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Abstract

Dataflow architectures offer the ability to trade program level parallelism in order to overcome machine
level latency. Dataflow further offers a uniform synchronization paradigm, representing one end of a
spectrum wherein the unit of scheduling is a single instruction. At the opposite extreme are the von
Neumann architectures which schedule on a task, or process, basis.

This paper examines the spectrum by proposing a new architecture which is a hybrid of dataflow and
von Neumann organizations. The analysis attempts to discover those features of the dataflow architec-
ture, lacking in a von Neumann machine, which are essential for tolerating latency and synchronization
costs. These features are captured in the concept of a parallel machine language which can be grafted on
top of an otherwise traditional von Neumann base. In such an architecture, the units of scheduling, called
scheduling quanta, are bound at compile time rather than at instruction set design time. The parallel
machine language supports this notion via a large synchronization name space.

A prototypical architecture is described, and results of simulation studies are presented. A comparison
is made between the MIT Tagged-Token Dataflow machine and the subject machine which presents a
model for understanding the cost of synchronization in a parallel environment.

Key Words and Phrases: architecture, context switching, dataflow, hybrid, I-structure storage, latency,
multiprocessor, name space, process state, split transaction, synchronization, von Neumann
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Toward a Dataflow / von Neumann
Hybrid Architecture

1. Introduction

It is becoming increasingly apparent that the lessons leamed in 40 years of optimizing von Neumann
uniprocessor architectures do not necessarily carry over to multiprocessors. Compiler technology coupled
with simple pipeline design is now used effectively [20, 25, 26, 28] to cover bounded memory latency in
uniprocessors. Unfortunately, the situation is qualitatively different for multiprocessors, where large and
ofien unpredictable latencies in memory and communications systems cannot be tolerated by using
similar techniques. This is attributable at the architectural level to poor support for inexpensive dynamic
synchronization [4]. Specifically, latency cost is incurred on a per-instruction basis, but synchronization
on a per-instruction basis is impractical. A scalable, general purpose multiprocessor architecture must
address these issues. Traditional compile time sequencing is too weak a paradigm for general purposc
machines (cf., ELI-512 [15], the ESL Polycyclic processor [27]), and traditional run time sequencing
mechanisms are not sufficiently flexible (c.f., The IBM 360 Model 91 [1, 31], the Cray-1 [28]).

The overall goal of this study is to discover the critical hardware structures which must be present in
multiprocessor architectures to effectively tolerate latency and synchronization costs. This investigation
is based on demonstrating that a tradeoff exists between von Neumann instruction sequencing simplicity
and dataflow sequencing generality. To explore this tradeoff, a new architecture is developed as a syn-
thesis of the best features of von Neumann and dataflow ideas. Evaluation of this architecture is based on
characterizing the differences in various architectural figures of merit (e.g., number of instructions ex-
ecuted, instruction complexity) between the new machine and the well-studied MIT Tagged Token
Dataflow Architecture (TTDA) {2, 5, 11, 14].

The remainder of this paper provides technical justification for, and details of, the new architecture.
Section 2 describes the work leading up to this proposal, including a brief discussion of von Neumann
and dataflow architectures and the ways they address the issues of latency and synchronization. Section 3
discusses how these two apparently dissimilar architectures may be combined into a new architecture.
The architecture and instruction set of the new machine are described. Using a newly-developed code
generator and simulator for the architecture, Section 4 presents results of the first set of experiments along
with relevant comparisons to the TTDA.

2, Background

2.1. Two Fundamental Issues

In [4] we argue that architects of any scalable, general purpose multiprocessor must face two very basic
issues in order to exploit parallelism in programs. The first issue is latency: the time which elapses
between making a request (e.g., a memory reference) and receiving the associated response. Latency
often incurs a cost in the form of induced processor idle time and is directly attributable to physical
partitioning of the machine. The second issue is synchronization: the time correlation of related ac-
tivities. Synchronization also incurs a cost in the form of the fixed time required to perform a
synchronization operation plus the time lost to waiting or context switching, and is directly attributable to
logical partitioning of the program. That is, in order to exploit parallelism in a program it must be
decomposed into fragments which communicate. Managing this communication while preserving
precedence constraints is one primary job of a multiprocessor’s synchronization mechanism.

These issues are not only fundamental, they also appear to be strongly related. For example, one
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possible solution to idling the processor during a long-latency remote memory reference is to switch the
processor to another task in the same manner that an operating system will swiich contexts when an
input/output (I/0) operation is begun. Unfortunately, this requires a highly efficient synchronization
mechanism to manage the matching of memory responses with idled, or deferred, tasks.

It was our conclusion that satisfactory solutions to the problems raised for von Neumann architectures
can only be had by altering the architecture of the processor itself. Questions raised in this study regard-
ing the near-miss behavior of certain von Neumann multiprocessors (e.g., the Denelcor HEP [22, 30]) led
to the belief that dataflow machines and von Neumann machines actually represent two points on a
continuum of architectures.

Arvind has suggested that an architecture formed on the principles of split transaction 1-Structure
memory references in a von Neumann framework coupled with data driven rescheduling of suspended
instructions in the local memory of each processor would be interesting. Such a machine has the potential
of tolerating memory latency and of supporting fine-grained synchronization, and yet (in the strict sense)
is neither a von Neumann machine nor a dataflow machine. This suggestion has led me to develop the
hybrid architecture presented here. In order to better understand the motivations, the next sections re-
examine the strengths and weaknesses of von Neumann and dataflow architectures.

2.2. von Neumann Architectures

Advocates of non-von Neumann architectures (including the author) have argued that the notion of
sequential instruction execution is the antithesis of parallel processing. This criticism is actually slightly
off the mark. Rather, a von Neumann machine in a2 multiprocessor configuration does poorly because it
fails to provide efficient synchronization support at 2 low level. Why is this so?

The participants in any one synchronization event require a common ground, a meeting place, for the
synchronization to happen. This may take the form of a semaphore [9], a register [28, 22], a buffer tag
[31], an interrupt level, or any of a number of similar devices. In all cases, one can simply think of the
common ground as being the name of the resource used (e.g., register number, tag value, etc.). The
participants also require a mechanism to trigger synchronization action.

When viewed in this way, it should be clear that the number of simultaneously pending synchronization
events is bounded by the size of this name space as well as by the cost of each synchronization operation.
More often than not, this name space is tied to a physical resource (e.g., registers) and is therefore quite
small, thereby limiting support for low level dynamic synchronization. For most existing von Neumann
machines, synchronization mechanisms are inherently larger grain (e.g., interrupts) or involve busy wait-
ing (e.g., the HEP! [22, 30]). Therefore, the cost of each event is quite high. Such mechanisms are
unsuitable for controlling latency cost. Moreover, since task suspension and resumption typically involve
expensive context switching, exploitation of parallelism by decomposing a program into many small,
communicating tasks may not actually realize a speed-up.

It is important to observe that these arguments favor the alteration of the basic von Neumann
mechanism, and not its total abandonment. For situations where instruction sequencing and data depen-
dence constraints can be worked out at compile time, there is still reason 1o believe that a von Neumann
style sequential (deterministic time order) interpreter provides better control over the machine’s behavior
than does a dynamic scheduling mechanism and, arguably, better cost-performance. It is only in those
situations where sequencing cannot be so optimized at compile time, e.g., for long latency operations, that
dynamic scheduling and low-level synchronization are called for. Onc must also keep in mind that,

The HEP also exhibited several synchronization namespace problems: the register space was 0o small (2K), there was a limit
of one outstanding memory request per process, and there was a very serious limit of 128 process status words per processor.
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despite any desire to revolutionize computer architecture, von Neumann machines will continue to be the
best understood base upon which to build for many years.

2.3. Dataflow Architectures

The MIT Tagged Token Dataflow Architecture, and other dataflow architectures like it, provide well-
integrated synchronization at a very basic level. By using an encoded dataflow graph for program
representation, machine instructions become self-sequencing. One strength of the TTDA is that each
datum carries its own context identifying information. By this mechanism, program parallelism can be
easily traded for latency because there is no additional cost above and beyond this basic mechanism for
switching contexts on a per-instruction basis.

However, it is clear that not all of the distinguishing characteristics of the TTDA contribute towards
efficient toleration of latency and synchronization costs. One very sound criticism is that intra-procedure
communication is unnecessarily general. Intuitively, it should not be necessary to create and match
tokens for scheduling every instruction within the body of a procedure - some scheduling can certainly be
done by the compiler. In a datafiow machine, however, data driven scheduling is de riguewr. This
implies, for instance, that the time to execute the instructions in a graph’s critical path is the product of
the critical path length and the pipeline depth. One is left to wonder if it might not be possible, even
desirable, to optimize this by performing the necessary synchronization explicitly, and relying on more
traditional (read: well-understood) mechanisms for instruction sequencing in the remainder of the cases.
The uncertainties in this argument are the fraction of time wherein synchronization is necessary, and the
complexity of the mechanisms required.

3. Synthesis

A simple view is that von Neumann and dataflow machines are not, in fact, orthogonal but rather sit at
opposite ends of a spectrum of architectures. One might speculate that there are families of machines
along this spectrum which trade instruction scheduling simplicity for better low level synchronization,
One might further speculate that for some figure of architectural merit, taking into account hardware
complexity, instruction scheduling flexibility, and synchronization support, that there exists some op-
timum point between the two extremes, i.e., a hybrid architecture which synergistically combines features
of von Neumann and Dataflow.

Starting with the observation that the costs associated with dataflow instruction sequencing in many
instances are excessive, others have suggested that dataflow ideas should be used only at the inter-
procedural level [23] thereby avoiding dataflow inefficiencies while seemingly retaining certain ad-
vantages. This view is almost correct, but ignores the importance of the fundamental issues discussed
above. Resltricting architectures to this "macro dataflow” concept would amount to giving up what is
possibly a dataflow machine’s biggest feature - the ability to context switch efficiently at a low level to
cover memory latency.

Given this, one is led to ask the following question: what mechanisms at the hardware level are
essential for tolerating latency and synchronization costs? Based on various studies of parallel machines
[2, 7, 12, 22] the following conclusions are drawn:

e In general, on a machine capable of supporting multiple simultaneous threads of computa-
tion, executing programs expressed as a total ordering of instructions will incur more latency
cost than will executing a logically equivalent partial ordering of the same instructions. In
fact, for a class of programming languages which are non-sequential (33], expressing
programs as a partial ordering is a necessary condition for avoiding deadlock. It is assumed,
therefore, that the machine language must be able to express partial ordering.
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e In any multiprocessor architecture, certain instructions will take an unbounded amount of
time to complete {e.g., those involving communication). Such operations can be either
atomic, single phase operations or split, multiphase operations2. Multiphase processing will
always minimize latency cost over single phase processing because the potential exists for
covering processor idle time, Based on the frequency of the occurrence of such long latency
operations [2] in all but the most trivial parallel computations, efficient multiphase operation
requires specific hardware mechanisms [3, 12]. Multiphase instructions are commonly
referred to as split transactions.

The remainder of this section describes a new, hybrid architecture along with its instruction set and
programming model. The architecture can be viewed as either an evolution of dataflow architectures in
the direction of more explicit (i.e., compiler directed) control over instruction execution order, or as an
evolution of von Neumann machines in the direction of better hardware support for synchronization and
better tolerance of long latency operations. The study of this architecture will focus on the frequency of
unavoidable run-time synchronization and, therefore, the applicability of compiler-directed control over
instruction scheduling in a general-purpose multiprocessor.

3.1. Scheduling Quanta

The central idea of this new architecture involves some reconsideration of the basic unit of work in both
dataflow and von Neumann architectures. The unit of parallel computation in 2 von Neumann machine is
the task. Inter-task synchronization is typically expensive when it relies on software-implemented
mechanisms. Such cost favors large tasks which synchronize infrequently. Within a task, synchroniza-
tion of producer and consumer instructions is entirely implicit in the ordering of instructions. Between
tasks, barrier synchronization is done explicitly with guards, semaphores, or some other similar
mechanism. Context switching is usually done when necessary at the synchronization points, so an
important performance metric is the run length, or number of instructions between synchronization opera-
tions. During such a run, instructions from the same context can enter the pipe at each pipe beat. This
kind of locality can often be exploited at the hardware level; however, increasing the locality may imply a
loss of parallelism.

This is in sharp contrast to the dataflow model where the basic unit of parallel computation is the
instruction. Inter-task (i.e., inter-instruction) synchronization is performed implicitly by the hardware; the
single instruction “task"” is not awakened until its operands are available. Context switching can and does
occur at each pipe beat; any instruction n” which is enabled as a result of the completion of instruction »
may not enter the pipeline for a number of cycles equal to the pipeline depth. The intervening cycles
must be filled by instructions from another thread of execution, possibly but not necessarily from a related
context, Not surprisingly, this model is highly parallel, but the parallelism comes at the expense of some
lost locality.

3.1.1. Repartitioning Dataflow Graphs

Consider a graph for a simple code block (Figure 3-1). Note that there is some potential parallelism
(lack of interdependence between instructions) in this graph. For example, instructions I1 and IS do not
depend on one another. They depend only on the availability of the values a, b, and ¢.

More pertinent to this discussion are the instructions of the graph which directly depend on one another.
Instructions 12 and I3, for example, have an interesting dependence. Having executed 12, it is known
from the graph that instruction I3 can be executed because it only depends on I2 and a compile time

2A rudtiphase operation is one which can be divided into parts which separately initiate the operation and later synchronize
prior to using the result.
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Figure 3-1: A Sample Dataflow Graph

constant. In some sense, then, the pair ( 12 , I3 ) form a new instruction which has the same input and
output characteristics as any other instruction, and which has similar synchronization requirements.

There has been some suggestion within the dataflow community that such aggregation be exploited, if
only to improve performance. There is a danger in doing this by altering the machine instruction set,
because any statistically beneficial aggregation will have been highly dependent on compilation and code
generation techniques used while collecting said statistics. That is, the choice of aggregated instructions
may vary as improvements are made to the compiler(s). This suggests that the issues of synchronization
should be separated from the issues of opcode semantics.

A slightly more sophisticated view is to permit the compiler to aggregate an arbitrary collection of
instructions according to any criterion of optimality into a unit of schedulability. Each such unit is called
a scheduling quantum, or SQ. Their size, inter-SQ dependences, and content are determined at compile
time. In the Figure, two SQ’s are shown, but many other aggregations are possible.

3.1.2. Partitioning Strategies

Although the present discussion is oriented toward machine architectures, it is illuminating to look
briefly at methods of partitioning programs expressed as graphs into SQ’s, partly to lend credibility to the
approach, and partly to better understand the relationship between the static and dynamic scheduling
requirements of programs. Starting with a dataflow graph, partitioning may be done in a number of ways.
Issues of concem include

» Maximization of exploitable parallelism: Poor partitioning can obscure inter-procedural
and inter-iteration parallelism. The desire to aggregate instructions does not imply any inter-
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Figure 3-2: Partitioning which Leads to a Static Cycle

est in restricting or limiting parallelism - in fact, those cases where instructions may be
grouped into SQ's are quite often places where there is little or no easily exploitable paral-
lelism.

¢ Maximization of run length: Longer SQ’s will ultimately lead to longer intervals between
context switches (run length). Coupled with proper runtime support for suspension and
resumption, this can lead to increased locality. Run lengths which are long compared to the
pipeline depth have a positive effect on shortening critical path time. Short run lengths
(frequent instruction aborts due to suspension of a frame reference) tend to bubble the
pipeline.

¢ Minimization of explicit synchronization: Each arc which crosses SQ boundaries will re-
quire dynamic synchronization. Since synchronization operations are pure overhead3, it is
desirable to minimize them.

s Deadlock avoidance: Non-sequentiality implies that instruction execution order cannot be
made independent of program inputs or, said another way, instruction execution order cannot
be determined a priori. It is necessary to understand where this dynamic ordering behavior
will manifest itself in the generated code. Such dynamic ordering must be viewed as a
constraint on partitioning since two instructions whose execution order is dynamically deter-
mined cannot be statically scheduled in a single SQ.

¢ Maximization of machine utilization: Given a set of costs for instruction execution, context
switching, synchronization, and operand access, partitions can be compared on the basis of
how well they "keep the pipeline full." This metric is fairly machine specific and is in that
sense less general than those previously described but no less important.

Extant partitioning algorithms [6, 13, 21] can be classified as depth-first or breadth-first. Depth-first
algorithms [6] partition by choosing a path from an input to an output of a graph and making it into an
SQ, removing the corresponding instructions from the graph in the process. The algorithm is repeated

3Coming from a von Neumann uniprocessor mind set where explicit synchronization is virtually unheard of except in
simations which require multitasking, it is natural to view synchronization in this way. Coming from the dataflow world where
synchronization is unavoidable in every instruction execution, and where there is no opportunity to “optimize it out,” it is also
reasonable to view explicit synchronization instructions as overhead. In a later section, these perspectives are reconciled with the
view that explicit synchronization instructions are both necessary and, in some sense, beneficial.
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Figure 3-3: Program Graph Fragment

until no instructions remain unpartitioned. Such partitionings tend to be best at minimizing critical path
time and rely heavily on pipeline bypassing since, by definition, instruction n depends directly on instruc-
tion n-I. Breadth-first algorithms [13, 21] tend to aggregate instructions which have similar input depen-
dences but only weak mutual dependences. The method of dependence sets as presented in [21] is dis-
cussed in the next section.

3.1.3. The Method of Dependence Sets

In order to guarantee liveness of the partitioned graph, it is essential no cycle be introduced which
cannot be resolved. Such cycles can be either static or dynamic.

Definition 1: An unresolvable static cycle is a directed cycle of SQ’s in a partitioned dataflow
graph for which no schedule of SQ executions can terminate.

An example of how partitioning can give rise to a static cycle is shown in Figure 3-2. It can be shown
[21] that a graph interpretation rule which includes suspension and resumption, i.e., partial execution of
SQ’s, is a sufficient condition for preventing such static cycles from becoming unresolvable. Sarkar and
Hennessy [29] avoid the unresolvability issue entirely by imposing a convexity constraint on the partition-
ing - static cycles can therefore never arise.

A much harder problem is that of preventing unresolvable dynamic cycles. Dynamic cycles arise due to
the implicit arcs between STORE and FETCH instructions which refer to identical elements. Such arcs are
implicit because they are generally input-dependent.

Definition 2: An unresolvable dynamic cycle is a directed cycle of SQ’s in a partitioned

dataflow graph, augmented with all possible input-specific dynamic arcs, for which no schedule
of of SQ executions can terminate.

It is necessary to constrain partitioning such that unresolvable dynamic cycles provably cannot arise for
any possible set of program inputs. An example will make this clearer. Consider the following Id

program fragment:
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Figure 3-4: Partitioning which Leads to Deadlock

{ a = vector (0,2):;
af[0] = 0;

a[l] = a[i] + 1;
af2] = a[j] - 2;

in a[l] - a[2]}

and its associated graph®3 in Figure 3-3. Such a graph would terminate under a dataflow instruction
execution rule. However, without exercising some care, partitioning this graph into SQ’s can lead to
deadlock. Putting all of these instructions into a single partition won’t work, nor will a partitioning such
as that shown in Figure 3-4. Such partitionings result in code which can never terminate, despite the
adherence to static dependences in deriving the individual SQ schedules.

The problem, of course, is that the actual instruction execution order in the dataflow case depends on the
indices used in the structure operations, where no such dependence is allowed in the partitioned case.
Figure 3-5 shows two instruction execution orderings which must be possible in any correctly compiled

“4The descriptor for vector A is depicted as a constant to simplify the drawings. This is done without loss of generality.

5In the sequel, it is assumed that global storage is read by multiphase operations, and that the memory controller implements
I-Structure-like synchronization [18]. In that sense, FETCH and STORE behave as I-FETCH and I-STORE.
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Figure 3-5: Input Dependent Execution Order

version of this program. These orderings demonstrate the dynamic dependences between STOREs and
FETCHes. If these dependences were fixed, and if it were possible to determine them at compile time, SQ
partitioning to avoid deadlock would be straightforward. Since this is not the case, the problem is one of
developing a safe partitioning strategy which is insensitive to the arrangement of dynamic arcs. One
approach is to make each partition exactly one instruction long, i.e., the dataflow method. This, of course,
is at odds with the desire to exploit static scheduling,

Another method is to give names to sets of dependences. The following definitions are in order:

Definition 3: A FERTCH-like output of an instruction is one which is associated with a
dynamic dependence. An instruction itself is FETCH-like if at least one of its outputs is
FETCBH-like, implying that the instruction initiates a split transaction (long latency) operation.

Definition 4: The input dependence set for an instruction in a well-connected graph [32] is the
union of the output dependence sets of all instructions from which it receives input. The input
dependence set of the root instruction is defined as { o ].

Definition 5: The output dependence set for a given output of an instruction is either the
instruction’s input dependence set if the output is not FETCH-like, or the union of the
instruction’s input dependence set with a singleton set which uniquely names the given output if
it is.

Note that it is a FETCH-like instruction’s output, and not the instruction itself, with which is associated
a change of dependence set. The intuition is that FETCH-like instructions themselves can never suspend
while waiting for their output. Rather, the instructions which receive the FETCH-like instruction’s output
are the ones which will suspend. Figure 3-6 makes this clearer. A FETCH-like instruction can be viewed
as gating the value of a STORE-like operation; the dynamic arc terminates on the virtual gate. It has the
effect of suspending the "+" instruction until both the STORE and the FETCH have completed.

Applying the definitions to the graph in Figure 3-3 and using f8, v, and & (in that order) for unique names
results in the following assignments of input dependence sets to instructions (assume that vector A and the
indices i,/ are derived from the root with dependence set {a}):
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Figure 3-6: Gating Effect of FETCH-like Instructions

Instruction Input Dependence set
STORE(() {a}
FETCH(i) {a])
FETCH(}) [a])
FETCH(1) (o)
FETCH(2) {a}
+1 {aB)
STORE(1) {aB}
-2 (oY)
STORE(2) (ay)
- {ad)

The assignment of instructions to SQ’s is now straightforward: an SQ is associated with each unique
dependence set. Instructions are assigned to the SQ corresponding to their input dependence set in an
order corresponding to their topological ordering in the unpartitioned graph. Since each distinct combina-
tion of dynamic arcs denotes a single SQ, dynamic scheduling can change to match the dynamic depen-
dences. The correctly partitioned graph is shown in Figure 3-7. The determination of synchronization
points is also straightforward: each dependence (arc) which crosses SQ boundaries must be explicitly
synchronized by the consumer, or sink, SQ. Consumers in the same SQ as the instruction producing a
value need not perform synchronization - it is implicit in the static scheduling of instructions within the
SQ.

In [21], the deadlock-avoidance property of this algorithm is proved. Moreover, if procedure calls are
compiled as FETCH-like operations, the method of dependence sets naturally allows inter-procedural
parallelism. A simple extension to k-bounded loops [10] also allows inter-iteration parallelism. Run
length, explicit synchronization, and machine utilization properties of this algorithm are studied in a later
section,
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3.2. Parallel Machine Language

Let’s review the essential conclusions so far. Latency and synchronization have been shown to be
fundamental issues in the development of scalable, general purpose multiprocessors, and the issues scem
related in fairly incestuous ways. Basic changes to traditional architecture are necessary for dealing with
them. One such change is that the execution time for any given instruction must be independent of
latency (giving rise to split transactions). A second change is that synchronization mandates hardware
support: each synchronization event requires a unique name. The name space is necessarily large, and
name management must be efficient. To this end, a compiler should generate code which calls for
synchronization when and only when it is necessary. A natural approach is to extend instruction sets to
express the concepts of both implicit and explicit synchronization. Such an instruction set, which cap-
tures the notions of bounded instruction execution time, a large synchronization name space, and means
of trading off between explicit and implicit synchronization is called a parallel machine language (PML).

It has been shown that adding partitioning to a dataflow graph is tractable. Doing so moves dataflow
graphs into the realm of parallel machine languages. The question remains of how to organize a machine
to efficiently implement a PML. One method would be to start with the explicitly-synchronized dataflow
paradigm and 1o augment it with facilities for compiler-directed instruction scheduling (e.g., Monsoon

{24]). Another approach, described below, would be to start with the implicitly-synchronized von
Neumann paradigm and to augment it with facilities for dynamic instruction scheduling.

3.3. The Hybrid Multiprocessor
The architecture is modeled as an array of » identical processors, connected through a suitable switching
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network to a globally addressed I-Structure memory®. Each processor is made up of a pipelined datapath,
a collection of high speed registers, and a local memory. Instructions are provided which allow move-
ment of data between local and global memories, and between registers and local memories. All inter-
processor communications can be thought of as going through global memory’. The local memory is both
physically and logically local to a processor. For each invocation of each code block, a frame is allocated
in the local memory of exactly one processor to hold local variables®. References to frame slots can be
synchronizing or non-synchronizing.

3.3.1. Processor Hardware

The hardware which makes up a hybrid processor is strongly similar to that of a von Neumann machine,
but with a few important differences (Figure 3-9). The datapath (ALU, etc.) and registers are conven-
tional. The hardware datatypes are integers, floating point numbers, memory addresses, and the like. The
most significant new datatype is the continuation which is a tuple of a program counter (PC) and a frame
base register (FBR). Logical continuation states are depicted in Figure 3-10 and are encoded by the
location of the continuation. Enabled continuations reside in the Enabled Contimuation Queue. The
running continuation resides in the Active Continuation Register. Suspended continuations reside in
frame slots. Uninitiated and terminated continuations are not explicitly represented.

5The behavior of an I-Structure Storage umit is discussed extensively in [18, 19] and will not be repeated here. It is sufficient
1o note that all I-Structure references are split transactions and, therefore, never block the processor pipeline. Moreover, one can
view the functions of an I-Structure storage as a superset of the functions of a traditional store, i.e., at the hardware level,
imperative reads and writes can be performed as easily as I-Structure reads and writes.

TThis restriction can be relaxed somewhat. It is possible to pass around local memory pointers if they are used for remote
store-in, i.e., direct forwarding of values from one processor to another. This can be used to great advantage in procedure
finkage. The ability to do this is a function of the lifetimes of local memory addresses.

8Frame sizes are determined at compile time.



§3.3.1 * PROCESSOR HARDWARE ¢ 13

to/from
Global Program
Memory Memory

A ALU OQUTPUT

vy
: Active
Local Instruction FBRAI Continuation
Data
Memory k 2 Enabled
é € . Continuation
‘Frame Instruction Queue
Address Decoding
Regist
cgnes Register
Address
Immediate
Value
I 1
YVYY YVVY

ALU OUTPUT

Figure 3-9: The Hybrid Processor

The PC of the running continuation denotes the instruction 10 be dispatched next. Instructions may
make operand references to the registers or to slots in the local data memory. The local memory’s
behavior is similar to I-Structure storage in that each slot has several presence bits associated with it. A
non-synchronizing reference to a slot behaves as a normal memory read operation. Synchronizing
references invoke suspension of the running continuation if the slot being read is marked as EMPTY.
Synchronizing reads of a WRITTEN slot behave just the same as nonsynchronizing reads.

The key hardware extension lies in the efficient state-transition management for continuations. Because
continuations are word-sized objects, they can be easily fabricated when an SQ is invoked. When the
running continuation encounters a blockage (via a synchronizing reference to an empty frame slot), the
hardware simply stores the running continuation into the slot, marking it as now containing a continua-
tion. An enabled continuation can then be selected from the queue. Upon satisfaction of the blockage
(some other continuation writes into the slot), the suspended continuation is extracted and re-queued. A
continuation may be suspended a number of times between initiation and termination. This behavior is
reminiscent of the traditional task in a demand paged system which, upon encountering a missing
memory page, becomes suspended until the page is made available.

Registers may be used freely between instructions which make suspensive references to the frame, but
since no register saving takes place when a suspension occurs, register contents cannot be considered
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valid across potentially suspensive instructions. The cost of a register reference (maximum two per
pipeline beat) is less than a local memory reference (maximum one per pipeline beat) which is, in tum,
less than a global I-Structure reference (split transaction, possibly with an explicit address arithmetic
instruction). Local memory is referenced relative to the FBR in the current continuation. I-Structure
address space is global and is shared.

Orne can imagine a number of implementations of suspension which incur costs ranging from nothing to
many tens or hundreds of instructions. In order to keep the impiementation from distorting the kinds of
code a compiler might generate, it is imperative that the cost of performing a context switch must be
exceedingly low - on the order of a single pipe beat. To make this practical and general, context state
must be easily saved in a single cycle. Moreover, it must be nearly trivial to create or destroy such
context states as SQ’s are initiated and terminated. Lastly, the number of such extant contexts cannot be
bounded by some small hardware resource. For these reasons, context state atf suspension points is
represented solely by the continuation and its associated frame. By making the continuations no larger
than a frame slot, saving and restoring becomes nearly trivial (a single memory reference) compared to
schemes wherein registers are also saved®.

The simple minded dispatch instructions sequentially until blocked paradigm works well, and has a very
positive effect on locality. Other approaches are possible, however. The high-level goal is to dispatch
instructions so as to keep the pipeline full of useful work. Non-useful work includes execution of
NO-OPs (i.e., pipeline bubbles) and instructions which suspend. Each processor maintains a queue of
enabled continuations, One may view each continuation as logically contributing one instruction (the one
pointed to by its PC) to the set of enabled instructions. At each time step, the processor’s instruction
dispatcher can freely choose one instruction from among this set. Optimal dispatching of instructions is
impossible without foreknowledge of which instructions in the set will suspend. However, simple decod-
ing of instructions allows the dispatcher to know if the instruction cannot suspend (e.g., those which only
reference registers or which make nonsuspensive references to frame memory) or if it might possibly
suspend. A good strategy, then, is to divide the set of enabled instructions along these lines and to
dispatch first from the subset of those which cannot suspend, delaying as long as possible execution of
instructions which might suspend (thereby reducing the probability of suspension in many cases)1°,

ntuition leads one to believe that such a scheme results in degraded performance in the form of additional memory
references. As discussed in [21], this is an oversimplification because frame storage can be cached easily withous a coherence
problem. See Section 5. Experience generating code from dataflow graphs shows this strategy to work. More sophisticated code
generation techniques can make even better use of such non-saved registers.

I0This scheme is not ideal, however. Consider the case of having postponed execution of a long-latency but potentially
suspensive FETCH. If executing the instruction does not, in fact, cause suspension, delaying it will give up cycles which could
otherwise have been used to mask the latency.
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3.3.2. Instruction Set

The instruction set is simple and regular in structure, with addressing modes and instruction functions
being largely orthogonal. Instructions are readily implemented in a single cycle. The basic addressing
modes are IMMEDIATE, REGISTER, FRAME NONSUSPENSIVE, and FRAME SUSPENSIVE. All unary and bi-
nary ops for arithmetic and logicals can take immediate, register, or frame slot operands and produce
register or frame slot resuits. The MOVE opcode encodes all intra-process data movement. It is capable of
moving an immediate, register, or frame slot to a register or frame slot. The MOVE-REMOTE opcode
initiates movement of a value to a remote (non-local) frame slot. This instruction is used for procedure
linkage, and is the only way one procedure can store into another’s frame. The LOAD-FRAME-INDEX
opcode and its variants initiate an indexed read from I-structure memory to the frame. STORE and its
variants initiate a store to I-Structure memory. The TEST and RESET opcodces are provided for explicit
synchronization and frame slot re-use, respectively. RESETSs occur within the body of a multiple SQ loop
to re-enable synchronization prior to iteration. The BRANCH and BRANCH-FALSE opcodes do the ob-
vious things, causing the PC in the continuation to be replaced (conditionally in BRANCH-FALSE). The
CONTINUE opcode causes a fork by creating and queueing a new continuation. The corresponding join
operation is implemented implicitly through frame slots. A number of other instructions unique to
TTDA-style program graphs have been implemented. The simplest are the CLOSURE ops which con-
struct and manipulate closures as word-sized objects (rather than memory-bound structures). These are
arguably easy to implement in single machine cycles. The remainder are instructions which form
manager message packets to allocate and deallocate various resources.

In translating program graphs to machine language, arcs are mapped to frame slots. Slots may be
re-used within a code block but it is the responsibility of the compiler to guarantee that all reading of a
slot is complete before it is re-written. Synchronizing operand reads are used to implement inter-SQ
communication including the synchronization associated with FETCH-like instructions. Note that it is the
reader of the slot which chooses to synchronize or not; it is not a property of the slot itself. Each slot may
have multiple readers, some synchronizing and some nonsynchronizing.

4. Characterization of the Hybrid Architecture

Using the method of dependence sets, a new code generator for the Id compiler [32] has been con-
structed to generate PML code. A heavily instrumented simulation model of the hybrid machine has been
built which allows study of the following, using compiled Id programs:

e the effects of architectural assumptions (e.g., code partitioning) on program behavior. This
idealized model imposes only very weak physical constraints, i.e., the number of processors
is assumed unbounded, all instructions are assumed to execute in unit time, and communica-
tion latency is assumed zero. Continuations execute when and only when the synchroniza-
tion constraints are satisfied.

o the effects of physical constraints on otherwise idealized program behavior, To the idealized
model are added realistic limits such as nonzero communication latency, finite processors,
and realizable scheduling,

This section presents experimental results from the first set of simulation studies of the hybrid architec-
ture along with a comparison to similar results from studies of the TTDA. One very interesting metric is
the dynamic instruction count. Because synchronization is not entirely implicit in the hybrid model, it is
reasonable t0 expect that compiling for and executing a program on the hybrid machine should result in
more instructions executed than in the case of the same program compiled for and executed on the TTDA.
By experimental results, it is shown that this is not necessarily so.
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Problem| Dynamic Instruciion Counts
Stze TTDA  Hybrid
Procedure calling overhead:
CONS 14 14
CAR 9 4
CDR 9 4
Fibonacci 10th 3,708 3,265
Lasts:
Reverse 9 497 585
Compute Length 9 506 439
Multiplicative Reduction 9 1,014 909
Vectors and Matrices:
Trivial Sum 500 5,023 8,513
Sum of Squares 500 19,072 23,058
Linear Recurrence 500 18,047 15,275
Pointwise Product 20 290 445
Inner Product 20 285 359
Matrix Multiplication 10x10 20,716 26,255

Figure 4-1: TTDA and Hybrid Instruction Count Comparison

4.1. Power of a Hybrid Instruction

In the TTDA model, each invoked instruction constitutes its own continuation. Each instruction can
synchronize or join two threads of computation and can fork two new threads in addition to performing
some computation. In the hybrid model, each instruction is typically one of many in a single SQ. Asin
the TTDA, each instruction can join two threads of computation by making two suspensive references in
the frame. However, each instruction can continue only a single thread of computation - forks are done
explicifly by the CONTINUE instruction and therefore represent additional overhead. Assuming all other
things equal, e.g., the opcode set, hybrid instructions are strictly less powerful than TTDA instructions.

An interesting question, as alluded to earlier, is whether the full generality of TTDA instructions is used
frequently or infrequently. By using the identical program graphs in generating code for both the TTDA
and the hybrid machine, it has been possible to study this question in some detail.

Figure 4-1 shows some dynamic instruction counts for various Id benchmark programs. These numbers
were derived from simulation programs written specifically for the TTDA and the hybrid architecture,
and count only program, not system or manager, instructions!!'12, The counts do not favor either ar-

1 neither case is the type of simulation mode! (idealized or not) relevant for instruction counts. Instruction counts do not
vary across these models.

12programs in the Procedure Calling Overhead section are essentially wivial routines enclosed in the standard procedure call
framework. List programs (implemented with CONS, CAR, and CDR) are memory intensive. Vector programs (implemented
with ARRAYs) include both a significant amount of memory traffic and ALU operations.
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Figure 4-2: Idealized Parallelism Profile for FIBONACCI(14)

chitecture but rather show that, for a variety of program types, instruction counts are comparable to first
order. If hybrid instructions are less powerful, how can this be?

One part of the answer lies in the reduced number of overhead operators in the hybrid code resulting
from fewer independent threads. In the TTDA, termination detection is done via trees of IDENTITY
instructions. The leaves of these trees are the instructions which otherwise produce no tokens, eg.,
STORE operations. In the hybrid model, it is only necessary to test for termination of the SQ in which
such instructions reside. Hence, n STOREs in one SQ imply only one explicit synchronization operation
instead of a binary tree of #-/ IDENTITY instructions.

Another part of the answer is elimination of the need to perform explicit fan-out of FETCHed values; the
associated frame slots can simply be re-read. In the TTDA, however, FETCR operations can have only a

single destination instruction. Multiple destinations imply the need for an IDENTITY instruction as the
destination for the FETCH.

Because, in general, it would take two hybrid instructions to mimic the function of a single TTDA
instruction (join two threads, compute, continue two threads), one might expect the hybrid count to be
roughly double the TTDA count, yet the counts are nearly the same. The effects described above, when
combined, represent roughly 30% of this discrepancy. It is likely that the remainder is attributable to the
fact that it does not in general take two hybrid instructions to displace a single TTDA instruction. There
are many instances of TTDA instructions in typical programs where the full generality and power of the
instruction is not being used in the sense that the hybrid partitioning strategy chooses to eliminate it rather
than mimic it. This conclusion is bome out by comparing the dynamic instruction mixes (instruction
types) executed by the two architectures when running the same program. In the hybrid model, paral-
lelism is retained in the machine code only when dictated by dynamic arc constraints. According to this
view, the remainder of the parallelism in TTDA code is superfluous. In the next section, we examine the
effect of this reduced parallelism in terms of the hybrid machine’s ability to tolerate latency.
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Figure 4-3: Comparison of Execution Time for Various Latencies

4.2, Parallelism and Latency

No amount of "optimization" by packing instructions into larger chunks is worth much if it negates the
architecture’s ability to synchronize efficiently or to tolerate latency. It is reasonably clear that the hybrid
architecture provides the necessary synchronization support at a basic level for the purposes of program
decomposition. But what about the hybrid machine’s tolerance of long latency operations?

Consider as an example the recursive Fibonacci program of the previous section. Running this program
under the idealized model yields a parallelism profile (Figure 4-2) showing the number of concurrently
executable continuations as a function of time. This is more a characteristic of the program than of the
machine - it shows the available paratlelism subject to the chosen partitioning. In such an ¢xperiment, the
cost of communicating across processor boundaries is the same as the cost of communicating within a
processor: results of executing an instruction are available in the following cycle. The parallelism profile
is a metric of the method of logically decomposing a program.

The effect of physical partitioning, or distributing a program can be estimated by assigning a cost to
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Problem Instr Aborts % Run

Size Count Length

Procedure calling overhead:

CONS 14 4 28.57 1.3

CAR 4 1 2500 1.0

CDR 4 1 25.00 1.0

Fibonacci 10th 3,265 265 8.12 34
Lists:

Reverse 9 585 67 11.45 3.3

Compute Length 9 439 68 1549 24

Multiplicative Reduction 9 909 121 18.31 2.7

Vectors and Matrices:

Trivial Sum 500 3,513 2 0.06 585
Sum of Squares 500 23,058 3,004 13.03 3.8
Linear Recurrence 500 15,275 2 0.01 2,182
Pointwise Product 20 445 42 9.44 6.5
Inner Product 20 359 41 11.42 5.4
Matrix Multiplication 10x10 26,255 2,445 9.31 5.0

Figure 4-4: Hybrid Instruction Aborts and Run Length

each inter-processor communication in terms of a delay between production and use of results (i.e., a
latency), by setting a limit on the number of processors (each processor can execute at most one instruc-
tion at any time #), and by allocating procedure invocations to individual processors by some rule. Note
that this is more restrictive than a simple "finite processor” limit which simply forces & instructions on p
processors to take rklp1 time. The top profile of Figure 4-3 shows the effect of these assumptions with
the latency still zero, using a random policy for assigning invocations to processors. By increasing the
latency and measuring the increase in execution time, it is possible 0 quantify the architecture’s ability to
use excess parallelism to cover the latency. In the lower half of Figure 4-3, the inter-processor latency
has been increased from 0 to 10 pipe steps, yet the increase in critical path time is only 13.2%.

4.3. Dynamic Run Length

An important issue in partitioning as addressed carlier is the dynamic run length, or number of instruc-
tions successfully executed between suspensions. Figure 4-4 shows the instruction counts (from Figure
4-1 - this is the number of instructions which ran to completion), the number of aborted instructions
(aborted instructions are not included in instruction count), the ratio of aborts to instructions expressed as
a percentage, and the mean dynamic run length. With the exception of CAR, CDR, and CONS, aborted
instructions are 8 to 16% of instructions successfully executed, and run lengths of 2.4 to 6.5 are typical.
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5. Conclusion

A new architecture has been described which supports a parallel machine language, capturing the no-
tions of split transaction operations, a large synchronization namespace, and means for trading between
implicit and explicit synchronization. It has been demonstrated that the architecture is capable of effec-
tively exploiting parallelism in partitioned dataflow graphs, of trading program parallelism for latency
cost, and of enabling a compiler to control locality to first order.

From the preliminary results presented above, it appears that little of the full power of the TTDA's
synchronization mechanism is actually used in typical programs. This leads to the observation that
explicit synchronization instructions, used when necessary, may in some sense be cheaper than paying the
full cost of synchronization at each instruction. This is, perhaps, the equivalent of the RISC argurnent
applied 1o multiprocessing.

As yet unanswered is the question of the effectiveness of the hybrid architecture, or architectures like it,
for other parallel programming models (e.g., Halstead’s MultiLisp [16]). It is conjectured that simple
extensions to the frame slot synchronization mechanism can effectively support demand-driven, or
EVAL-when-touched scheduling. Of considerable practical interest is the possibility of targeting
FORTRAN compilers to the hybrid paradigm.

Work from the present project reported elsewhere [21] includes integration of a local memory cache
into the processor’s design. Since local memory can only be read by the local processor, there is no issue
of global coherence. Such a cache can lift the restriction of a single frame access per pipe beat. Many
improvements to code generation have also been made including the k-bounded loop schema [10], while
others have only been briefly considered, e.g., pecphole optimization and other criteria for SQ partition-
ing,

It is encouraging to see how the research efforts of various groups are converging on hybrid models
such as the one presented here. Space constraints prohibit review of these projects; the interested reader
is directed to the the work of Buehrer and Ekanadham [8], Halstead and Fujita [17], Papadopoulos
[24] Sarkar and Hennessy [29], and Bic [6].
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