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Computation Structures Group

1. INTRODUCTION AND OVERVIEW

The Computation Structures Group (CSG) made significant progress from July 1986 through
June 1987. The primary thrust continues to be towards general-purpose parallel machines,
focusing on functional and declarative languages, and on the Tagged-Token Dataflow
Architecture (TTDA). In addition, we have been looking at parallel graph reduction, persistence
in functional languages and the TTDA, and functional databases.

Our dataflow programming language Id Nouveau (or Id, for short) was redesigned and reached
some degree of stability, based on vastly improved understanding of the denotational and
abstract operational semantics of I-structures, our parallel data-structuring primitive. With
experience in Id, we are beginning to develop a programming methodology for languages with
I-structures. We are also looking beyond I-structures to other parallel, determinate object-
oriented structures.

The Id compiler was completely rewritten in Common Lisp, and is now used quite heavily.
Work continues in developing a type-system for Id and incorporating a type-checking module in
the compiler. Because of its extremely modular structure, the compiler is very amenable to
modifications, and is being used thus for research into other parallel architectures and languages.

A major activity in our group was the development of Id World, an integrated programming
environment for experimenting with parallel programs. The components of Id World include
editor customizations for Id, the Id compiler, GITA---an extensively instrumented emulation of
the Tagged-Token Dataflow Architecture, and the Id debugger. These are packaged in an
integrated user interface that makes it extremely easy to prepare, run, debug, and study parallel
programs quickly. We believe that with its flexibility and power, Id World is a unique tool for
studying parallelism in programs.

Various members of our group have begun using Id World to study a variety of application
programs. Id World was publicly released in April 1987, and is available to anyone with a
Symbolics or TI Explorer Lisp Machine. Based on the interest it has generated so far, we expect
that Id World will soon be used in several research projects in the U.S. and abroad.

In the past year we have conducted many experiments to study instruction counts, instruction
mixes, the effects of memory latency, granularity of parallelism, networks, program mapping,
i.e. These experiments have significantly improved our understanding of fundamental issues in
parallel architectures, and thrown much light on the TTDA and its relation to conventional von
Neumann machines. This improved understanding of dataflow and parallel von Neumann
machines has sparked two exciting new research efforts.

One new research effort is "Monsoon," a concrete architecture for the thus-far relatively
abstract Tagged-Token Dataflow Architecture. Monsoon solves many of the open questions



COMPUTATION STRUCTURES GROUP

about the TTDA, such as the implementation of the Waiting-Matching store, and for the first
time we have reached a point where we are ready to build a hardware dataflow machine. We are
seeking funding to build the machine in the next three years. We have already begun building
and studying prototypes of some components of the Monsoon architecture.

The second outcome of this deeper understanding has been research into hybrid von
Neumann/dataflow architectures. Here we are exploring changes to the classic von Neumann
architecture, borrowing ideas from dataflow. These changes address the fundamental latency and
synchronization problems that we believe make it difficult, if not infeasible to use conventional
von Neumann architectures in a general-purpose parallel machine.

The study of resource management issues continues to be a major effort. We have also begun
to study various other topics that concern both language design and architectural support thereof:
lazy evaluation, input-output and general persistence of arbitrary objects. We have also
continued work on DisCoRd, an emulator for a parallel graph-reduction machine on the MEF.,

In April 1987 we participated in the third MIT/IBM Workshop on parallel computing at Essex,
Connecticut (held every other year). This is a useful forum for the exchange of ideas---we
learned about the status of IBM’s RP3 architecture and hardware construction, and about the
EPEX programming environment for studying parallel programs, in use by IBM and several
university partners. We continue to have strong and productive connections with IBM,
particularly with Dr. K. Ekanadham. We now also have strong connections with Cornell
University---Dr. Pingali joined the faculty there after graduating in August 1986.

Professor Nikhil is also working on the database problem in the Computer-Aided Fabrication
project (Professor Penfield). Under his guidance, they have implemented a database system
interface using ideas from functional languages. It is unique because with its clean functional
formalism, non-computer experts have been able to learn its use rapidly; it is accessible both
from C and from Common Lisp; and it encompasses data transparently from three distinct and
different real database management systems.

The Multi-Processor Emulation Facility has stabilized to a large extent. It currently consists of
thirty-two TI Explorer Lisp Machines on our circuit-switch network, with no current plans for
enhancements or improvements. It is currently used for two kinds of emulations: the TTDA and
DisCoRd. The generic MEF software to support arbitrary parallel emulators has been rewritten
and cleaned up significantly as a result of our experience with the dataflow and graph-reduction
emulators, We have given several public demonstrations of the MEF running parallel programs.
These and various related matters are discussed in greater detail in sections below.

2. PERSONNEL

Over the course of the year, Computation Structures had six visiting researchers. Hitoshi
Nohmi, a hardware specialist from Nippon Electronics Corporation, spent his year-long smdy
leave strengthening his knowledge of computer languages, and participating in aspects of MEF
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design work. His colleague Akihiko Konagaya arrived in January to study dataflow and
reduction architectures, and to further his interest in logic languages with constraints.

Staffan Truve, a Fulbright fellow from the Chalmers University of Technology in Sweden,
joined the group to continue his study of logic languages. John Lewis, taking a year off from his
post at Boeing in Seattle, has been studying the parallel execution of scientific appplications.

1986 saw the termination of IBM/Endicott’s participation in CSG design work. In late
September, senior associate engineers Michael Mack and Mark Atkins returned to Endicott.
Mack had successfully designed the group’s first chip, an 8 x 8 4-bit crossbar, and made a
sizeable contribution to the design of the MEF transmitter. Atkins had been working on the FIFQ
logic and 48Mhz clock subsystem of the MEF.

The departure of the Endicott team did not mean the end of IBM’s interest in the group’s work,
however. Although not formally a visitor, Dr. K. Ekanadham, a researcher in parallel processing
at IBM/Yorktown Heights, has worked very closely with us over the past year. His work
includes studies comparing the instruction set of the TTDA with von Neumann machines, and a
significant rewrite of the SIMPLE application to take advantage of Id’s high-level features.

On March 1, Professor Dennis took early retirement to devote more time to his new company,
Dataflow Technologies. He now holds the rank of Senior Lecturer in Computer Science, and in
that capacity will see his remaining graduate students through to the completion of their degrees.
He will also continue to pursue his long-standing VIMV AL interests.

3. ID WORLD

Last year we reported the completion, by Dinarte Morais, of a first version of Id World, an
integrated programming environment for preparing, running, debugging and analyzing Id
programs and their behavior on the Tagged-Token Dataflow Architecture., Based on that
experience, we invested much effort this year in a major redesign to make it stable and flexible,
with the objective not only of making it easier to use internally, but also to release it publicly for
use elsewhere. Originally aiming for January 1987, we released Id World in April 1987. 1d
World is implemented mostly in Common Lisp and runs on Symbolics and TT Explorer Lisp
Machines. It is accompanied with extensive documentation that minimizes prerequisite
knowledge of Lisp machines [10]. We have plans to port it to other popular workstations, such
as Suns and MicroVaxes. Several research projects in the U.S. and abroad have expressed
interest in acquiring and using Id World.

The program development process in Id World is patterned after the analogous process for
Lisp. The editor (currently only Zmacs) is customized for Id--- it knows about Id syntax and has
commands that facilitate entry and formatting of Id programs. The editor also has commands to
invoke the Id compiler on segments of Id source code---the resulting object code (dataflow
graphs) is normally loaded automatically into GITA, the "Graph Interpreter for the Tagged-
Token Architecture.” In case of compilation errors, the editor can immediately display the
relevant parts of the source for correction.
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To run compiled Id programs, one switches to the GITA window. Here one can compile and
load Id files, and invoke any compiled Id function on GITA, the graph interpreter. Id objects for
function arguments may be entered using a special “Lisp-ified" syntax.

A significant and unique part of Id World is the Id debugger, designed and implemented by
Dinarte Morais. In case of run-time errors, GITA enters the debugger, which has commands
similar to the Lisp debugger except that they are with respect to a tree of contexts instead of a
stack, because this is a truly parallel emulator. Using the debugger, the programmer can
examine the state of the machine, mostly using source-language names and constructs. A unique
feature of Id is that the set of run-time errors (a parallel machine may not have a single run-time
error!) does not change with machine configuration or run-time scheduling, and so debugging is
easy and may be performed on a single processor,

After debugging, programmers can study the parallel behavior of Id programs: they can choose
the number of processors, the network latency, and the kinds of run-time statistics that should be
collected. After running the program, they can immediately display and plot the statistics on the
three graphics panes in the GITA window. There are facilities to save, restore, and hardcopy
statistics,

Id World is exciting not only for dataflow research, but also for other approaches to
parallelism. Because the parallelism in Id Nouveau and the TTDA is limited only by data
dependencies, Id World can supply a reference point for the maximum parallelism in a given
algorithm---a calibration point against which one can compare the actual parallelism obtained in
an encoding of the algorithm in, say, paralle]l FORTRAN running on a parallel von Neumann
machine.

The development and implementation of Id World involved a significant cooperative effort by
many members of the group, notably Dinarte Morais, Richard Soley, Ken Traub, Ian Taylor, and
David Culler.

In order to pursue experimentation with scientific code requiring significantly more
computational cycles than can be delivered from minicomputer Lisp machines, Stephen Brobst
has begun an effort which will allow GITA to be ported to high-end mainframe machines. A
version of the GITA experimentation tool is being developed in the C programming language for
portability to a wide variety of high-end machines. Initial machines targeted for the port are Vax
computers, the IBM 4381, and the Cray 2. We expect that it will be a simple matter to migrate
the experimentation tools to any machine supporting a standard C compiler (with the cavear that
sufficient memory resources exist on the machine for the large token storage requirement of the
program). Completion of a first prototype is expected by the end of 1987.
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4. LANGUAGES AND SYSTEMS

This year saw significant effort on several language and systems issues in Id Nouveau and the
TTDA.

4.1. I-structure Semantics

The concept of I-structures as an architectural idea for parallel data structures is not new to the
dataflow project, but it had long been unclear how to incorporate them into a prograrmnming
language. Two significant steps this year cleared the way. First, Keshav Pingali established a
connection between I-structures and logic variables---variables whose values are incrementally
refined by unification---and thus showed a fixpoint denotational semantics for a language with

-structures. Based on this, Professors Arvind and Nikhil and Pingali, assisted by Vinod Kathail,
developed an abstract Plotkin-style operational semantics for Id Nouveau. The semantics are
given as rewrite rules that transform an Id program to its result, and capture exactly the parallel
dataflow behavior of the program [1].

Abstractly, the machine state is modeled as a number of components executing in parallel—--an
expression and zero or more statements:

E;S; ... ;: s

The result of the program is the ultimate value of the expression. The rewrite rule for function
applications looks like this:

(f Eargl ... Eargn)

E;S; ... ;8

(Ebody’ )

E;8; ... :8; x1 = Eargl ; ... ; xn = Eargn

i.e., the upper machine state which somewhere contains the expression (f...) can be rewritten
to the lower machine state with the expression replaced by (Ebody’), where Ebody”’ is the
body of function £ with the formal parameters given new names x 1 through xn. This captures
exactly the behavior in the TTDA where a function can begin executing while its arguments are
still being computed. We call this dataflow behavior the paralle! call-by-value computation rule.
Similarly, there is a rule which says that an identifier can be substituted only when there is a
statement in the machine state that binds the identifier to a reduced value---this corresponds
exactly to the arrival of a token on an arc in the dataflow machine.

The rule for I-structure allocation is:
(array (vl,wvu))
E;Ss; ... ;: 8
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Where Xv1 through Xvu are new variables. This rule illustrates a difference from functional
languages--- rules for functional languages never introduce new variables on the right-hand
sides.

An exciting aspect of these rewrite rules is that, for the first time, one can now understand the
paralielism of the dataflow machine purely in source-language terms, without any appeal to
dataflow graphs or the Tagged-Token Dataflow Architecture. In addition to facilitating the
dissemination of dataflow ideas to a wider audience, this simplification also gives us a much
better perspective on the relation of dataflow to other approaches to parallel execution of
functional languages such as parallel graph reduction.

4.2. Id Nouveau

The advances in understanding the semantics of I-structures gave us insight into the semantic
categories to be supported in the language Id Nouveau. The difficulties were in integrating
cleanly the expression-oriented constructs of the functional subset with the refinement-oriented
constructs of the I-structure subset. The syntax was frozen in January 1987, and the compiler
and Id World upgraded accordingly.

One consequence of the introduction of I-structures is that the language loses "referential
transparency”, thus making it more difficult to reason about programs. For this reason, many in
the functional programming community are still skeptical about I-structures and advocate the use
of "bulk" functional array operators. For example,

make-array n f

returns an array of size n such that the i’th component contains £ i, Thus the returned array
can be considered a "cache” for a finite part of £,

We have argued in (2] that any fixed set of functional primitives will result in inefficient
programs. The programmer must be allowed to invent and code new array abstractions, and for
this, I-structures are essential in the language. We have thus gradually evolved a programming
methodology in which one part of the program contains the definitions of program-specific array
abstractions using I-structures, and the remaining, major part of the program is a purely function
program that uses these abstractions and does not mention I-structures at all. We are still
experimenting with this programming methodology.

To encourage this programming style, we have defined a large library of standard functional
array, list and set operators [11] in the hope that programmers will use this common library and
train themselves to think along those lines. Paul Barth wrote the code for these libraries which
are now loaded automatically as part of Id World.



COMPUTATION STRUCTURES GROUP

4.3. Id Compiler

Version II of the Id Compiler, written by Kenneth Traub, compiled its first program one month
ahead of schedule in July 1986. Besides simply accepting the latest version of the Id
programming language, Version Il has several features which set it apart from most other
compilers, including its predecessor, Version I:

e It is founded on a common core of data structures and abstractions that is general
and powerful enough to support all conceivable dataflow compilers. This common
core is described in Kenneth Traub’s "A Dataflow Compiler Substrate" [14].

» It has a highly modular structure, and includes a facility (known as defcompi ler)
which permits modules to be incorporated into the compiler with very little effort.

* It includes a novel attribute grammar evaluator which incrementally computes parse
tree attributes on demand, and automatically adjusts to changes in parse tree
structure made by source-to-source transformation modules. The evaluator is
designed to work from grammatical specifications developed with PAGEN, a parser
generator program also written by Traub.

¢ It supports incremental compilation through a sophisticated database mechanism for
recording properties of Id procedures. Assumptions about separately compiled
procedures are recorded in object code, allowing the consistency of a collection of
procedures to be verified at load time.

¢ It includes a number of code optimization modules, including such well-known
transformations as common subexpression elimination, loop invariant code motion,
and procedure integration (these were implemented by Ian Taylor). There is also a
peephole optimizer for dataflow machine code, believed to be the first use of
peephole optimization within a compiler for dataflow architectures. The peephole
optimizer is also noteworthy as it is completely specification-driven.

® The compiler and PAGEN are written entirely in Common Lisp, ensuring their
portability.

Many of these features reflect the Id Compiler’s special nature as a research compiler; it is
specifically designed to support experiments at all phases of the compilation process. Already,
the compiler has proved itself adaptable enough to be used in two projects for which it was not
originally designed: Bob lannucci has modified the back end of the compiler to support his von
Neuman Dataflow architecture (VNDF), resulting in a compiler from Id to VNDF object code,

~while John Lucassen of LCS’ Programming Systems Research Group has replaced the front end
with one for his FX language, resulting in a compiler from FX to TTDA object code.

So far, Version II of the Id Compiler has proved to be an overwhelming success. Future plans
include a type-checking module to be written by Professor Nikhil, support of pattern-matching
syntax, and code-generation for the Monsoon architecture,
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4.4. Types and Type-checking in Id Nouveau

In Fall 1986 Professor Nikhil implemented a first version of a Milner-style polymorphic type-
checker for Id. One problem was to devise the type-checking rules for I-structure constructs,
which are analogous to side-effects in a functional language such as ML, and which normally
make the Milner-style rules unsound. A solution exists in implementations of ML, but these
implementations have never been published, and so we had to re-invent it for Id Nouveau,

Preliminary use of the type-checker was Very encouraging---it promises to be a major aid in
debugging and compiling. Our plans for the type-checker are:
* Upgrade it for the current Id Nouveau syntax,

* Fix a major limitation, which is the lack of user-defined union types and the
associated pattern-matching syntax,

® Design a limited inheritance capability which is another kind of polymorphism that
also simplifies programs,

* Use the type information to improve compiled code,
¢ Permit incremental type-checking, and the coexistence of typed and untyped code.

4.5. Lazy Structures

Eager interpreters are able to exploit vast parallelism, yet lazy interpreters have more desirable
termination properties.  Pingali proposed a source-to-source program transformation for
achieving lazy behavior within an eager interpreter [13]. Pingali’s approach offers the power of
a lazy interpreter within the framework of dataflow, but is difficult in practice. When some
values are not demanded, cleanup problems occur. For example, forks are not self-cleaning---if
one arm does not demand a value that is demanded by the other arm, the value sits at the fork
forever. This cleanup problem is quite difficult in the context of the TTDA, and we cannot
ignore it. If values are always demanded by all possible consumers, lazy evaluation buys us
nothing.

Steven Heller is considering another approach. An eager interpreter evaluates expressions as
soon as the inputs are available, and a lazy interpreter evaluates an expression if and only if its
value is needed to produce an answer. These extreme positions span a spectrum of possibilities,
and he is studying some of these mixed evaluation strategies. If we delay only those expressions
that sit in array slots, an interesting compromise is achieved. The TTDA already synchronizes
array producers and consumers in hardware using I-structure Memory [2] [4] [7). A similar
synchronization mechanism is required to support demand propagation for delayed expressions
that sit in array slots. By generalizing I-structures to L-structures ("lazy" structures) we can
support both producer/consumer synchronization and demand propagation in hardware.
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4.6. Accumulators

In studying various applications, we have repeatedly encountered a paradigm that cannot
efficiently be handled by functional data structures or I-structures. One initializes an object,
performs numerous "accumulations” on that object, and finally reads the value of the object.
Because the accumulations are commutative, the order of accumulations is immaterial. An
example would be to compute a histogram of 10,000 values into 10 intervals. In an imperative
(and sequential) language, one would start with an array with 10 zeroes, and repeatedly
increment the components. This cannot be done with functional data structures or with I-
structures without excessive copying because one cannot update an array element in place. On
the other hand, it is safe to do them in parallel because the increments may be done in any order.

Professors Arvind and Nikhil and Messrs Pingali and Traub have produced an initial
proposal---both linguistic and architectural-—to solve this accurnulation problem in Id Nouveau
on the TTDA. For example, to allocate an array for the histogram, one says:

xa,xr = 1D accumulator (1,10) 10000 (+)

This allocates a vector with bounds 1 and 10, where each cell can accumulate values by addition,
and where a total of 10000 accumulations are allowed. The expression returns two descriptors---
an accumulate-only descriptor xa and a read-only descriptor xr. One can increment bucket
(cell) 3 by saying:

1D_accumulate (xa, j. 1)

One can read bucket § as if it were an ordinary I-structure: xr[§]. However, the token for xr
is not released until 10000 accumulations are done, thus ensuring that there are no read-write
races. The function 1D _accumulator is non-strict in n, the number of accumulations, so that
the number of allowed accumulations need not be known beforehand.

We know how to compile these constructs into dataflow graphs for the TTDA and plan to
implement it and start using it immediately. We certainly do not expect this to be the final word
on accumulators---the hope is that experience in using it will allow us to understand the problem
better and to produce a better solution.

4.7. Serialization and Serial Input-output

Richard Soley has begun exploring explicit and implicit serialization methods, with the aim of
controlling machine resources efficiently during the execution of combinatorially explosive
expert system programs. This serialization would be carried out in a completely distributed
fashion, without any centralized control over the system. This methodology has carried over to a
serialization scheme to enable serious input/output facilities within the Id language. In Soley’s
approach, serialization of calls to I/O primitives is carried out by the Id compiler, which adds
static and dynamic program arcs to order the run-time execution of I/O primitives as the
programmer has implicitly specified.
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4.8. DisCoRd: Parallel Graph Reduction

Ian Taylor has been working on modifying the Id Compiler to generate combinator code for
DisCoRd, a parallel graph reduction architecture. In contrast to other parallel graph reduction
machine projects, we assume eager evaluation wherever possible, using this assumption to
minimize message traffic. Ted Leung has been working on implementing an emulator on the
MEF for the parallel graph reducer. This work is a redesign of the initial version of DisCoRd
that we reported last year,

4.9. Persistence in Id/TTDA

Bhaskar Guha Roy and Professor Nikhil have been investigating the design and
implementation of databases on the Tagged-Token Dataflow Architecture. Many database
applications contain a high degree of inter-transaction parallelism and performance is often
limited by disk latency. We believe the TTDA provides an excellent substrate for a high-
performance database machine because of its ability to tolerate high latencies. Dataflow allows
us also to take advantage of intra-transaction parallelism, I-structure memory allows
synchronization among tasks to be expressed naturally, and the synchronization is achieved in
hardware.

We are developing extensions to Id Nouveau for experimenting with functional databases, The
main extension is the bag data structure for modelling large, homogeneous collections of objects.
Bags have parallel, I-structure-like semantics. We are currently examining how operations in this
language can be implemented to take advantage of features of the Monsooon architecture,

We have also been working on architectural extensions to the TTDA to support persistent store
(disks). Objects of any data type in the language can be made persistent. A persistent object is
initially referred to by a logicainame, and can be associated with a name in the program. The
actual movement of data from primary to persistent store is transparent and incremental. We are
currently extending the Id Nouveau compiler to support a variety of operations related to
persistent objects. In the coming year, our goal is to complete the design of the persistent storage
system and design and implement a complete transaction processing system.

4.10. Environments as First-Class Objects

This past year, Suresh Jagannathan (with Professor David Gelemter of Yale University and
Professor Nikhil) has been examining the ramifications of incorporating environments as first-
class values into a programming language. We have produced a new programming language
with several novel features. Symmetric Lisp is built around an environment-building structure,
the ALPHA form. The semantics of an ALPHA is derived by (conceptually) transposing the
familiar Lisp PROGN or Algol compound-statement symmetrically around a time-space axis.
Where the elements of a PROGN are evaluated during sequential lifetimes in a fixed temporal
order, the elements of an ALPHA form are evaluated during concurrent lifetimes in a fixed spatial
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order. Concurrent evaluation lifetimes mean that the ALPHA form is a concurrency creating
structure, and that Symmetric Lisp is a parallel language. Because elements of an ALPHA can
refer to one another, they all have a shared evaluation lifetime. Shared lifetimes mean that the
elements of an ALPHA-form may be taken to define a scope; all name-binding, program-building
and scope-defining mechanisms in the language are based on this form. The semantics of
Symmetric Lisp is defined by a collection of rewrite rules that preserve the structure of the
source program (that is, the number and order of its elements). Unlike other languages, the
“shape” of a program is invariant over the transformation process. Thus, ALPHA forms evaluate
to new ALPHA forms and, consequently, Symmetric Lisp has no notion of a data structure: a data
structure is simply any program that evaluates to itself.

"First-class environments" means that Symmetric Lisp allows programmers to write
expressions that evaluate to environments and to create and denote variables and constants of
type environment. One consequence is that the roles filled in other languages by a variety of
limited, special-purpose environment forms like records, structures, closures, modules, and
classes are filled instead by the ALPHA. In addition to being the fundamental structuring tool in
the language, environments also allow us to treat function application as syntactic sugar for
environment building: LAMBDA-forms become constants and are no longer constructs in their
own right. Because the elements of an environment are evaluated in parallel, Symmetric Lisp is
a parallel programming language intended for implementation on fine-grained architectures such
as a dataflow or graph-reduction machine. Because environments may be constructed statically
as well as dynamically, Symmetric Lisp accommodates an unusually flexible and simple parallel
interpreter that is well-suited as an interface to a concurrent, language-based Symmetric Lisp
computer system. Qur goal for the coming year is to refine the design of the language and build
an implementation on an available multi-processor architecture such as the MEF.

4.11. Functional Databases

Professor Nikhil has been guiding the database effort in the Computer-Aided Fabrication
(CAF) project run by Professor Penfield. The problem here is to provide a single on-line
information facility that encompasses not only traditional data-processing mainstays such as
personnel and accounts, but also highly complex data such as IC masks, process-flow programs,
intermediate states of process-flow programs, wafer states, ezc. In addition, the facility must be
able to access data from other existing software packages such as IC simulation packages.

With our suggestions and guidance, Michael Heytens, a graduate student in the CAF project,
has designed and implemented GESTALT, a Functional Data Model interface, in which one views
information as a collection of database types and functions that map between those types. These
functions are embedded in a full functional language. The database is unique in its power and
flexibility. The interface uses three scparate commercial database management systems
underneath for data storage; however, users see a single, integrated model of all the data.
Accessible from C and Common Lisp, users have been able to learn to use it very quickly, and it
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is in daily use. We expect to continue this collaboration with the CAF project. Now that
immediate operational needs have been met, we are exploring several enhancements to the type
system, and to the data model so that it incorporates a notion of history. That is to say, data is
never updated, only appended to.

5. ARCHITECTURES

5.1. TTDA Experiments

We are continuing our experiments toward assessment of the token storage requirements in a
tagged-token architecture. Stephen Brobst has conducted and simulated studies with a variey of
scientific codes to help develop understanding of temporal locality for tokens in the TTDA.
Keeping track of active versus inactive (suspended) contexts in the machine is being examined
as a possible means of implementing a migration strategy for tokens between memory and a fast
local store.

In any parallel machine, data structure distribution and contention is an important problem.
The recent attention given to "hot spots" in the paratlel processing community is a reflection of
this importance. Andrew Chien has done an in depth study of the effects of "hot spots” in the
context of the TTDA [5] [6]. His results show that hot spots may in fact be a significant concern
in the TTDA. He has also developed a simple network enhancement that greatly reduces the
severity of performance degradation due to "hot spots." It is important to note that the TTDA
processors’ ability to tolerate memory latency is crucial to the effectiveness of this scheme. The
ability to tolerate latency in a dataflow machine allows us to address the "hot spot” problem with
mugch less hardware than a combining network.

Gino Maa conducted extensive experiments using the existing emulation tools to study the
effects of the various code-mapping strategies and grain sizes, the presence of significant
latencies in the communications network, and interleaved memory allocation on the performance
of relatively large systems (hundreds of processors) executing a large-scale scientific application
kernel. The results have all shown that a dataflow machine, when running large programs with
sufficient parallelism, is indeed very tolerant of extreme communications latencies: system
performance degrades very gracefully even with an almost order-of-magnitude increase in such
latencies.

The resource allocation experiments provided evidence that relatively simple run-time
strategies such as round-robin and randomized code mapping produce surprisingly good results
consistently. They also showed that by choosing the grain size of the code-mapping unit to be
around the iteration level, we get the scalability characteristics of mapping at the instruction level
while still maintaining much of the locality property of mapping at the code-block level. Past
studies on data structure reference patterns have indicated that contention for specific memory
locations may hinder scalability in large systems, but recent experiments showed that a modest
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degree of interleaving in memory allocation yields much improvement over a non-interleaved
memory system, although some contention for constant data structures can only be eliminated by
altering the source program.

5.2. Storage Usage

GITA and the new Id compiler have been put to extensive use by David Culler in studying the
resource requirements of dataflow programs under a variety of conditions. Our expectation that
storage requirements grow in proportion to the amount of unfolding under idealized execution
with unrestricted parallelism was confirmed; this implies cubic growth for triply nested loops,
for example. Moreover, restricting the amount of parallelism exploited in executing a program
does not alleviate the problem, rather, it is necessary to constrain the unfolding of the program
itself. Loop-bounding techniques developed by Culler have proved effective in this; under
restricted parallel execution, it is possible to reduce resource requirements dramatically without
increasing the running time of the program appreciably. We are continuing to explore this
direction.

5.3. Instruction Counts

An important metric in assessing the effectiveness of the dataflow approach is the total number
of instructions executed. TTDA instructions are roughly comparable in power to those of a
load/store architecture - memory access operations are disjoint from arithmetic operations. We
expect instruction counts of dataflow programs to be somewhat higher than a good sequential
implementation, as there is a certain amount of work required to initiate and synchronize
concurrent computations. Nonetheless, for dataflow machines to be viable, they must be
comparable to sequential machines in this regard. Comparative studies performed by David
Culler in conjunction with K. Ekanadham at IBM/Yorktown indicate that Id programs with little
optimization typically require 2-3 times as many instructions as highly optimized Fortran. This
comparison is encouraging in light of the number of additional instructions that would be
performed in a "parallelized” Fortran version. However, it is clear that without relatively
sophisticated program graph generation, as in the current Id compiler, the gap would be much
worse.  Recent work with common subexpression elimination has narrowed the gap
dramatically.

5.4. Towards Real Implementations

While it has been well understood for some time that dataflow offers a framework for thinking
about parallel computation, it is only within the last year that we have been able to make
statements about the essence of dataflow architecture which may be meaningfully applied in the
von Neumann multiprocessor domain. It has become clear through analysis [3] and experiments
by Gino Maa that any scalable architecture must be able to tolerate basic, machine-induced
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latencies and must provide, at the hardware level, a synchronization mechanism that is
inexpensive to use. The former is necessitated by the physical partitioning of a machine into
cooperating processing and memory elements separated by nontrivial communication delays.
The latter is a direct result of decomposition of the program into communicating pieces or tasks.

Dataflow by its very nature allows parallelism in the program to be traded off against latency---
given sufficient parallelism in the program (on the order of the Processor-memory-processor
pipeline depth fimes the number of such parallel pipelines), latency cost as measured by induced
processor idle time can be controlled. Dataflow also offers a uniform synchronization paradigm
through the tagging and matching of data. Each enabled instruction represents a task which can
execute independent of all other such tasks. Tags serve to identify these tasks. Dataflow
machines provide the means for bringing together identically tagged values; this is the necessary
and sufficient condition for the task’s execution.

The essential features of the dataflow mechanism are a large namespace for identifying
"meeting places” (synchronization events), provision at the hardware level for multiple,
concurrent tasks, and the ability to switch between these tasks as necessary with speeds
approaching single instruction times.

5.5. Von Neumann Dataflow Machine

One proposal which has grown out of this work is the construction of a hybrid dataflow/von
Neumann machine by extending von Neumann architecture with some embodiment of the
essential features of dataflow. The proposal is made and discussed by Iannucci [8]. The goal of
this work is to refine further the notion of essential features, and to explore compiler-directed,
pipelineable sequential code sections as a tool for implementing resource management primitives
and for exploiting vector-type instructions.

One possible approach is to recognize the relationship between arcs in a compiled dataflow
graph and slots in a traditional invocation stack frame. Both are used for holding temporaries
local to the invocation of the associated procedure. As such, they embody the intra-process
communication mechanism. Augmented with a basic synchronization mechanism, stack frame
slots allocated out of a relatively large address space would provide two of the three above-
mentioned features considered essential for a scalable multiprocessor. Local memory with I-
structure-like synchronization bits on each slot (indicating slot-empry, slot-full, or deferred-read)
[7]provides such a synchronization mechanism; deferred reads cause suspension of the current
process and storage of the current program counter (PC) into the empty slot. Subsequent writing
to the deferred slot reawakens the suspended process by extracting the deferred PC and making it
a candidate for execution once again.

The third feature, fast task switching, implies sufficient high-speed storage to hold the
computation state for a large number of such PCs (similar to the requirement for a large, fast
waiting-matching memory and token buffer in a dataflow machine), and the ability to interleave
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instructions from different tasks on a per-instruction (or nearly so) basis. Note that it is neither
essential nor always desirable to switch tasks at each instruction dispatch---it is often the case
that small groups of instructions may be statically scheduled for execution as a unit given the
satisfaction of only a few input data dependencies. Thus, the quanta of execution may be bigger
than single instructions. It is, however, essential that the task switching be done to the resolution
of individual instructions.

Progress to date includes definition of a simple machine model, complete definition of the
syntax and semantics of a suitable machine language, design, coding, and testing of a von
Neumann/dataflow back end for the Id compiler (previously described), and preliminary work on
an emulator for the architecture.

5.6. Monsoon

We have been sufficiently encouraged by our research results to contemplate and evaluate
critically a hardware implementation of a multiprocessor based on the Tagged-token Dataflow
Architecture. Central to this goal is the ability to translate the dataflow execution mechanism,
specifically waiting-matching and I-structure operations, into practical and efficient hardware.
In[12], Greg Papadopoulos has described a novel instruction execution mechanism that
implements both the I-structure storage and the waiting-matching section in the same explicitly
addressed storage. He has also given the outline for generating code for such a machine from
TTDA-style dataflow graphs.

The processing element is somewhat more general than a TTDA graph interpreter. The design
draws heavily on traditional pipelined von Neumann techniques as popularized by the "RISC"
methodology. A processing element is really a multi-threaded non-blocking RISC pipeline,
where a join of two threads, an operation, and a fork of two threads can all occur within a single
pass through the pipe. Threads are interleaved each cycle, without switching overhead, from a
hardware managed task queue. We address the two fundamental multiprocessing issues by (1)
providing non-blocking split-transaction global memory references, and (2) providing very
efficient hardware synchronization on an instruction-by-instruction basis. We believe that this
architecture brings the dataflow machine a step closer to von Neumann machines, exploiting the
efficiencies of pipelined designs while reducing the overhead of fine-grained data-driven
evaluation,

We intend to construct a 256 PE multiprocessor prototype called "Monsoon." Because we
believe the processor pipeline to be well balanced and technologically scalable, we are initially
employing fairly conservative TTL and CMOS gate array technologies. OQur initial
implementation calls for each PE to have a 100ns. cycle time, 64-bit floating point, and 2
Megawords of local storage. The network will be a packet switched 256-way two-stage exchange
with 800 Mbits/sec/port. This will yield a machine with a peak performance of over two
GigaFLOPS. We believe it will sustain between 100-300 MegaFLOPS on a wide variety of
scientific codes, making it competitive with the fastest general purpose von Neumann machines
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presently available. A discrete logic laboratory prototype of a processor (125ns. cycle time) is
now under construction.

3.7. Compiling for Sequential Architectures

Many of the programming languages devised for fine-grained parallel architectures are
non-sequential. Non-sequential languages, which include Id as well as most lazy functional
langauges, cannot be directly compiled into ordinary sequential code (as for a von Neumann
machine). Instead, they must be compiled into fine-grain parallel code (as for a dataflow
machine) or into many sequential threads, executed concurrently. In his PhD research, Kenneth
Traub is examining the problem of compiling non-sequential languages into multi-thread code.
Multi-thread code can be run on von Neumann machines by simulating parallel scheduling, and
so this work will address the problem of efficient execution of non-sequential languages on von
Neumann machines. More importantly, this work will have direct application to machines
whose architecture is based on a multi-thread model, such as Iannucci’s VNDF,

As part of his dissertation work, Iannucci [8] has constructed a new code generator for the Id
compiler. While the target machine architecture is markedly different cf. TTDA, the relative
ease with which new modules were integrated to the existing compiler was significant. This new
compiler retains parse tree and program graph generation and substitutes a new machine graph
generator, an altered peephole optimizer, and a new assembler for a von Neumann style (i.e.,
program counter based) architecture.

6. APPLICATIONS

K. Ekanadham of IBM/Yorktown, working closely with Professor Arvind, has been rewriting
the SIMPLE code in Id Nouveau. With extensive use of higher-order functions and array
abstractions, Ekanadham’s masterful SIMPLE code in Id has provided the best example to date
of the high level that scientific programming can reach. His SIMPLE code has become the
standard against which we compare the quality of codes written here and elsewhere.,

During the fall, three scientists from Los Alamos National Laboratory visited the group to learn
about our programming environment and to start work on several large dataflow applications.
The discussions prompted a valuable review of Id. These visitors became a beta-site for the Id
World release. One of their applications, a Particle-In-Cell (PIC) electrodynamics code, had
been implemented on a variety of parallel machines. Culler wrote a version of it in Id, and we
are now comparing various implementations. The PIC code involved more sophisticated data
structures than most scientific applications and stressed the expressiveness of the I-structure
paradigm. One of the Monte Carlo codes involving neutron transport proved very difficult to
express efficiently with I-structures and added to the on-going discussion of accumulators.

Paul Barth wrote a signal-processing application in Id Nouveau based on his experience at
Schlumberger with software for oil-exploration. James Hicks also wrote a general electronic
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signal-processing application in Id Nouveau. Both these experiments shed light on the need for
streams and stream-processing operators in the langauge.

Paul Barth wrote several algorithms for the single-source, shortest path problem. These
algorithms highlight several methods of applying dataflow to graph traversal problems. One
algorithm uses I-structures for synchronizing the traversal of several parallel paths; another
encodes the graph as a dataflow program that can be executed directly. Two algorithms were
written that used nondeterministic constructs for marking the graph. These nondeterministic
constructs are not currently part of Id Nouveau; their addition would support these algorithms, as
well as many others, such as dynamic programming and search problems in AL

Serge Plotkin studied the problem of writing a symbolic polynomial arithmetic package in Id
Nouveau. This exercise again reinforced the need for "accumulators” in the language. For
example, when multiplying two polynomials with coefficients ag, a1, ... and by, b, for x0, x1,
.. each coefficient c; is sum of products of the form a;*b;_;. The summing can be done in
any order, and so can ideally be expressed as an "accumulation" of product terms.

Richard Mark Soley has been performing experiments with Id World on pattern-matching
systems, both as an approach to debugging Id World and a study of the potential sources of
parallelism within "expert" production systems. He has identified various combinatorially
explosive aspects of these computations, leading to his current work in efficiently serializing
such highly parallel, and highly "speculative” programs.

Arun lyengar joined our group late in the Spring Term, 1987. He will be studying the
implementation of graph algorithms in Id Nouveaw/TTDA based on his experience in writing
applications in molecular biology.

In the fall, James Hicks wrote an interface that enhances the use of the Quicksim circuit
simulator, part of our Mentor logic CAD system. A designer can use an ordinary text editor to
enter specifications of circuit inputs and expected circuit outputs, and then run a driver that
performs the circuit simulation, automatically applying the inputs at the right (simulated) times
and comparing the simulated outputs with the expected outputs. We expect this to be of use in
our future hardware design efforts.

7. MULTIPROCESSOR EMULATION FACILITY

Andy Boughton, Jack Costanza, and Ralph Tiberio have been responsible for ensuring the
reliability of the MEF hardware. During the past year the circuit switch and the other MEF
hardware have stabilized. The high infant mortality rate among certain active components on the
circuit switch accounted for the greatest number of failures. For example, many optoisolator
failures were recorded in the first few thousand hours of service. As the number of hours on the
circuit switch boards has gone up, the failure rate has gone down. Currently, the average time
between circuit switch hardware failures is a few months. The reliability of the circuit switch
has been more than adequate 1o support large experiments.
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During the same period we have also seen a decrease in the failure rate of the MEF
processors.We have kept detailed records of all MEF hardware failures in an IBM SQL database
designed by Jack Costanza. The failure rate that we have observed on the MEF Processors is
consistent with industry averages. The failure rate of the circuit switch boards has been
substantially less.

7.1. Network Development

We have redirected our development effort from the MEF to Monsoon. The departure of the
IBM team of Atkins and Mack, coupled with the emergence of a design for an extremely
practical hardware implementation of the Tagged-Token Dataflow Architecture has caused this
change in emphasis. The MEF packet switch design of the IBM team promised greatly improved
robustness, flexibility, and reliability over the existing MEF circuit switch. The team’s departure,
however, prompted the shift to the circuit switch. While the circuit switch has proven to be
sufficient for the current 32 processor MEF configuration, the MEF packet switch would have
provided the robustness and reliability necessary to support larger and more flexible MEF
configurations.

The key characteristics required of a network for Monsoon are bandwidth and reliability.
Monsoon requires a network capable of supporting 800 megabits per second of bandwidth on
each network input. We believe that such a network can be constructed using concepts similar to
those developed for the MEF packet switch.

Andy Boughton, Chris Joerg, and Greg Papadopoulos have developed an overall structure
appropriate for the Monsoon network. The proposed structure is a staged packet switched
network. The proposed network is composed of two stages of 16-input 16-output switch boards.
The maximum size of the network is 256 inputs and 256 outputs. Each switch board is
composed of eight four-input four-output Packet Switched Routing Chips (PaRC’s). Each PaRC
will be a complete switching node with a crossbar, control circuitry, and packet buffering. The
data paths of the network are assumed to be 16 bits wide and capable of running on a 50 Mhz
clock. The network also supports circuit switched connections between network inputs and
network outputs. This facility is required by the Monsoon architecture in order to allow a
processor to maintain, if necessary, a strict order among the arrival times of its messages at other
Processors.

A preliminary logic design for one possible implementation of PaRC has been completed by
Chris Joerg. The proposed implementation is based on a number of the concepts developed for
the MEF packet switch [9]. The implementation uses LSI Logic compacted gate array
technology. The proposed PaRC is composed of four major subcomponent types; fifo input
controller, scheduler, transmitter, and crossbar. The overall structure is similar to that of the
MEF packet switch board but there are some differences. PaRC uses a distributed scheduling
scheme with a scheduler associated with each output. While buffering a packet received on a
given input and destined for a blocked output, PaRC is capable of transferring a subsequent
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packer from the same input to a different output if that output is not blocked. PaRC is also
capable of supporting circuit switched connections. The proposed PaRC was designed and
simulated using LSI Logic 7000 series logic. At the time our CAD system only supported the
7000 series and we decided to proceed with a preliminary design for PaRC rather than wait for
the upgrade of our CAD system. Since the 10000 series array is required to fabricate a chip of
the size of PaRC, we must now transfer the design to the 10000 series and simulate it in more
detail.

Jack Costanza and Ralph Tiberio have explored potential link technologies for the Monsoon
network. The size of Monsoon may require some of its network links to be 30 to 40 feet long.
We have tested a link technology that uses a 16 bit wide data path. This link is based on earlier
work done by Mark Atkins, using coaxial cables and CMOS drivers and receivers, While our
initial results have been encouraging, much more work is required to develop a link technology
with the reliability that is needed for the Monsoon network.

7.2. Evolution of MEF Software into a General Emulation Model

Two years ago, we reported on Tanglewood, a powerful, general substrate for MEF
experiments built on top of the EtherNet. Unfortunately, Tanglewood proved to be rather slow.
Last year we put Tanglewood aside in favor of CSWITCH, an extremely lean, specialized
interface to the MEF circuit switch network. This network interface was tightly integrated with
the dataflow emulator MEF-GITA. In a sense, this year we have come full circle: the circuit
switch interface has been abstracted from MEF-GITA and generalized to provide a simple,
efficient substrate for a broad variety of MEF experiments. The new CSWITCH abstraction has
facilitated many extensions to GITA and has been used as a substrate for other MEF
experiments, including DisCoRd, a graph-reduction architecture, and the game of MultiLife.

7.3. Demonstrations on the MEF

MEF made a number of public appearances this year. The demonstration to participants in the
Lisp and Functional Languages conferences in August drew a large crowd. All thirty-two TI
Explorers in the MEF were used in executing a variety of dataflow programs. In December we
showed various aspects of MEF-GITA and GITA to the executive director of DARPA. This
included system utilities of the MEEF, a large hydrodynamics code written in Id and running on
thirty-two machines, and a non-dataflow MEF application, MultiLife, employing the new
CSWITCH interface. In addition, we demonstrated many facilities in GITA for studying the
behavior of parallel programs.
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8. WORK UNDER PROFESSOR DENNIS’S SUPERVISION

Tam-Anh Chu has completed his doctoral dissertation entitled "Synthesis of Self-timed VLSI
Circuits from Graph-theoretic Specifications” under the supervision of Professor Jack Dennis. In
this thesis, he presents an approach for direct and -efficient synthesis of self-timed
(asynchronous) control circuits from formal specifications called Signal Transition Graphs
(STGs). Control circuits synthesized from this graph model are speed-independent and capable
of performing concurrent operation. The property of speed-independence means that the circuit
operates correctly regardless of variations in delays of logic gates, thus implying that the circuit
is hazard-free under any combination of gate delays. The capability of STGs for explicitly
specifying concurrent operations internal to a control circuit is unique to this model, unlike other
approaches based on Finite State Machines.

STGs are a form of interpreted Petri nets, in which transitions in a net are interpreted as
transitions of signals in a control circuit. While other synthesis approaches based on Petri nets
have not been very successful, we have developed a number of analytical results which establish
the equivalence between the static structure of nets (their syntax) and their underlying firing
sequence semantics--an analytical approach called structure theory of Petri nets. This
equivalence permits the characterization of the low-level properties of control circuits in terms of
STG syntax: the deadlock-free and hazard-free properties of circuits are characterized as
syntactic properties of liveness and persistency of STGs. A preliminary STG specification of a
control circuit can be modified into one which is live and persistent, from which a deadlock-free
and hazard-free logic implementation can be derived mechanically.

STGs allow efficient synthesis of control circuits by using a method of decomposition based on
a graph-theoretic technique called contraction. Instead of implementing a logic circuit from a
STG directly, it can first be decomposed into a number of contracted nets, one for each signal
generated by the control circuit. A logic element can then be determined from each contracted
net, and the composition of logic elements produces the final circuit implementation.
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