MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

SIMPLE: Part 1
An Exercise in future Scientific Programming

Computation Structures Group Memo 273

July 1987 |

Kattamuri Ekanadham
IBM T.J. Watson Research Center

Yorktown Heights, New York

Arvind
Laboratory for Computer Science
Massachusetts Institute of Technology

Cambridge, Massachusetts

Simultaneously published as IBM/T.J. Watson Research Center Research Report
12686.

This report describes research done at the Laboratory for Computer Science of the
Massachusetts Institute of Technology and at TBM. Funding for the Laboratory is

provided in part by the Advanced Research Projects Agency of the Department of
\ Defense under the Office of Naval Research contract N00014-84-K-0099.)
L

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

SIMPLE: Part 1
An exercise in future scientific programming

Kattamuri Ekanadham
IBM T.J.Watson Research Center
Yorktown Heights, New York

Arvind
Laboratory for Computer Science
Massachusetts Institute of Technology
Cambridge, Massachusetts

July 1S, 1987

Abstract

Ideally, a high-level language should provide a way of writing abstractions which are as close to the problem
domain as possible, as well as facilitate efficient implemensations of these abstractions lest a user try 1o 'get
underneath" the abstractions. With the advent of parallel machines, a language such as FORTRAN fails on both
courts. Functional and other declarative languages allegedly offer relief on both counts. The use of higher order
functions, including the free use of curried forms, can dramatically raise the level of programming. In addition,
such languages often have straight-forward operational semantics which admits tremendous opportunities for parallel
execution. Programs in declarative languages, thus eliminate the probiem of "detecting parailelism". In this report
we have examined the first pant of this claim by writing an application known as the SIMPLE code in a language
called Id Nouveau [5]. The issues of parallelism will be examined in a companion report, Part II, to be published
later. We have presented a high-level description of the algorithms used in the hydrodynamics problem, called
SIMPLE, as described in [4]. Corresponding Id Nouveau program fragments are derived from the mathematical
descriptions. The emphasis is on the style of programming, and not on algorithmic cleverness. The resulting
program has 550 lines and runs successfully in ID WORLD [6], which is a compiler for Id Nouveau together
with an abstract simmslation facility for a dataflow machine. This report presumes the knowledge of Id Nouveau,
functional programwing and I-structures. Readers can obtain sufficient knowledge of Id Nouveau by reading [1].
A more thorough disgussion of I-structures, a novel data structuring facility, may be found in [2].

1. Introduction

Fortran, in spite of its lack of support for user-defined abstractions, has remained the overwhelming
choice of scientists and engineers. This may have to do with the availability of excellent Fortran
compilers on a variety of computers, notably supercomputers, and the inertia of users and manufac-
turers. However, the introduction of parallel machines has exacerbated the programming problem
enough that users may be willing to accept radical alternatives to Fortran. The alternative that is
being put forth by the Computation Structures Group at M.LT. is a declarative language called /d
Nouveau [5]. Id Nouveau is the preferred language for programming the dataflow machine under
development at M.LT. In addition to the requirement of generating goed code for parallei machines,
Id Nouveau is also supposed to embody the advantages of declarative programming, that is, clear and
concise code that is easy to understand and reason about. Functional languages are said to offer some
of these advantages and indeed, very compelling arguments in faver of them have been made by
Backus [3] and Turner {7]. However, functional languages have traditionally lacked good facilities for
manipulating arrays and matrices; simulating such structures using traditional functional data structures
often results in excessive storage demand or unnecessarily sequential code [2). Id Nowveau is a
functional language augmented with a novel array-like data structure called I-Srructures. The objective
of this report is to examine the coding of a non-trivial application in Id Nouveau, We want to evaluate
the use of higher-order functions and I-strucrures in writing scientific programs; do such features bring
clarity and succinctness to programming? At the same time we want to examine the efficiency of
the resulting program in terms of storage use and parallelism.

The application we have chosen for our study is a hydrodynamics and heat conduction simulation
program known as the SIMPLE code [4]. The SIMPLE document [4], along with the associated
Fortran program, was developed as a benchmark (unclassified) to evaluate various high performance
machines and compilers, including dataflow machines then under study at MILT. and eisewhere,
Though SIMPLE is supposed to reflect some "real application”, it is contrived to reflect a more
complex mix of numerical methods than the usual problems in that class. For example, the hydro-
dynamics part uses an explicit method so that the new values for a zone depend only upon the
previous values of that zone and its 6 neighbors. Whereas the conduction part uses an implicit method,
so that the new temperature of a zone depends on the previous values of all zones in the mesh. In
our study, we are neutral to the physics of the problem and even to the numerical algorithms chosen
to solve the problem. Our goal is to see if the ideas can be expressed easily in Jd Nouveau and if the
resulting code preserves the parallelism of the algorithms employed. A good test of the succinctness
of the code would be the ease with which a discriminating physicist can adjust the algorithms and
code to his/her own specifications,

It is worth pointing out that, prior to starting this work, we were very familiar with the SIMPLE
code, having written several versions of it in several earlier versions of Id. However, previous versions
of SIMPLE in I/d were written with the primary motivation of generating dataflow graphs and
measuring parallelism and other quantities of interest from the dataflow architecture point of view.
The program in this report, Part I, represents our first attempt at trying to write SIMPLE at a fairly
high level of abstraction. Part II of this report, which is still under preparation, will document the
parallelism of this program and contrast it with the parallelism measured in the earlier and lower-level

versions of the program. This report presumes the knowledge of functional languages, I-structures and
Id Nouveau syntax. It is assumed that the reader has read {1] which provides an introduction to fd
Nouvequ and a critical analysis of imperative style programming. A comprehensive treatment of Id
Nouveau may be found in [2,5].

1.1. Problem description

The problem is to simulate the behavior of a fluid in a sphere, using a Lagrangian formulation
of equations, To simplify the problem, only a semi-circular cross-sectional area is considered for
simulation, as shown in Figure 1. The area is divided into parcels by radial and axial lines as shown.
Each parcel is delimited by four corners as illustrated in Figure 1. The corners are called nodes. The
regions enclosed by 4 nodes are called zones (llustrated by the shaded area in Figure 1). In the
Lagrangian formulation, the nodes are identified by mapping them onto a 2-dimensional logical grid,
in which the grid points have coordinates (k,/) for some kmin < k < kmax, Imin <[<Imax. A zone is
identified by specilying its southeast corner node. The product, kmax* Imax, is often referred to as the
grid size of the problem. The following quantities are considered in the simulation. Note that the first
two quantities are associated with nodes and the remaining are associated with zones.

v o velocity components, u, w, of node {k,l) in the R-Z plane,
: coordinates, r and z, of node (k1) in the R-Z plane.

: Area of zone (k).

: Volume of revolution per radian of zone (k,l).

: Density of zone (k,l).

: Pressure of zone (k).

: Artificial Viscosity of zone (k,I).

: Specific internal energy within zone (k).

: Temperature of zone (k,l}.

WA RWN e
DO OTD PR N

The main computation involves the determination of changes to the values of the above listed attributes
as time progresses in discrete steps. The length of each time step varies and is determined from some
of the attributes of the previous step.

1.2. Boundary Considerations

In order to incorporate appropriate boundary conditions, a fictitious layer of zones, called ghost
zones, is added to the cross section, as depicted by the shaded area in Figure 2. Behavior of ghost
zones is governed by desired boundary conditions. Each quantity is associated permanently with one
of the following 3 types of boundary conditions. Each time new boundary values for a quantity are
computed according to the associated criterion.

1. Constant boundary: The temperature of the boundary zones is kept at a constant value (heat source},

2. Continuous boundary: The ghost zones assume the area, volume, pressure and artificial viscosity
of the adjoining zones, so that the effect of an infinite sequence of zones is created.

3. Reflected boundary: The positional coordinates of the nodes of the outer boundary of ghost zones
are computed so that the ghost zone is a mirror image of the adjoining zone.

Azis of
Rotafion 4

k=10 ——

k—1,i-1—

k=kmin 1
k=knvin+1 1
lemkmin+2

k=kmazr

Figure 2; Ghost zones added for boundary conditions

2. Some Basic Programming Abstractions

In this section, we describe very briefly some of the basic abstractions that are used repeatedly,
For subtleties about automatic unravelling of loop iterations, I-structure operations and execution
sermantics, the reader should refer to [1,5,2]. The notation used in this paper is actual Id Nowveau
syntax, except at times for brevity (and to relate to the SIMPLE document [4]) greek symbols are
used as identifiers and exponents are written as a®, instead of a* b. They can easily be translated
into appropriate syntax. The text between a percentage sign, %, and the end of that line is a
comment. Key words and some standard function names are shown in bold face. The key word fim
is used to define a function in place - a kind of A-expression. Thus for example, {fun x x+ 1} denotes
the successor function.

2.1. Neighborhood Abstractions

Here we define functions frequently used in the SIMPLE program to refer to the nodes and zones
that surround a given node. In [4], the neighbor nodes are numbered 1 through 8. Here we define
direction using names such as north, south, etc. for convenience. The neighbor zones are defined as
specified in [4].

Neighboring nodes: The neighboring nodes of a given node, (k,/), are referred to by the names shown
in Figure 3. The following functions define them.

(1)
north (k1) = (k-11); farnonth (k1) = (k-2,1); northwest (k) = (k-11-1);

south (k1) = (k+1,1); Jarsouth (k1) = (k+2,1); southwest (k1) = (k+1,I-1);
east (k) = (kI+1); fareast (k1) = (k,1+2); northeast (k.I) = {k-1,1+1);
west (k1) = (kI-1); farwest (k1) = (k1-2); southeast (k,l) = (k+11+1);

Neighboring zones: A zone is logically referred by giving the indices of its southeast corner. Thus
for example, the zones (i, /min), (i,/max+ 1), kmingi<kmax+1 and (fomin,j), (kmax+ 1,)),
Imin € j € Imax + 1 are the ghost zones. For each node, the 4 neighboring zones are named 4, B, C,
D, as shown in Figure 3. For example, zone B of node (k) is referred to by the indices of its
southeast corner, namely (k+1,/). For convenience, we define the following functions:

(2)
zone_a (k1) = (k1) zone b (ki) = (k+11);

zone_c (k1) = (k+1,1+1); zone_d (k1) = (I+1);

Index ranges for all modes and zones: The computations involve calculations repeated over selected
regions of the matrices. We define the following names to represent the index ranges of interest.
Thus for example, when we set up a loop so that (i,j) iterate over the range all_nodes, the iteration
will take place over all the nodes of the grid specified by the limits in the following definition.

T+ZDUY

DUy

north boundary

T+ Uy

upy

T=upug

Jarrorth

C

south boundary

e N/
X%

(LM
37),

(S eCe
e vam.va.

Figure 3: Logical naming of fluid parcels and their relative positions

(3)

{imin-1,Imax+ 1));

{tkmin-1, kmax+ 1),

interior nodes

all nodes =

(Imin, Imax));

((kmin, kmax),
{tkmin, kmax+1),

all zones

{(tmin,imax+ 1));

interior zones

{tkmin+ 1, kmax), (Imin+ 1 Imax));

as indicated by the shading patterns

ways of looking at boundary zones are defined in the programs later, as needed.

Index ranges for bosmdary zones: There are many ways one can view the boundary zones. Here we
define the segmenty for reflecting the neighboring zone properties,

in Figure 3. Other

(4)

(kmin+1, kmax+1), (iminImin));

_zones =

ndary.
ndary_zones

west bou

{tkmin+ 1, kmax+1), (Imax+1imax+1));

((krmin, kkmin),

east_bou
north _bou

{imin,Imax+ 1));

ndary_zones
south_boundary

(Imin+ 1, Imax));

1, kmax+1),

{(lermax+

_z0nes =

2.2. Functions to manipulate matrices

A matrix is created using a generating function as follows:

make _matrix ({i1,ul), (12,u2)) generate = (5)
{ A=matrix (({1,ul), (12, u2));
{for i from Il #o ul do
{for j from 12 fo u2 do
AL, j] = generate (i, /) }};
in A};

Sometimes we create two matrices together as shown below, when the computations for corresponding
elements share some common expressions. The generator is a function that returns a pair of values.

make_2_matrices ((11,ul), (12, u2)) generate = (%)
{ A= matrix dimensions;
B = matrix dimensions ;
{for i from I to ul do
{for j jrom 12 o u2 do
A[ijl, Blij] =generate (i,))}};
in A, B};

Some times we create matrices using one generating function for boundary nodes and another for
interior nodes. This abstraction is defined by the following functions.

fill_matrix A ((1,ul), 12,u2)) f = (@)
{for i from 11 to ul do
{for j from 12 fo u2 do
Alijl=f GO,

make_matrix_2_ranges dimensions ((rangel, f1), (range2, f2)) = (8)
{ A = matrix dimensions M
call fill_ matrix A rangel fI;
call fill_matrix A range? f2;
in A

One can generalize the above notions and define make_n_matrices, make_matrix_k_ranges and
make_n_matrices_k_ranges, for various values of # and k. All the matrix functions used in this report
are particular cases of these abstractions, with suitable values for n and k.

The Following are some functions to perform reduction on matrices.

fold_row operator (i, 11,ul) generate = (9)
§ s=generate (i Il1);
in { for j from 11+ 1 fo ul do
next 5=operator 5 (generate (i,)));
Sinally 5}%;

Jold_range operator ((I1,ul), (12, u2)) generate= (10)
{ 5= fold_row operator (11,12, u2) generate;
in §{ for i from Il + 1 fo ul do
next 5= operator s (fold_row operator (i, 12, u2) generate);
finaily s}};

fold_2_ranges operator ((rangel, f1), (range2, f2)) = (11)
operator (fold_range operator rangel f1) (fold_range operator range? f2);

accumulate = fold_range plus; (12)
accumulate 2 _ranges = fold_2_ranges ples;

minimum = fold_range min;

maximum = fold_range mamx;

Similarly one can generalize the above abstractions and define accumulate_k_ranges, minimum_k_ranges
and maximum_k_ranges for various values of k. Finally we give a few simple abstractions:

determinant (@, b) (c.d)=a*d—b*c; %o returns the value of (13)

ac
:
constant x y=x; % returns first argument
select direction A node=A | direction node] ; % returns neighboring element
select_3 direction (A, B, C) node =

A [direcrion node), B[direction node], C|[direction node];

3. SIMPLE code

We now describe the details of the hydrodynamics problem and develop the corresponding Id
Nouveau programs. First we provide an overview of the main computation which gives the main body
of the program that is iterated many times. Later, we discuss the details of each of the computational
steps and derive the corresponding definitions, '

3.1. Overview of the computation

Equation {14) on page 9 shows the skeleton of the main computation. The comments indicate

subcomputations. The symbol ¢ stands for some function of the indicated variables. A complete
program is formed by replacing the boxes with the appropriately numbered definitions.

From the main loop body in equation (14), we can see that each step needs some data from the

preceding step. In spite of this, one should note that the program has plenty of parallelism, as the
use of I-structures gives the flexibility to return an array descriptor before the array is actually filled
in. The evaluation of certain attributes are grouped as shown, to take advantage of shared computations
in them. The steps are as foliows:

1.

The new velocity at each interior node is determined by computing the acceleration at that node
and correspondingly incrementing the old velocity. The velocity vector, v, is represented as a pair
of matrices, ¥ and w, giving the two component velocities.

. Similarly, the new positional coordinates are obtained by incrementing the old coordinates. The

increment is the product of the corresponding new velocity and 8. The position vector, x, is
represented as a pair of matrices, » and z, giving the two component coordinates,

The new area, volume and density of each zone are determined by geometrical approximations
from the new coordinates of the nodes. The three computations share common subcomputations
and hence are performed together.

The artificial viscosity is a fictitious quantity, to take into account the internal fluid properties of
the mass in motion, It is a function of position, velocity and density.

The pressure, temperature and internal energy are interrelated by equations of state, For accuracy,
they are computed twice, first by an approximation and then refined by substituting their values
in the equations to yield better approximations, Once again, these three quantities share common
expressions and hence are computed together.

The final temperature of the zones is computed from the heat conduction equations. This involves
solving a system of linear difference equations. For the sake of efficiency a number of intermediate
values are stored in temporary matrices during this heavy computation.

As a check for balance of energy, the change in energy is computed by determining the work
done, heat lost and changes in internal and kinetic energies. The balance is checked to be within
tolerance limts. (This check is not shown here.)

Finally & for the next time step is computed. This is determined by taking a minimum over the
temperature changes at each zone and by limiting it so that a sound signal cannot cross any zone
within that time step.

% Main program (14)

{ % basic abstractions
[equations (1)-(13), (21)-(22), (24}, (33)-(35)]

% Initialization code not provided here
% constants = index ranges, polynomial coefficients, mass, conductivity, heat source
% variables = 81, u, w, 1,2, p, ¢, 5, error, @, p, &, 0

in {for i from I to maximum_iterations do

% select components for convenient access
W=V, rz=X; new_u, new_w=next v, new_r, new_z = next Xx;

% velocity computation: new_v=¢(x, p, a, p, q, v, 61)
next v=1{ [equations (I3)-10) | in new vi;

% positional coordinates: new_x = ¢(x, new_v, 8t)
next x= { | equations (20), (Z3) | in new_xi;

% area, volume, density: new_a, new_s, new_p = ¢(new_x, p, §)
next o, next 5, next p= { | equarions (25)-(26) | in new_a, new_s, new p };

% artificial viscosity: new_q = ¢(new_x, new_p, new_v, p)
next g= { [equations (27)-(28) | in new_q};

% pressure, temperature, energy: new_g, interim_8, new_p = ¢(p, new_p,new_q, p, €, 8)
next ¢, interim_0, nmext p= {[equations (20)-032)] im new_e, interim_8, new p };

% heat conduction: new_8, r k, r_I= ¢(new_a, new_x, interim_0, 81)
next 8, F_k, 7_Iw {| equations (36)-(4]) } in new 0, ¥ k, F I},

% energy check: error = ¢(new_x, new_v, new_p, new_gq, new_e, new_8, &, r_k, r_I)
next error= § [eguations (42)-(31) | in error};

% time step: new & = ¢p(new_x, new_p, new_p, new_a, new_g, 8, new_6, 8)
next 8t= { [equasions (02)-(06) | in new_ &t };

fimdly x v.p g a 5 p, € 88 erorl}l

3.2. Velocity Computation

The velocity at each node is computed by first computing the acceleration at that node during
the time step and incrementing the old velocity by the product of time and acceleration. The
acceleration is obtained from the following equation for conservation of momentum:

dv p+q) » dp+q) ~
Y at T T =0

where, 7 and z are respectively the unit vectors in the r and z directions. Using Green's theorem
the partial derivatives are approximated as line integrals shown below:

_tf Cra . $o+aar,
g
We can rewrite the equation to give the two components of the acceleration as follows:

i3 _§<p+q)¢z §(p+q)dr ~§ paz- 3§qdz $pars §qar
R e o) R S

z=0

Tige
Tt

|)
|,.|,t"|'

Figure 4: Mass and acceleration at a node

10

In the numerator, the line integrals are to be taken over the boundary line of the shaded region
around node (k,/) shown in Figure 4. The line has four segments, 4, B, C, D, one in each of the
neighboring zones of node (k,/). While integrating, it is assumed that each zone quantity is constant
along the line segment within that zone. Thus for example, suppose we are integrating p with respect
to z, along line 4. Its value is given by the product of p in zone 4 and the difference of z between
the two end points of line segment 4. That is, p[k, /] *(z[k,/—1] —z[k~1,1]). In general, if
we have two quantities represented as matrices f and g, and we want to integrate f with respect to
g along the shaded region around some node, we can define the following line integral function:

line_integral f g node = (15)
flzone_a rode] * (g[west node) — gl north node]) +
flzone b node] * (g[south node] — g[west node]) +
flzone ¢ node] * (gl east nodel — g[south node]) +
flzone_d node} * (g[north node] — gl east nodel);

In the denominator, the line integral @m‘z, gives the area of the shaded area around the node (%.J)
in Figure 4. The product of this area and the density p gives the mass in the shaded region. Instead
of computing the line integral, this mass around the node is obtained in an alternative way, by
approximating it as one half of the total mass of the 4 zones meeting at node (k,!). The mass of each
zone is taken as the product of its density and area. Thus, we can define the following function for
computing the denominator:

nodal_mass node = (16)
0.5%(plzone_a node] *alzone_a node] +
plzone b node] *alzone_b nodel +
plzone_c node] *alzone_c node] +
plzone_d node] *alzone_d nodel);

Substituting appropriate applications of the above functions for the numerator and denominator, we
obtain the following function to compute the two components of the acceleration at a node. We
choose to define one acceleration function to yield a pair of values, (as opposed to a separate function
for each component), so that recomputation of the common denominator is avoided.

acceleration node = (17
{ dm nod:ll_rrms node;
nl e —(line_integral p z node)—(line_imegral q z node);
n2 = (line_integral p r node) + (line_integral q r node);
in (nl/d, n2/di;

The velocity at a node is now given by:
velocity node = (18)

{ u_dor, w_dot = acceleration node;
in ulnode] + 8 * u_dot, wlnode] + 8t * w_dor};

11

The new velocity matrix is now created and filled by:
new_v=make_2 _matrices interior_nodes velocity; (19)

Note that new_v is a pair of matrices, (4, w), representing the two component velocities. Alternatively
one could build rew_v as one matrix in which each element is a pair of values giving the two
component velocities, However, in this case each time a component value has to be used, first the
pair must be selected in the matrix and then the component in the pair must be selected. We prefer
building two matrices because, later, we use each component matrix separately in many computations.
The velocities at nodes on the ghost boundary are never used and hence we do not compute them.

3.3. Positional Coordinates

-
For the interior nodes, change in position is given by the equation: ax _ 3 =0. Thus, the
new coordinates of interior nodes are given by: a
position node=r[node] + 8t *new_u(node], z{node} + 8t*new wl node]; (20)

Strictly speaking, the time intervals & in the two definitions (18) and (20) are different. The
acceleration, velocity and positional coordinates are computed at staggered intervals of time as depicted
in F:gure 5. Position and acceleration are computed at discrete time instants 1, ,1,,%n,, ..., Whereas

velocity is computed at intermediate time instants £, ,,, 1, n+1/2: - LThe relationships are given by the
equations:

Upy1/2=Uy_1/2+ D0, %0,

Tny1=Tpt+ 4 n+1/2 “n+1/2

n~1 n n+l

tn-uz tnu‘z

time

& l\/ At;'zﬂ/z

l!—w un uaﬂﬁl

I:'.l—.l. ;'l rn+.l

Figure §5: Staggered time instants for computing velocity and position

12

The value for At,,,,, is computed using the functions described later in section 3.9. The value of At,
is taken to be the average of A1, ., and At,,,,,. However, for the sake of simplicity in this report,
we ignore the distinction between A, and Az, ,,,, and use &t in place of both of them.

The coordinates of the nodes on the boundary are set in a special manner. In each step, the
ghost boundary zone is set up so that each node on the ghost boundary is a reflection of the adjacent
interior node with respect to the boundary line as shown in Figure 6. The shaded zone is a ghost
zone. B is a node on the ghost zone and A4 is a corresponding node on the adjacent interior zone.
Nodes O and C are on the boundary line between 4 and B. The coordinates of B are set such that
B is a mirror image of A4 with respect to the line OC. From the construction of Figure 6, we can
see that

OB+ OA=0OD=2"0FE

- - - -
OE « (projection of OA onto OC) * (unit vector along OC)

OB + O = 2+104:09) . _0OC
loC| loc|

- - » . -

Goem gt (2201260) . 5
loC|

Interior
Zone

Boundary
Zone

Figure 6: Coordinates on the boundary by node reflection

13

It (Ry, Z3), (Rp, Z3), (Re, Z;) and (R,, Z,) denote the coordinates of 4, B, C and O respectively,
then we can express the vectors as

- R —R - R —R i R, —R
Od = a 0 C = ¢ 0 OB = b (1]
[Za'ZO] ¢ [ZC"Zo] [Zb_’ZO]

Substituting for the difference vectors and rearranging the terms, we can define the following function
to compute the coordinates of the node on the boundary zone:

boundary_position (R,,Z,) (R.Z) (R, Z)= (21)
xR R R—R) + (2,~2)* %~ 2) |
(R,- R+ (Z,-2,)
Ry=R,— (R,—R)+w*(R.—R) ;
Z,=2,—(Z,-Z)+w*(Z -2);
in (Ry, Z,) };

f o=

The manner in which the nodes O, C and 4 are chosen is different for each boundary node B. The
circles around Figure 7 schematically show the patterns in which nedes O, € and 4 are chosen to
compute the coordinates of each B. For example, consider the top left corner pattern. Node B is
the grid point (kmin-1,imin-1). Corresponding nodes O, C and A are the grid points {kmin,imin),
(kmin,Imin-1), (kmin+ Limin-1) respectively. We can abstract this relationship using directions: f (%,{)
are the indices of node B, then the indices of nodes O, C and A are given by southeast (k1) south
tk.l) and farsouth (k.l) respectively. Thus, the three functions southeast, south and farsouth completely
specify how reflection should be done to obtain the coordinates of the top left corner node. In general,
for each boundary node we associate three functions, f,, f, and f,, which characterize the reflection
pattern for that node. When they are applied to the indices of a boundary node B, they give the
indices of the corresponding nodes, 0, C and A. Using them the boundary coordinates are defined by:

reflect (r.z) f, f, f, node= (22)
(rlf, nodel, z[f, node}). (r[f, nodel, :z[f, nodel), (r[f;, node], Z{f_', node1);

Thus for example, the coordinates of node B in the top left pattern in Figure 7 are given by

reflea (r,z) southeast south farsouth (kmin-1,Imin-1)
From Figure 7 we can see that there are 12 different patterns for boundary reflection (4 on the
north boundary, 4 on the south bondary, 2 on east boundary and 2 on west boundary). The new
positional coordinates can be defined as follows. The name wusing is defined below just for convenience

to avoid repeating the partial application over and over, Its arguments suggest that the newly computed
coordinates must be used in the reflection,

14

tmin+l

kEmin—1

kmin

Emintl

Figure 7: Reflection patterns for computing boundary node coordinates

using = reflect new_x; (23)
new_x =make_2_matrices_13_ranges all_nodes
((interior_nodes, position),
% on the north boundary
(((kmin-1,kmin-1), (Imin-1,Imin-1)), using southeast south farsouth),
(((kmin-1,kmin-1), (IminImax-1)}, using south southeast farsouth),
{((kmin-1,kmin-1), (Imax,Imax}), using south southwest farsouth),
{((kmin-1,kmin-1), (imax+1,imax+ 1)), using southwest west Jarwest),
% on the south boundary
{(tkmax+ Lkmax+ 1), (Imin-1,imin-1}), using northeast east Jareast),
(((kmax+ Lkmax+ 1), (Imin,imax-1)), using north northeast farnonh),
((emax+ Lkmax+ 1), (Imax,imax)), using north northwest farnorth),
(((kmax+ Lkmax+ 1}, (Imax+ Limax+1)), using northwest west Jarwest),
% on the east boundary
{((kkmin,kmax-1), (Imax+ 1,Imax+ 1)), using west southwest farwest),
{((kmax,kmax), (Imax+1,max+ 1)), using west northwest farwest),
% on the west boundary
{((kminkkmax-1), (Imin-1,Imin-1)), using east southeast fareast),
{((kmax,kmax), (Imin-1,Imin-1)), using east northeast fareast));

15

Notice that the above definitions are mutually recursive, as using and new_x are used in each other’s
definitions.

3.4. Area, Volume and Density

The area of each interior zone is approximated by the two shaded triangies shown in Figure 8.
We know that the area of the triangle is half the magnitude of the cross product of the two vectors
representing two sides of the triangle. The magnitude of the cross product is the determinant of the
matrix formed by the two vectors. Thus for example, the area of the lower triangle in Figure 8 is
given by half of the determinant

(R[k 1} -R[k!-1]) (R[k-LI]-Rik})
(ZIk1) -Z[k1-1])) (Z[k-11]1~Z[kI])

The function to compute the area and volume of a given zone is shown below. Given the
coordinates of the three vertices, the function, rrigangie computes the area of the triangle. The next
three equations compute the area as the sum of the areas of the two triangles. The subsequent
equations compute the zone volume per radian, when the zone revolves around the Z-axis. Again this
is the sum of the volumes generated when the two triangles revolve. The volume generated by a
triangle, is approximated by 2« F A, where 7 is the average of the R-coordinates of the three vertices
of the triangle and A is the area of the triangle.

(k—1,1-1)

Figure 8: Approximation of zone area and volume

16

area_volume (r,z) node= (24)

{ difference pl p2=(r[p2} —ripi]l. z[p2) -:z[pl}])
triangle vl v2 v3=0.5* (determinary (difference vl v2) (difference v2 v3));

lower_area = triangle (west node) node (north node);
upper_area = triangle (west node) (north node) (northwest node);
area = upper_area + lower_area;

lower _radius = (r[west node) + r{node] + r{north nodel)/3;
upper_radius = (r{ west node] + r{ north node) + r[northwest nodel)/3;
lower_volume = lower _area * lower_radius;

upper_volume == upper_area * upper_radius;

volume = upper_volume + lower_volume;

in area, volume };

. . d
The density of a zone is computed from the mass conservation equation: (¥ = (. The new
density is given by density * wlume / new_volume. For a ghost zone, all the thréll quantities, area,
volume and density are set the same as those of the adjoining zone. Hence we get:

area_wolume_density node = (25)
{ area, volume = area_volume new_x node;
density = p[node] *s[node) / volume;
in area, wlume, density };

new_asp = new_a, new_s, new_p; (26)
new_a, new_s, new_p = make_3_matrices_5_ranges all_zones

{ (interior_zones, area_wolume_density),
(north_boundary _zones, select 3 south new_asp),
{south_boundary _zones, select_3 north new_asp),
{west _boundary_zones, select_3 east new_asp),
{east_boundary_zones, select 3 west new_asp))

3.5. Artificial Viscosity

The artificial viscosity is given by the formuta
-2 —2 —2 _
AL TR I L T Y RART Yo

where C%: 1.5, C4=0.5, C4is the speed of sound in a zone given by yp rho / and other quantities

17

are as defined by the following equations:

viscosity node = (27)
{ mean_k_difference f=0.5"((f{node] — flnorth node}) +
(f[west node] — flnorthwest rodel));
mean_1_difference f=0.5*((fl node] ~ f[west node]) +
(flrorth node} — f[northwest nodel));

Ar = mean_k_difference new_r; Az = mean_k_difference new_z;

Au = mean_k_difference new_u; Aw = mean_k_difference new_w,
8r=mean_[difference new_r; 8z = mean_|_difference new_z;

Su = mean_[_difference new_u; Sw = mean_I_difference new_w;
$=Ar"Ar+ Az*Az; n=8r*dr4 8z%8z;

8a = determinant (Ar, Az) (Su, éw); Ag = determinart (Au, Aw) (81, 82) ;
&b = if 8a <0 then 82™8a else O; Ab = if Aa< 0 then Aa™* Aa else Q;
du=8b/¢; Au=Ab/7;

d =55+ Bu; vy =1.666;
ca=y*plnode] / new plnode] ; c=15%d+05%c a*(sqrt d) ;

in new_plnodel *c };

As before, we simply copy the viscosity for the ghost zones from the neighboring zones and get the
following matrix for viscosity:

new_q = make_matrix_5_ranges all_zones (28)
((interior_zones, viscosity),
(north_boundary zones, select south new_g,
{south_boundary_zones, select north new_gj,
fwest_boundary _zones, select east new_g),
{east_boundary zones, select west new_gj);

3.6. Pressure, Temperature and Energy

The three quantities p, # and e are related by the following equations:

de+{p+)d'r 0 izz:A i of _
ZtErIG=0 =33 4;0¢ p=3

2
imQ j=0 s

2 N .
2. Byp'¥
=0

where 7 is the reciprocal of p and 4; and B;; are coefficients of two polynomials in p and 8. These

18

are used to compute energy and pressure, respectively. Given initial p,q, ¢, p, the values of ¢, 8,p are
updated as follows:

1. Energy is updated using the difference approximation to the first equation, namely,

';—e-:— (p+q)"‘d'r.
2. Then the new temperature is obtained by rewriting the second equation as

2 2
8@)=e—> > 4,5 0=0
im{ jed
The new temperature is the zero of the above equation, which is obtained by the Newton-Raphson
iterative method where the successive increments to & are computed from

g(e,) &(0 + increment) — g()
=%y e
n

3. Finally, by substituting the above value of temperature, the polynomial in the third equation is
evaluated to yield the new pressure,

The following function performs this computation at any node:
etp triple ¢ p dr 6 p 0= (29)
{ t=e—(ptq) *dr;
8 = inverse_polynomial EP & p 6;
; = polynomial PP p 8 ;
in (z, 8, p) &
where EP and PP are constants that yield the coefficients of the two polynomials. The functions
polynomial and inverse_polynomial and the constants EP and PP are described later. For better accuracy,

a predictor-corrector method is used, so that these three quantities are estimated first and recomputed
as defined by the following function:

energy_temiperature_pressure node = (30)
{ haep triple new_qlnode] new_plnodel (I/new p[node]l —1/p[nodel);

% 0, p=h clnode] plnode] 8[node];
P=(plnode] +p)/2;

A - ~
5 8, p=ht 5 8;

n 61

19

For the boundary zones, the pressure is copied from the adjacent interior nodes, as before. The
internal energy of boundary zones is never used, but we assign it zero value (so that we do not have
to write separate equations for them - it does not have to be this way). The boundary temperature
is kept constant, to simulate the effect of a constant source (so that no heat is lost due to finite
boundary being simulated). Hence, we have the following definitions:

boundary etp direction node = (31)
(0. constant_heat source, new_p|[direction node});

new_s, interim_8, new_p=make 3_matrices_5_ranges all_zones (32)
(({interior_zones, energy_temperature_pressure),
(north_boundary _zones, boundary_etp south),
(south_boundary_zones, boundary_etp north),
(west_boundary_zones, boundary_etp east),
(east_boundary_zones, boundary _etp west));

3.6.1. Polynomials

The polynomials are piecewise continuous and hence a set of polynomials are maintained. The
p-0 plane is divided into regions as shown in Figure 9 and each region is associated with a separate
polynomial. The regions are represented by two tables p-table and §-table. For instance, given a table,
we can determine the region of a given value by the function shown in definition (33):

P—TABLE

Figure 9: Representation of polynomials

20

region table vaiue = (33)
§ low, high=bounds table;
in if walue>table[high] them high+ 1
else { while (high>low) and (value < table{ high— 1)) do
next high = high — 1
finally high'} };

Here bounds is a function that yields the lower and upper bounds of the argument table. Using this
representation, the polynomials for ali the regions in the p-8 plane can be obtained from the tuple
(C, p-table, 0-table), where C is a matrix of matrices, so that C[i,j] gives the coefficient matrix, A,
corresponding to the (i, j)-th region in the p-8 plane. Thus, EP and PP are constant tuples of the above
form, giving the corresponding values for the polynomials for energy and pressure respectively. A
polynomial and its inverse can be computed as follows:

pobynomial (C, p_table, 8_table) p 8= (34)
{ p_selector = region p_table p;
8_selector = region 6 _table 0;
A = Cl p_selector, 8_selector] ;
powers = ((0, 2), (0. 2));

in accumulate ((powers, {fun (i,) ALij]*p'*01 N}

inverse_polynomial w ¢ p 0= (35)
{ g 0=¢~(polynomial w p 0);
ermor=g 8: olerance= L.OE—6; increment=I1.0E~6;
in { while error> tolerance do
next error=g (8 + increment);
next 0= 8 — error *increment / (next error — error) ;!
Sinally 8 11};

3.7. Heat Conduction
The heat conduction equation in cylindrical coordinates is

ﬁﬁ-%[ii(,,a_ﬂ +g.(,a_a)]

08 & r or or oz az

where x (kappa) is the heat conductivity. Transforming into Lagrangian coordinates and omitting the
cross-derivative terms we get

21

o 30 _ I 2 rlﬁxllrgg_] rIAxIx‘_ag
o0 o pra ok a ak al o af

2 - - 2 - -

and x is the position vector and « is the area-jacobian of the zone.

- A
To obtain a differencg formulation, first we replace the derivative 88/ & with (0 — 8) / &, where &
is the time step and & is the new value of 8. New temperature is computed in two steps. The first
step is called k-sweep in which / is kept constant and k is varied. We use the notation, Ji to denote
the value of the function f at (k,]), / being a constant in the k-sweep. Thus, for the k-sweep, in the
above equation the second term (the derivative with respect to /) becomes zero. Assuming that the
k-difference 8k approximates to 1, we get:

A - 2 o 2
de 0 — 8 1 riAx |« A A r A% |'x A A
(5) 5% pra (_—"'_a Oppy =8 - | —4—— (0, —8;.)
* k k=1

By making the following abbreviations and substitutions,

m=prasdensity * radius * area = zonemass per radian

- 2
P (-’—.'i’iﬂ) = computed as described later
k

o= (%) — o::@m"” assumed constant for both k-sweep and I-sweep
k

A . A A - A A
we obtain o (Bk—ﬂk) = rp (ak+1—8k) - Fr_g (ok—ak__’)

A A A
Substituting for 8_;, a solution of the form @;_3=Agx_1* 0+ Br_1, we get the equation

A - A A - A A
0 (Op—0) =7 (Bryy—8p) ~ Fosy (Bp—(4_;* 8,4+ B;_))

Rearranging the terms and solving for the coefficients, 4 and B we get, ¥ 1 <k < kmax,

Ty Ty B+ o8,

= . By = - — " A—O. B=Oldmlueoﬂ
0+Fk+i:k—1 (1 —Ak-f) k o+ rk+rk_1*(1—Ak_1) 4 ! f

A

22

The term, 7, is expressed as a product of two terms ri;*r2;. The first term, rl; is defined
through an averaging process at each interface in terms of a matrix cc as shown below. The second
term is the cross sectional area of the interface between two zones and is expressed as the product
of the mean radius at the center of the interface and the square of the length of the interface segment,

as shown below:

1az)’ 2

- r X [4 - —_— -

e = (—-—__) =& ¢ 18% 1) = 7, * 73,
k

3

x[node] =.0001 8 node}’, cel]=xinode}
o
2*ce. * oo _ e+ n_
- K CCkt] 5, Tkt k-1 -((,k_,}_.,)z-;.(zk—zk..,)z). vi

YR S =
Tk T T Cores k 2

The expressions for the /-sweep are similar, except that subscripts k should be replaced by /. Figure
10 schematically shows the dependence of the various quantities in the computation of the final
temperature. ¢ and cc are pointwise computations and are used in both the sweeps. Hence, we first
compute them and store them in matrices as shown by definitions (36) thru (38).

—> T—>4,B—> O
l-sweep

Figure 10: Quantities computed in heat conduction

23

o = make_matrix interior_zones {fun node mass[node] * conductivity [node] / 8t}; (36)

interior_cc node = .0001 * interim_0 [node] 72 /new_alnode] ; (37)
cc = make_matrix_5_ranges all_zones (38)
({interior_zones, interior_cc),
(north_boundary _zones, select south cc),
(south_boundary _zones, select north cc),
{west _boundary_zones, select east cc),
{eawt_boundary zones, select west cc));

To abstract the repeated computation of 7,4, B, 8, consider the expressions for 7 in the two sweeps:

rlk 1]l +rik-11]

k-sweep: : (il —rlk=LI11Y + @I 1] —z[k-1,1])") *
some_mean_of (cclk. i), cclk I+ 1])
Lsweep: el +rll =21 i 1] = rh i~ 112 4 @k 1] —2[h I~ 11)0) *

2
some_mean _of (cclk I).cclk+ L11)

The expressions are computed for each node and involve the position coordinates of the node and its
preceding node. Also the values of cc of this node and adjacert node are used. (Later we use the
attributes of a successor node also.) The notions of preceding, succeeding and adjacert are relative to the
direction of sweep as shown in Figure 11. Let pred, succ and adj denote the functions that give the
indices of the preceding, succeeding and adjacent positions of a node, respectively, in a given sweep.

1-2 -1 2 -2 I-1 i i+1 ir2

k=2 k=2

m l-sweep

8L

E+2 k+2

k—sweep

Figure 11: Abstracting the directional features of a sweep

24

For example, in the k-sweep, pred (i,j) = (i — 1,). Using these functions, we can write the following
expression for 7 common to both sweeps:

r{node] + r[pred node)

3 * ((r[node] — r[pred node])2+(2[node}-z[pmd node])%) *

some_mean_of (ccnode), ccladj nodel)

Using this convention, conductance in any sweep is defined as:

conductance sweep node = (39)
§ pred suce, adi= sweep;
cross_section=0.5*(r[node) + r[pred node])*
(([node] — rlpred node])’ + (z[node) ~z[pred node])®);
cl=cclnode] ;
c2=ccladi node] ;
specific_conductivity = 2*cl*¢2 / {cl+ ¢2);
in cross_section ™ specific_conductivity }

Now the quantities r,4, B and # for each sweep and the temperatures can be computed as follows.

temperature sweep old_0 = (40}
{ pred, succ adj=sweep;
coefficients node =
{ d=olnode] + Flnode) + 7 pred node] * (1 —A[pred nodel);
ni=r[node] ;
n2=r[pred node] * B[pred node] + o[node] * old_8[node] ;
in (nl1/d n2/d) }

T = make_matrix_5_ranges all_zones

((interior_zones, conductance sweep),
(north _boundary_zones, {constant 0}),
(south_boundary_zones, fconstant 0}),
(west_boundary_zones, fconstant 0}),
{east_boundary_zones, fconstant 0}));

A, Bwm make_2_matrices_5_ranges all_zones

((interior_zones, coefficients),
(north_boundary _zones, tfun node (0, old_0[node])})
(south_boundary zones, {fun node (0, old_8[node])}).
(west_boundary zones, {fun node (0, old_0[node])})
{east_boundary_zones, {fun node (0, old_8[node]}}));

25

A
interior_temperature node =A[node] * 8 [succ node] + B[node] ;

A
8 = make_matrix_5_ranges all_zones

((interior _zones, interior _temperature),
(rorth_boundary zones, {constant heat_source}),
(south_boundary_zones, fconstant heat _source}),
(west_boundary zones, {constant heat_sourcel}),
{east_boundary_zones, {constant hear _source}));
A
in 8, F}
k_sweep = north, south, east; (41)

I_sweep = west, east, south;
local 8, 7_k =temperature k_sweep interim_8;
new_8, r_l=temperature 1_sweep local_0;

3.8. Energy Balance

The book keeping of energy is to check the balance of the internal and kinetic energies in the
interior zones and the work done and heat lost at the boundaries. At each time step, the balance is
calculated to ensure that the error is within tolerance limits. We now describe the computation of
each of these quantities,

3.8.1. Internal energy

Internal energy is given by the formula: '2 {energy * mass). This is computed by

internal _energy node = mass|[node] * new_e{ node; (42)
El = accumulate interior_zones internal_energy;

3.8.2. Kinetic Energy

— - 2 —_
Kinetic energy at all interior nodes is given by: X 1 M | v |, where M is the average mass

of 4 neighboring zones around the node. This is comfiired by

kinetic_energy node = (43)
f M=0.25 * (mass[zone_a node} + mass{zone_b node] +
mass | zone_c node] + mass[zone_d nodel);

v_square=new_u[node]2+new_w[mde]2;
in 0.5*m*v_square }

EK = accumulate interior_nodes kinetic_energy; (44)

26

3.8.3. Boundary work

The work done on the boundary is computed by considering the movement of the boundary line.
For example, Figure 12 shows the boundary line segment I2. The shaded area (the parallelogram
formed by the average velocity vector and position difference vector) shows the amount by which it
moved during a time step. The work done by its movement is the product of the force and the
amount of its displacement. The calculations are summarized below:

work = force * Swolume, force = pressure + artificial viscosity

ry+r
Svolume = Sarea * average radius of revolution = 8areq * -’_.5._3
- -
. . - - Y + ¥ Fp—rs W+ u
Sarea = boundary line * velocity * time =38t [x; —x; x TR &
2 2 |-z wit+w
- -
vtv,
TN
g |
boundaryp Ynterior
zone Ry :zone

I
)
|
|
Figure 12: Displacement at boundary
The work done must be accumulated for all the difference vectors shown in Figure 13. We first
define the index ranges for this traversal as follows:
north work_boundary = ((kmin, kmin), (Imin + I, Imax)); (45)
east_work_boundary = ((kmin + 1, kmax), (Imax, Imax));

south “work_boundary = ((kmax, kmax), (imin + 1, Imax));
west_work_boundary = ((kmin + I, kmax), (Imin+ 1, Imin + 1));

27

Emaz

i iy
iy

kmaz+l

Figure 13: Work done at the boundary

The work done at each boundary line is given by

work_done pred node = {46)
{ force= 0.5 * {new_pl[node] + new_p[pred nodel +
new_g[node] + new_gl pred node});
radius = 0.5 * (new_r[node] + new_r[pred node]);
area = 0.5 * determinant
(new_r[node] — new_r([pred nodel,
new_z[node] — new_z[pred node])
(new_u [node] + new_u[pred nodel,
new_w{node] + new_w/[pred nodel);
in force * radius ™ area * &t 1,

The accumulated work done is:

W = accsmmniiate 4 _ranges (CX))
((north_work_boundary, work_done west),
(south_work_boundary, work_done west),
(west_work _boundary, work_done north),

(east_work _boundary, work_done north));

3.8.4. Boundary heat

The amount of heat flowing across the boundary is given by
Boundary Heat Flow=H = 8§ * aw§ conductance * 80.
ary

The heat flows from the outer layer of the interior zones to the ghost zones as shown in Figure 14,
The amount of heat flow at each junction is the product of the temperature difference between the
two zones and the conductance of the interior zone. Hence we need the conductance matrix, r,
computed in k-sweep and J-sweep for the corresponding zones. For better efficiency, one should really
store the two 7 matrices and use them. But here we ignore this and recompute the conductance on
the boundary. Since the heat flows along the arrows indicated in Figure 14, we must aggregate the
heat flow over the zones in the inner shaded band, whose southeast corners are indicated by the
bullets and squares in Figure 14. First, we define the following index ranges for these zones:

(48)
north_heat _boundary = ((kmin + 1, kmin+ 1), (Imin + 1, Imax));
east_heat_boundary = ((kmin + 2, kmax), (Imax, imax));
south_heat _boundary = ((kmax, kmax), (Imin+ 2, Imax — 1);
west_heat _boundary = ((kmin + 2, kmax), (Imin+ I, Imin + 1));

-y —t -]
e g & s &
- - 8 -]
EEE g E

krmin—-1

kmin

kmintl

hnax

kmaz+1

Figure 14: Heat flow across the boundary

29

For each zone, we also need the direction of heat flow, so that the temperature difference can be
calculated in the appropriate direction. The following function defines the heat flow for a given zone:

heat _flow r direction node = (49)
ot * (new_8[node) — new_0 [direction nodel) * il node] ;

The accumulated heat flow is obtained by:

H = accumulate_4_ranges (50)
{ (north_heat _boundary, heat_flow r_k nonh),
{east_heat _boundary, heat_flow r_l east),
{south_heat _boundary, heat _flow ¥ _k south),
(west_heat _boundary, heat_flow r_I west));

Finally we can define the energy check error as:

eror=El+ EX—W-H; (51)
3.9. Time step calculation

The time step increment for the next iteration is controlled by three criteria described below.

Courant condition: A sound signal must not be able to cross any zone in one time step. To ensure
this, the next time step is limited by half of the time taken by sound to cross any zone. The time
taken for a sound signal to cross a zone is approximated by the ratio of the average width of the
zone to the speed of sound given by:

couramt_delta node = (52)
{ thrust= new_plnode] /new p[node] ;
speed_square = thrust * (1 + thrust / new_e [node]);
Sound_speed = sqrt speed_square;
Arm 0.5*((new_rinode] — new_r[west node]) +
(new_r[north nodel — new_r[nonthwest node)));
8r= 0.5%((new_r[node] — new_r[nonth nodel)
(new_r[west node] — new_r[nonthwest nodel)):
average_length = (sqrt AP + 87);
in 0.5 * new_a[node} /sound_speed / average length };

8t _hydro = minimum interior_zones courant_della; (53)

30

Relative change in temperature: The next time step should not be larger than the relative temperature
change in any zone since the last time step. To obtain the maximum relative change in temperature
we define:

relative_change_in_temperature node = (54)
als (0] node} —new [nodel) /0[node];

8_conduct = maximum interior_zones relative_change_in_temperature; (55)

Finally, the next time step cannot exceed a predefined maximum value. Hence we define;

new_0t = min (min 8t_hydro 8¢_conduct) 8t_maximum; (56)

4. Concluding Remarks

Ideally, a high-level language should provide a way of writing abstractions which are as close to
the problem domain as possible, as well as facilitate efficient impiementations of these abstractions
lest a user try to "get underneath” the abstractions. With the advent of parallel machines, a language
such as Fortran fails on both counts. It was never very good for expressing high-level abstractions
and, because it forces the user to specify a sequential order of evaluation, it also makes it very
difficult to compile good code for a parallel machine. In the latter deficiency, Fortran is not alone:
all high-level languages in wide spread use today force the user to over-specify the algorithm. Funcrional
and other declarative languages allegedly offer relief on both counts. The use of higher order functions,
including the free use of curried forms, can dramatically raise the level of programming. In addition,
such languages often have straight-forward operational semantics which admits tremendous opportunities
for parallel execution. Programs in declarative languages, thus eliminate the problem of "detecting
parallelism”; however, the problem of managing resources for parallel execution remains. In this
report we have examined the first part of this claim by writing an application known as the SIMPLE
code in a language called /d Nouveau. The issues of paralielism will be examined in a companion
report to be published later.

We have presented a high-level description of the algorithms used in the hydrodynamics problem,
called SIMPLE, as described in [4]. Corresponding Id Nouveau program fragments are derived from
the mathematical descriptions. A few basic abstractions are central to the ease with which the
resulting program can be expressed. One of these is, make_n_matrices_k_ranges, which is a general-
ization of the abstraction to create a matrix A by specifying k functions, f,, and associated ranges,
m, such that A[ij] is f, (i), i (i,/) falls in range r, Other heavily used abstractions are
north, south, zonme_a, efc., to refer to the neighboring nodes and zones, and interior_nodes, boundary_zones,
erc. to refer to ranges of nodes and zones. These abstractions, coupled with the ability to treat
functions and their curried forms as first class objects, render a very high-level program which is close
to the mathematical specification of the problem. We believe that a physicist or mathematician can
easily alter our program - for example, to employ an explicit method rather than an implicit method

31

in the heat conduction phase, or to compute the inverse of the energy and pressure polynomials by
a different method, or to alter the table search strategy so that each time the search commences with
the index chosen last time etc,

The main program as given in definition (14) is a complete program for the SIMPLE code. In
order to run it on our current implementation, (Id World Release April 1987), the following amendments
had to be made.

1. The current implementation of the Id Nouveau compiler does not do type checking. It treats A
in A[exp] as a one dimensional array and if exp evaluates to a tuple at run time, the program
generates an error. Since it does not permit a matrix to be indexed by a tuple, we must write
Alij] instead of A [node] where node=f(ij). We also cannot write, for example, A [north node].
To overcome this shortcoming, for the time being, the neighbor abstractions have been changed
slightly. For example, we define north as noth 4 (k,[)=A [k—1,11 instead of
north (k,I) = (k — 1,I). We think this solution still captures the spirit of the neighbor abstractions,

2. The definition for the make n_matrices_k_ranges abstraction is given as a schema for various
specific values of n and k. Note that making n and k into parameters will result in inefficiency
because the matrix names and ranges etc. will have to be made into lists and a loop program
which will traverse this list and call the appropriate program fragment will have to be written.
An optimizing compiler which knew how to unfold loops may be able to remove these inefficiencies.
Another possibility is to include macros in Id Nowveau and define the make_n_matrices_k_ranges
schema as a macro. For the time being, we have included separate definitions for the desired
values of n and k.

3. The scoping of names needs some care. When a function is defined within a scope, it is usually
simple, as all the names in the surrounding scope can be used without having to specify them as
parameters. For example, in definitions (16) through (18), the names pP.q r zZ, p, @ are
inherited from the surrounding scope, which is the main body of the loop in definition (14).
Therefore we did not have to specify them explicitly as parameters in the functions nodal _mass,
acceleration and velocity. However, this implies that we must always compile these functions along
with the body of the main loop. It would be convenient to compile these functions separately.
To do this, we must provide complete fop level definitions with all the parameters completely
specified. As another example, sometimes the functions may be invoked from different contexts.
The function reflect in definition (22) illustrates the point. We specified the parameters r and z,
although they are available from the surrounding context, which is the main body of the loop.
However, during initialization, which is not shown in this document, we need to invoke reflect to
create the initial boundary and it uses the initial values of r, z. Hence we explicitly A-lifted all
the parametors. In our program, we separately compiled and tested each of the steps in the
body of the main loop (14). For this purpose, we defined each step as a function indicated in
the associated comment in the definition (14). All the arguments listed there, as well as all the
constants are passed as explicit parameters in the actual code.

The resulting program has 550 lines, of which the matrix-related abstractions take 120 lines. It runs
successfully in Jd World, a graph interpreting facility developed at MIT. The next question is how
the performance of this program compares with equivalent programs in conventional languages
running on conventional machines. This issue will be discussed in part II.

32

Acknowiaigements: We would like to thank all the members of the Computation Structures Group
of the Laboratory for Computer Science at MIT, whose numerous contributions to Id World heiped
this work. In particular, we are extremely grateful for the heroic efforts of Ken Traub in providing
an ace compiler for Id Nouveau, without which it would have been impossible to run the SIMPLE
program presented here. We are thankful to Rishiyur Nikhil for helpful comments on style and to
Olaf Lubeck for clarifying some of the equations in describing the problem.

5. Bibliography

[1] Arvind and K.Ekanadham, "Future Scientific Programming on Parallel Machines"”, To appear
in proceedings of International Conference on Supercomputing, Athens, Greece (June §-12,
1987),

[2] Arvind, R.S.Nikhil and K.K.Pingali, "I-structures: Data structures for Parailel Computing",
To appear in proceedings of Workshop on Graph Reduction, Santa Fe, New Mexico (Sept
28 - Oct 1, 1986). '

[3] J.Backus, "Can programming be liberated from the von Neumann style? A functional style
and algebra of programs”, Communications of the ACM, vol 21, No 8. (Aug 1978).

{4]) W.P.Crowley, C.P.Hendrickson and T.E.Rudy, "The SIMPLE code”, UCID 17715, Lawrence
Livermore Laboratory (Feb 1978).

[5] R.S.Nikhil, "Id Nouveau: Reference Manual, Part I: Syntax", CSG Memo , MIT Laboratory
for Computer Science,Cambridge, Mass, (April 1987).

[6] R.S.Nikhil, "Id World Reference Manual", CSG Memo , MIT Laboratory for Computer
Science,Cambridge, Mass, (April 1987).

[7] D.A.Turner, "The Semantic elegance of applicative languages, Proc. of ACM conf. on Func-
gan gua

tional programming languages and Computer architecture, Portsmouth, New Hampshire (Oct
1981).

33

