whose inputs are a tag type and an
arbitrary valuc and whose output is a token constructed from the supplicd tag and value. The
SEND instruction is paramcterized by n, an optional offset to add to the $ part of the tag
argument,

In order to send the arguments x and y to the correct instruction in £ a linkage convention is
required. Suppose we agree to send the first argument to S,+1, the second to S,+2, and so on,
Most likely, these instructions are just identities, so port is irrclevant. But how do we get the results
back from f? Quite simply. We supply four “rcturn address.” That is, we send a token to f whose
value is a tag in our context where we want the return values to be sent. If our context is R, then we
construct a tag of the form <S,. port, R>, where 8, is an instruction in our code block. By
linkage convention this return tag is sent to 5,+0.

Results are sent back to our context by SEND instructions in £ By linkage convention the [irst
result is sent to § +1, the second to S +2, efc. Finally, the termination signal from fis sent to
$,+0. This whole operation is shown in figure 4-2.

15

3 r
i
Allecate
Contend Sa x ¥
<Sf..port.Rf.) I
SEND SEND SEND
+0 +1 +2
| L [
L —_

Context R

Context R ¢

— ; T
refurn mg—l arg | arg 2 |
\ 4 4 \ 4
L
f | I |
<Sa.port.R> _l
vy Yv ¥
SEND SEND SEND
+0 +1 r2
ferminate
I— _— = = ST A rr'.\'uhl__l |
r— T - = = relr2
| r
\ 4 \ 4 . 4
a’ I i |
Dealloc
Context

Figure 4-2: Calling an Instance of £

Inititiali))
nitalize | EMPTY

16

4.2. Implementing I-Structures

In the preceding discussion, we viewed $ as pointing to the code for a function while R pointed to
an activation frame. Alternatively. we view R as a simple pointer somewhere inlo memory while 8
provides a limited set of instructions for viewing the the location pointed to by R.

For example. suppose that § points 10 an instruction that reads the zero-offset location of R. The
data part of the token is a tag where the result is to be sent. The instruction unconditionally reads
the location and then constructs a result token whose tag is the incoming token's data part and
whose data part is the vatue read. Thus any function could read a tocation in memory by sending a
return address to the location to be read and specifying the § that performs the read function. This
is a classical. and completely general, split-transaction memory read. Similarly, a function can write
any location in memory by sending the data to be written Lo the desired focation and specifying an S
that performs an unconditional write.

Read Token Wrire Token
<§,0,R>(S' ,port’ ,R"> <S,1,R>,36a+24

J_

k.
W 1 46 K
. W [}143
Port = 0; write, Port = 1; write, . m ot
inhibit ALU inhibit ALU S:1 ISTR R: W5
_!".
|
DEFER WRITTEN t
- 4

execute <§",port' ,R'>36e+24

Resuft Token Operand Store

T Port = 0; read. \/\

Port = 0; exchange
execute

A. Wait-Match State Machine for ISTR B. The ISTR I[astruction and an {-Structure Vector

Figure 4-3: I-Structure Operator Without Deferred Read List

The prescnce bits associated with each memory location permits the construction of synchronizing
reads, completely analogous to an I-structure. As shown in ligure 4-3 a new operator, ISTR, can be
constructed along with a new state machine for the wait-match operation. Writes are sent to
port 1, rcad requests arc sent to port 0. If the write arrives before the read. then subsequent
reads find a value already in slot: the value is read (but the presence bit is not reset). a result token
is formed and the requested value is sent back. If the read arrives before the write then the retumn
address is wrilten into the slot. When the write arrives the the slot is exchanged: the deferred read
address is extracted, the write-value is written, and a result-token is formed. The ISTR instruction
is simply a SEND instruction with one port designated as constant or “sticky” value.

17

Deferred read lists can be handled in several ways. One possibility is to provide for the hardware
mainlenance of delerred read lists in the operand store itself. However, this approach does not
pipeline well and antagonizes the RISC philosophy underlying the machinc design. We prefer
solutions that place the defer burden on the requesting instruction rather than the requested
location. One such approach requires a convention whereby the requesting context allocates a slot
for each potential outstanding deferred read. The ISTR instruction can be augmented with an
additional state to cause the qucucing of extra read requests through these slots. Very simply, if a
location is read where it is discovered that a deferred read alrcady cxists, the existing request is
extracted and sent to the reserved slot of the current request. ‘The current request is first modified so
that it points to the deferred slot (for instance. by incrementing $). and then written into the ISTR
slot. When the desired value finally arrives, it is forwarded to the reserved slot. which forwards it
along to other readers, as well as copying the value for its own use.

S. Representations .

The processor data paths are logicatly 72 bits, 64 bits of data and 8 bits of type. All tags. floating-
point numbers, bit ficlds, and intcgers are 64 bits. yiclding a single. fixed-size quantity for all
operations. [nstructions arc a lixed 32 bits, with two instructions per word. This greatly simplifies
the processor and network design at the expense of space eificiency for certain representations.
Figure 5-1 illustrates the relationship between tokens, tags, data and instructions.

5.1. Basic Data Types

All data in the maching arc represented with a fixed 72 bit word, 64 bits of value and 8 bits of
type as follows:

Datum = <Type> < Value >
8 a4

There are only four basic hardware types:

1. Number. 64 bit !EEE double precision floating point. Integers are distinguished only as
non-fractional floats.

2. Bits. Uninterpreted bit fiekd of 64 bits. Standard operations of shift, mask, and of two's
complement addition and subtraction.

3. Tag. 25 bits of instruction address and 32 bits of data address point to an
<Instruction, Datum) pair.

4. Error. The value part is meaningless.

Other types like Boolean, Acknowledges, Closure, ezc. are actually one of the hardware types with
the compiler maintaining certain conventions. The remaining six type bits are compiler-definable.

<'Iag, Pointer> <Datum>

Input Token: Map i P 5 R ‘Fype Valuc
WETCH
Lnstruction> +
wM Inst Desits r
/ +
P oSl | 52 DATA FETCH
(OR STORE)

y ; Y
_ i

R Type' Value'

Qutput Token; | Map

Figure 5-1: Token, Tag. Data, and Instruction Representations

19

5.2. Using Tags as Pointers
A token is simply a <Tag, Datum> pair:

Token = {Tag><Datum>
64 72

A tag has the internal structure:

Tag = <x> <Map> <Port> <S> <R>
1 6 1 26 32

A tag describes a pair of values: a Datum ofTset and an Instruction offset. When thought of as a
traditional tag. the instruction part refers to the activity to schedule when the specificd data
dependencies are met while the datum part refers to the base slot of the context in the waiting-
matching section. When thought of as an |-structure pointer, the instruction part refers to an |-
structure opcration while the datum part describes a linear offset into the structure. The encoding of
the different fields are as follows:

1. <x>. This bit is presently undefined.

2. <Map>. Defines the mapping operation for the <R> field:

Map = <Extent> <Aliasd
4 1

The <Extent> ficld defines Iog2 the number of PEs in the subdomain referenced by the
data part of the pointer. The <A11as> bit indicates that any processor defined within
<{Extent> can receive any token. See the description of the <R field.

3. <Port>. The destination port, LEFT or RIGHT.

4. <8>. The instruction offset (Statement) number. A physical pointer local to the PE
selected by <R> and <Map>.

5. <R>. Describes a global physical data address. All address arithmetic treats this as a
single lincar address space, but the hardware uses the <Map> field to determine the PE
number. When no <At+tas> is indicated:

R = <PE-hi> {R-10cal)> <PE-Tow>
8-Extent 24 Extent

When <Map> is zero, this degenerates to a subdomain of size one, a purely local pointer;

R = <PE> <R-local>
8 24

On the other extreme, when <Map> is eight, this degenerates to a globat address with an
interleave factor of 256:

R = <R-local> <PE>

20

24 8

When <Altas) is sclected. only the computation of the <PE> field is affected:

R = <PE-hi> <X> <{R-1ocal>,
8-Extent Extent 24

where <X> defines a don't care for the least significant <PE> bits.

5.3. Instructions

Instructions are fixed size. 32 bits, with one or two destinations:

Instruction = {Inst> <{r> <{Dests>
9 10 13

1. <Inst>. Selects one of 512 machine nano-instructions. The nano-instruction table is
downloadable, the format being described below.

2.<r>. A two's complement adjustment to the tokens <R> ficld. The data address is
computed as <R> + <pd. This ficld can be used as a short immediate valuc when <WM>
is NOP.

3. <Dests>. Describes one or two destinations as retative adjustments to the current
instruction number <8>. A single destination is encoded as:

One-Dsst = <0> <Port> < 3 >,
1 1 11

where <Port> is the destination port and <s)> is a two's complement adjustment to
<5>. Two destinations are encoded as:

Two-Dest = <{1> <(Portl> < sl > <Port2> < s2 >
1 1 4 1 8

5.4. Nano-Instructions

A Nano-instruction is a fully decoded control word that is selected by the (inst) ficld of the
cxecuting instruction, Nano-instructions are stored in a downloadable table for maximum
flexibility. While the detailed encoding and size of a nano-instruction is not presently specified, it
docs have the following overall structure:

Nano-Instruction = < WM Control >< ALU Control > < OQutput Control >

The <WM Contro1> describes the wait-match operation by providing a pointer into a table of
state machines, which describe the transition from the current presence state of slot to its new state,
given Lthe port of the input token and whether the instruction should be executed. There are four
basic state machines to be used: SYNC/READ provides the staridard self-cleaning firing rule, the
instruction is conditionally scheduled upon the arrival of data. WRITE unconditionally writes the
incoming value into the slot and always schedules the instruction. LITERAL uses <8> + <r> to

21

define a code-relative compile time constant. NOP ignores the wait-match section and
unconditionally executes the instruction, in which case the instruction’s <r> field can be used as a

signed immediate value.
The <ALU Control> specifies the ALU and FPU opcodes. The <Qutput Control)> specifies
the construction of output tokens:

Output Control = <Cond> <EP1> <FT1> <{EP2> <FT2>,
3 1 2 1 2

where

1. <Cond>. Selects the condition code for the emit-predicates, <EP1> and <EP2>.

(Cand> Asserted When :
ALWAYS Always true
ZERO ALU output is zero
POSITIVE ALU output 1s greater than zero
NEGATIVE ALU output is less than zero
WM~-COND WM condition code = 1
TYPE-MAP Condition bit from type map = 1

2. <EPn>. Spccilies the “emit-predicate™ for destination n. If equal (o one, a token is
emirted only when the specificd condition code is true. If equal 1o zero, a token is
emitted only when the specificd condition code is false.

3. <FTn>. Spucifies the form-token operation for destination n. The ALU outputs two
results: the ALU output (or opcrand A, as controlied by <M>) and operand B. These
results can be combined with the tags computed by the destination processing o make
tokcens of the structure Tag:Datum

FTn ne=1 n=2

o Tag1:ALU Tag2:ALU ; Normal

1 Tagl:d Tag2:8B ;: Operand B
2 ALU:Tag1l B:Tag2 ; Send Tag
3 ALY:8 B:ALU : Send Data

Note that <FT1> and <FT2> arc independcntly specifiable.

6. Proposed Pipeline

The proposed pipeline block diagram is show in figure 6-1. All pipeline stages run at the same
rate with a single wait-match interlcave. This limits ALU utilization to a maximum of 50 percent
for purcly dyadic instruction mixes.

Starting from a token entering the top of the pipeline:

1. Instruction Cache. The <S8> field of the incoming tag is trcated as local physical
instruction address. The 32-bit instructions fetched from the DRAM are cached in this
stage. Shift. The <R> ficld is barrel-shifted according to the <Map> yielding a local
physical data base address <R-Local>.

2. Instruction Decode. The fetched instruction’s <inst> ficld is decoded by table-lookup
(512 entries) to yield a nanoinstruction. The nanoinstruction spccifics control for each of
the subsequent pipeline stages. Effective Address. The <(R-Local> is added to the
instruction’s <r> ficld to yicld a physical data address. If the instruction specifies a
LITERAL operand then the physical data address is generated by adding <$> and <r>.

3. Presence Bits. The effcctive physical data address selects two presence bits from high
speed memory. tThe nanoinstruction specifies a state transition table from the current
presence state to the next presence state, using the incoming token's <Port> bit as
input. The state table also specifies the operation to the data slot (read, write, exchange)
and whether the current instruction should be aborted (ie, no partner) after the data
cache operation.

4. Data Cache. The effective physical data address selects a word from DRAM and the
presence bitls stage provides the operation on this word. ‘The full 72-bit data words are
cached in this stage.

5. ALU/FPU. A vanilia 64-bit ALU and Floating-Point Unit. There are few special
operations to deal with the structure of tags. but otherwise routine. Form Destination. A
trivial calculation of two result tags computed by adding the incoming token's <S> field
to the <s1> and <s2> spccificd in the instruction’s destination list. View this as a
function unit parailei to the ALU that is specialized for simptle tag arithmetic.

6. IForm Token. The zcro. one, or two output tokens are formed by concatenating tags with
data. Usually the tags are obtained from Form Destination and the data from the
ALU/FPU, but most any compuosition is allowed. The Form Token stage can emit up to
two tokens per step. One (oken can be designated queued which causes it to be
enqueucd onto the wken queue. The other token may be specified as direct, which is
immcdiatcly submitted to the instruction cache. The default for single-output
instruction is direct.

7. Token Queue. In a given timestep the token qucue either receives a token from the
Form Token stage or the Net. or sends a token to the instruction cache, or is idle.
Normally. the token queue is enqueueing during two-destination instructions, is idle
during single-destination instructions, and is dequeuing to fill pipeline gaps (that is
when an instruction was aborted during wait-match).

Token = <Mup, Port. S. R, Damp

S & R. Map ‘ { Dava, Port A
Instruction _
Shifl
> Cache Shift D
Inst 4—‘ r l
\ 4
Eilective
Decode Address R-local D
Nano-Instruction | ll)"m Address
Yy v v
Presense Port '
» Bits ¢ b
l) I Dara
\- : :
DRAM D Data D
(2 MWords)/—<+ — Cache
j . Data Dara
NuBus —a—p X-Over Tokesr
mml OpC o Queue
Form f
Destination
| Dests | Net NuBus
3y v ¢
Form
‘Token
Queued Token + + Direct Token
» Net

Figure 6-1: Proposed Pipeline Block Diagram

