ID
(Version 88.0)
Reference Manual

Computation Structures Group Memo 284
March 25, 1988

Rishiyur S. Nikhil

This report describes research done at the Laboratory for Computer Science of the Massachusetts Institute of Technology. Funding for the Laboratory is provided in part by the Advanced Research Projects Agency of the Department of Defense under the Office of Naval Research contract N00014-84-K-0099.
Id
(Version 88.0)
Reference Manual
Rishiyur S. Nikhil
March 25, 1988
Computation Structures Group
Laboratory for Computer Science
Massachusetts Institute of Technology
545 Technology Square,
Cambridge, MA 02139, USA

Table of Contents at end of document.

1 Introduction and History

Id is a parallel programming language designed by members of the Computation Structures Group of MIT/LCS. It is used for programming dataflow and other parallel machines.

Id is a functional programming language augmented with a parallel data-structuring mechanism called I-structures. The purely functional subset of Id is described in Section 2, and non-functional extensions are described in Section 3.

Id traces its roots back to 1978 [1]. Since then, versions of Id have run on simulated dataflow machines, and more recently on a real multi-processor emulation of a dataflow machine. Id/83s [4] was a first cut at a major redesign of the language, based on that experience and on modern ideas in functional languages. This evolved into Id Nouveau (1986) [5], and was revised in 1987 [3]. In 1987 we also developed an abstract operational semantics for Id based on rewrite rules instead of dataflow graphs [2].

Id continues to be a research language. Current investigations include better data structures for parallelism, constructs to express non-deterministic computations, I/O, resource-management etc.

This document is not a tutorial on Id.

Attention: Appendix B describes current implementation restrictions, quirks, etc. Throughout this document, the sentence "(But see Appendix B.)" draws your attention to some such restriction.

1.1 Incompatible Changes

The following are incompatible changes from the previous version of Id ("Id Nouveau", April 1987 [3]).

- Function definitions (see Section 2.26) are now always introduced by the def keyword. Previously, function definitions at the top-level had the keyword, whereas function definitions inside blocks did not.
- The terms array, vector, matrix, kxDarrays, etc. are now keywords introducing array comprehensions (see Section 2.28.4).
- We are now serious about type-checking. Unless you explicitly disable it, every program must now pass the type-checker. Some existing programs will now be rejected by the type-checker. Typically, such programs violate the restriction that all components of a list and all components of an array must be homogeneously typed. This restriction was mentioned in the Id Nouveau document, but was not enforced by the compiler.
- For-loop syntax has changed (generalized). Instead of:

\[\text{for } j \text{ from } e1 \text{ to } e2 \text{ by } e1n \text{ do} \]

we now say:

\[\text{for } j <- e \text{ do} \]

where e is any list expression. The phrase:

\[e1 \text{ to } e2 \text{ by } e1n \]

is now a full-fledged expression (i.e., it can be used anywhere), and denotes a list containing the arithmetic series from e1 through e2 with e1n increment.
2 Functional Id

This section describes the purely functional (and referentially transparent) subset of Id.

2.1 Expressions, Statements and Types

Two major syntactic categories in Id are expressions and statements.

Every expression denotes a value. We use the generic symbols “e”, “e1”, etc. to designate arbitrary expressions.

Statements appear in the top-level of programs, in blocks, etc. Statements are usually type- or identifier-bindings.

Id has a polymorphic type system. Every expression and statement must “type-check”, i.e., satisfy certain type-rules; these are explained as each construct is introduced. Types are described by type-expressions. We use the generic symbols “t”, “t0”, etc. to refer to types.

Type-checking in Id is done by type inference, i.e., the programmer is not required to declare the types of identifiers or expressions—the type-checker automatically deduces them from the context. For readability and better error-messages, however, there is a facility for declaring types of identifiers (using typeof statements, see Section 2.8).

For explaining the type rules in this manual, we use the notation:

e : t

to assert that the value of expression “e” has type “t”, i.e., lies in the set of values denoted “t”. This notation is not part of the language.

2.2 Programs

A program is a collection of statements, and defines an environment:

\[\text{STATEMENT} ; \]
\[\ldots\]
\[\text{STATEMENT} ;\]

(But see Appendix B). The order of the statements is not relevant.

2.3 Grouping

Any expression or type-expression may be enclosed in parentheses. This may be done to override precedence, or merely for visual clarity.

\[(2 + 3) * (4 - (f x))\]

\[(\text{btree} \ (\text{btree} \ y))\]

(Parentheses are also used for “quoting” binary infix operators; see Section 2.11.)

2.4 Comments

Comments begin with “%” and can contain any text up to the end-of-line:

\[\% \text{anything goes till the end of the line}\]

We recommend the guidelines on page 348 of the Common Lisp manual (Guy L. Steele, Jr., Digital Press, 1984) for commenting code, except that Id has “%” instead of Lisp’s “;” as the comment character.

2.5 Identifiers

Identifiers may contain alphabetics, digits, “_”, “?” and “-” in any order. Examples:

\[x\]
\[harry\]
\[desmond_2.2\]
\[2D_array\]
\[nil?\]
\[done?\]

A lexical token is an identifier only if it is not a reserved word or a number (see Sections 2.5.1 and 2.14). Upper- and lower-case letters are equivalent.

The identifier “.” consisting of only an underscore is treated specially, and is allowed only in patterns (see Section 2.21).
2.5.1 Reserved Words

The following words are reserved and may not be used as identifiers:

```plaintext
abstype  else      or
accumulate error      rep
and      finally  seq
array    for        then
by       fun        to
call     gets      type
case     if        typeof
def      in         unless
defsubst matrix     vector
do       next       when
downto   of         while
```

In addition, the following families of words are reserved:

- `k_{0..n}`
- `k_vectors`
- `k_arrays`
- `k_matrices`
- `nd_array`

for each `k \geq 1` and `n \geq 1`.

2.5.2 Standard Identifiers

Standard identifiers are not reserved words (i.e., they can be redefined by the programmer. However, to enhance readability and reusability of code, the programmer is strongly advised not to redefine them. See Appendix A for a listing of standard identifiers.

2.6 Types

We use the generic symbols "t", "t₁", etc. to designate types.

Types are denoted by `type-expressions`, which are either `Type Variables`:

```plaintext
*3  *0  *13
```

or `N-ary Constructed Types` (`N \geq 0`):

```plaintext
identifier t₁ ... tₕ
```

Pre-defined 0-ary constructed types (also called `Type Constants`):

- `c` (characters)
- `n` (numbers)
- `b` (booleans)
- `s` (character strings)
- `sym` (symbols)

Pre-defined constructed types:

- **Array Types**:
 - `(1D_array t)` `(vector t)` `(array t)`
 - `(2D_array t)` `(matrix t)`
 - `(3D_array t)`
 - ...

- **List Types**:
 - `(list t)`

Pre-defined constructed types that also have special syntax:

- **Tuple Types**:
 - `t₀, ..., tₙ`

- **Function Types**:
 - `t₀ -> t₁`

The "->" type operator associates to the right, so that the parentheses can be omitted in the following type-expression:

```plaintext
N -> (N -> B)
```

2.6.1 Precedence in Types

In each of the following examples, the parentheses may be dropped:

```plaintext
(btree N) -> N
(list N), N
(N -> N), N
```

2.6.2 Polymorphic Types

A type containing a type variable is a `polymorphic` type. e.g., the type of `.getLength :: [a] -> Int`, the list constructor, is:

```plaintext
*0 -> (list *0) -> (list *0)
```

The type variable stands for "any type", indicating that "::" can construct lists of any type.

However, the type variables in a polymorphic type must be instantiated `uniformly`. These are valid instantiations:
\[\text{null} \to (\text{list } \text{null}) \to (\text{list } \text{null}) \]
\[\text{bool} \to (\text{list } \text{bool}) \to (\text{list } \text{bool}) \]
\[(\text{null} \to \text{bool}) \to (\text{list } (\text{null} \to \text{bool})) \to (\text{list } (\text{null} \to \text{bool})) \]

but this is not a valid instantiation:

\[\text{c} \to (\text{list } \text{bool}) \to (\text{list } \text{null}) \]

Thus, we can have lists of numbers, lists of booleans, etc. but a list cannot contain both numbers and booleans (unless packaged into a disjoint union, see Section 2.9).

2.7 Overloading

There are many identifiers that are not polymorphic but overloaded. For example, the equality symbol is available at every non-abstract, non-functional type (see Section 2.12).

For each use of an overloaded identifier, the type-checker will attempt to infer the particular type at which it is used from the surrounding context. If it is unable to do so, an error will be flagged.

For the moment, only built-in symbols (like equality) are overloaded. We expect soon to be able to allow the user to overload identifiers, too.

2.8 Type Declarations

An identifier’s type may be declared anywhere in its scope. The statement:

```
\text{typeof } x = t
```

asserts that identifier \(x \) denotes a value of type \(t \). Example:

```
\text{typeof map_list =}
\begin{array}{c}
(\ast 0 \to \ast 1) \to (\text{list } \ast 0) \to (\text{list } \ast 1)
\end{array}
```

Since \(\text{Id} \)'s type-checker automatically infers the types of all identifiers, user-specified type declarations are not strictly necessary. However, we strongly recommend their plentiful use because:

- They make programs more readable;
- Error messages from the type-checker will be more localized, and hence more helpful.

Note: a type declaration statement does not introduce any new identifiers.

2.9 Algebraic Types

Algebraic types are also called “disjoint union” types.

New algebraic types are declared by the statement:

```
type tx tv1 ... tvn = disj1 | ... | disjm
```

Here, \(tx \) is the name for the new type. Its \(n \geq 0 \) type parameters are specified by the type-variables \(tvj \). Its \(m \geq 1 \) disjuncts are specified by the \(disj1 \)s, each of which has the form:

```
tcons tv1 ... tvl
```

tcons is an identifier and represents a new \(L \)-adic \(\geq 0 \) Constructor. Each \(tvj \) is a type-expression constraining the type of the \(j \)’th argument of the constructor. Thus,

```
tcons :: tv1 -> ... -> tvl -> (tx tv1 ... tvl)
```

Examples

Lists of numbers:

```
type nlist = nnil | ncons N nlist
```

The constructors thus defined are:

```
nnil :: nlist
ncons :: N -> nlist -> nlist
```

Polymorphic lists:

```
type list *0 = nil | (:) *0 (list *0)
```

The constructors thus defined are:

```
nil :: (list *0)
( :: ) :: *0 -> (list *0) -> (list *0)
```

Polymorphic binary trees:

```
type btree *0 = empty_btree
| bnode *0 (btree *0) (btree *0)
```

The constructors thus defined are:

```
empty_btree :: (btree *0)
bnode :: *0 -> (btree *0) -> (btree *0) -> (btree *0)
```
2.10 Function Applications

Every function has type \(\text{t0} \to \text{t1} \) for some argument type \(\text{t0} \) and result type \(\text{t1} \).

Assuming:

\[
\begin{align*}
\text{ef} &:: (\text{t0} \to \text{t1}) \\
\text{ex} &:: \text{t0}
\end{align*}
\]

then the application expression:

\[
\text{ef} \text{ ex} :: \text{t1}
\]

denotes the application of a function (the value of ef) to an argument (the value of ex).

Application associates to the left. Thus, the following two expressions are equivalent:

\[
\begin{align*}
\text{e1 e2 e3} &\ldots \text{en} \\
((\text{e1 e2}) \text{ e3}) &\ldots \text{en})
\end{align*}
\]

2.11 Operators

Some functions are designated by special symbols called operators. Unary prefix operator expressions are written:

\[
\text{op e}
\]

Binary infix operator expressions are written:

\[
\text{e1 op e2}
\]

All binary operators can be treated as values by enclosing them in parentheses, e.g.,

\[
(+ \text{ e1 e2}) \text{ foldr_list (+) 0 list_of_N}
\]

This is the only special use of parentheses in Id.

The operator \(-\) is used both as a binary infix operator and as a unary prefix operator. \((-\) stands for the value of the binary version. To get the effect of the unary version, you can say:

\[
((-\) 0)
\]

(partially applying the binary operator to 0).

2.11.1 Operator Precedence

In decreasing precedence:

<table>
<thead>
<tr>
<th>(\text{operator})</th>
<th>(\text{associates})</th>
</tr>
</thead>
<tbody>
<tr>
<td>application</td>
<td>L</td>
</tr>
<tr>
<td>-</td>
<td>R</td>
</tr>
<tr>
<td>(\ast /)</td>
<td>R</td>
</tr>
<tr>
<td>+ -</td>
<td>L</td>
</tr>
<tr>
<td>to by</td>
<td>-</td>
</tr>
<tr>
<td>;</td>
<td>R</td>
</tr>
<tr>
<td>(\ast)</td>
<td>R</td>
</tr>
<tr>
<td>(!)</td>
<td>L</td>
</tr>
<tr>
<td>(\Rightarrow)</td>
<td>L</td>
</tr>
</tbody>
</table>

2.12 Equality and Inequality

There are two heavily overloaded infix operators: equality \(=\) and inequality \(\neq\). They are automatically defined with type:

\[
t \to t \to \text{B}
\]

for all types \(t \) that do not contain function types and abstract types. Note: they are not polymorphic operators.

Inequality is simply the boolean negation of equality.

For all algebraic types \(t \) (including pre-defined ones like tuples and lists), two objects of type \(t \) are equal if they have the same structure, i.e.,

- They have the same constructor, and
- Their corresponding components (if any) are equal.

Two strings are equal if they are of the same length and their corresponding contents (characters) are equal.

Two objects of type \(\text{Array } t \) are equal if they have equal index bounds and their corresponding contents are equal.
2.13 Booleans

Booleans are defined as follows:

\[
type \mathbf{B} = \mathbf{false} \mid \mathbf{true}
\]

Thus, \textit{false} and \textit{true} are identifiers representing boolean constants, and are also constructors (i.e., they can be used in patterns).

Infix operators:

\[
\text{and} :: \mathbf{B} \rightarrow \mathbf{B} \rightarrow \mathbf{B}
\]
\[
\text{or} :: \mathbf{B} \rightarrow \mathbf{B} \rightarrow \mathbf{B}
\]

Both left and right arguments are always evaluated.

Standard identifiers include \textit{not}, the boolean negation function (see Appendix A.1).

2.14 Numbers

All numbers have type "\texttt{N}" (for the moment, we do not distinguish integers from floats in the language, though this may change in the future).

Numeric constants are written:

\[
\begin{align*}
255 & :: \mathbf{N} \\
0.6667 & :: \mathbf{N} \\
1.45 & :: \mathbf{N} \\
2.56e4 & :: \mathbf{N} \\
3e-3 & :: \mathbf{N}
\end{align*}
\]

The radix and exponent are always based on 10. The decimal point must be preceded or followed by at least one digit. The "e" must be preceded by a number and followed by a (possibly signed) integer. Example: \texttt{2.56e4} denotes \(2.56 \times 10^4\)

Unary arithmetic negation operator:

\[
- :: \mathbf{N} \rightarrow \mathbf{N}
\]

Infix arithmetic operators:

\[
\begin{align*}
+ & :: \mathbf{N} \rightarrow \mathbf{N} \rightarrow \mathbf{N} \\
- & :: \mathbf{N} \rightarrow \mathbf{N} \rightarrow \mathbf{N} \\
* & :: \mathbf{N} \rightarrow \mathbf{N} \rightarrow \mathbf{N} \\
/ & :: \mathbf{N} \rightarrow \mathbf{N} \rightarrow \mathbf{N} \\
^ & :: \mathbf{N} \rightarrow \mathbf{N} \rightarrow \mathbf{N} \quad \text{(exponentiation)}
\end{align*}
\]

Infix comparison operators:

\[
\begin{align*}
< & :: \mathbf{N} \rightarrow \mathbf{N} \rightarrow \mathbf{B} \\
<= & :: \mathbf{N} \rightarrow \mathbf{N} \rightarrow \mathbf{B} \\
> & :: \mathbf{N} \rightarrow \mathbf{N} \rightarrow \mathbf{B} \\
>= & :: \mathbf{N} \rightarrow \mathbf{N} \rightarrow \mathbf{B}
\end{align*}
\]

See Appendix A.2 for standard numeric functions.

2.15 Characters

(Conforms to Common Lisp standard.)

All characters have type "\texttt{c}".

Character constants (expressions) are written with a "\texttt{\textbackslash}", followed by any printable character:

\[
\begin{align*}
\texttt{\textbackslash a} & :: \mathbf{C} \\
\texttt{\textbackslash f} & :: \mathbf{C} \\
\texttt{\textbackslash n} & :: \mathbf{C} \\
& \cdots
\end{align*}
\]

or by a special-character name:

\[
\begin{align*}
\texttt{\textbackslash space} & :: \mathbf{C} \\
\texttt{\textbackslash newline} & :: \mathbf{C} \\
\texttt{\textbackslash backspace} & :: \mathbf{C} \\
\texttt{\textbackslash tab} & :: \mathbf{C} \\
\texttt{\textbackslash linefeed} & :: \mathbf{C} \\
\texttt{\textbackslash page} & :: \mathbf{C} \\
\texttt{\textbackslash return} & :: \mathbf{C} \\
\texttt{\textbackslash rubout} & :: \mathbf{C}
\end{align*}
\]

Infix comparison operators:

\[
\begin{align*}
< & :: \mathbf{C} \rightarrow \mathbf{C} \rightarrow \mathbf{B} \\
<= & :: \mathbf{C} \rightarrow \mathbf{C} \rightarrow \mathbf{B} \\
> & :: \mathbf{C} \rightarrow \mathbf{C} \rightarrow \mathbf{B} \\
>= & :: \mathbf{C} \rightarrow \mathbf{C} \rightarrow \mathbf{B}
\end{align*}
\]

The ordering is guaranteed only within the following subsets: digit characters, upper-case characters, and lower-case characters.

See Appendix A.3 for standard character functions.

2.16 Symbols

All symbols have type "\texttt{SYM}".

A symbol is written as a quoted identifier:
Unlike Lisp, symbols are not related to program identifiers. Each distinct symbol merely represents a unique global constant. The only primitive operations on symbols are equality and inequality.

2.17 Strings

(Conforms to Common Lisp standard.)

All strings have type "s" (but see Appendix B).

Constant strings (expressions) are written between double-quotations marks. "\" is used to quote any character, including "\" itself and "\".

"Hiya" :: S
"Say "What?\"" :: S

Upper- and lower-case are distinguished.

Infix comparison operators, with lexicographic ordering:

< :: S -> S -> B
<= :: S -> S -> B
> :: S -> S -> B
>= :: S -> S -> B

Strings are zero-indexed (i.e., the first character is at position 0).

See Appendix A.4 for standard string functions.

2.18 Tuples

An N-tuple has type "(t1,...,tN)" where "tj" is the type of the j'th component.

Assuming:

e1 :: t1
...
eN :: tN

then the tuple expression:

e1, ..., eN :: t1,...,tN

(where N \geq 2) denotes an n-tuple value.

The comma has lower precedence than any of the other operators. Examples:

4+5, true :: N,B
5, (sqr x, false) :: N,(N,B)
(5,4),"Hi",(a > b) :: (N,N),S,B

The second expression is a 2-tuple whose second component is itself a 2-tuple. The nesting structure is significant—it is not equivalent to a 3-tuple.

Components of a tuple are accessed via pattern-matching (see Section 2.22).

There is no notation for 1-tuples—a 1-tuple of x is identified with x itself.

2.19 Conditional Expressions

Assuming:

e1::B e2::t e3::t

then the (two-armed) conditional expression is:

if e1 then e2 else e3 :: t

Precedence of else: the parentheses may be omitted in each of these examples:

if ... else (x,y) if ... else (f x y) if ... else (x and y)

2.20 Blocks

Assuming:

e::t

then the block expression:

{ STATEMENT ;
 ...
 STATEMENT
in
e } :: t
denotes the value of \(e \) evaluated in the environment inside the block.

Each statement must itself be well-typed. Statements usually specify bindings associating identifiers to types or values.

Blocks (like all \texttt{Id} constructs) follow a static scoping discipline.

The name-environment inside a block is the surrounding environment augmented by the names introduced by the statements of the block. A name \(x \) may be introduced at most once in a block, and hides any \(x \) in the surrounding environment. Names introduced inside a block are invisible outside the block.

Thus, the statements in a block may be recursive and mutually recursive, and the textual order of the statements is not significant.

2.21 Patterns

A pattern is either

- an identifier,
- a special constant (number, character, symbol),
- or a term

- \(c \mid \text{pat} \ldots \mid \text{pat}\)

where \(c \) is an \(N \)-ary constructor name of some algebraic type \(t \), and the \(\text{pat} \)'s are themselves patterns \((N \geq 0) \). In the last case, the pattern is said to be of type \(t \).

All identifiers in a pattern must be unique, except for the "don't-care" identifier ".", which may be repeated.

Special syntax: list patterns can be written:

\[\text{pat}1::\text{pat}2 \]

Special syntax: \(N \)-tuple patterns can be written:

\[\text{pat}1,\ldots,\text{pat}\]

2.22 Pattern-Matching

Matching a pattern to a value can either succeed and produce a set of identifier-value bindings, or it can fail (a runtime error).

A "don't-care" pattern "." successfully matches any value, and produces no binding.

A pattern-identifier \(x \) successfully matches any value, and binds \(x \) to that value.

A pattern-constant \(c \) successfully matches only the value \(c \), and produces no binding.

A pattern \((c \mid \text{pat}1 \ldots \mid \text{pat}\) successfully matches only a value of the form \((c \mid v1 \ldots \mid w) \), and produces the union of all the bindings obtained by matching all the \(\text{pat} \)'s to their corresponding \(\text{v} \)'s.

2.23 Pattern-Binding Statements

The statement:

\[c \mid \text{pat}1 \ldots \mid \text{pat}\]

\((N \geq 0) \) introduces, into the current scope, the bindings obtained by matching the pattern on the left-hand side to the value produced by the right-hand side.

2.23.1 Simple Binding Statements

The degenerate case of a pattern-binding is the statement:

\[x = e \]

which introduces \(x \) as a name for the value of expression \(e \) into the current scope.

2.24 Case-expressions

Assuming:

\[e ::= t \mid e1::t \ldots \mid eN::t \]

and \(\text{pat}1 \ldots \mid \text{pat}\) are patterns of type \(t \), then the case-expression:

\[\{ \text{case } e \mid \text{of} \mid \text{pat}1 = e1 \mid \ldots \mid \text{pat}\ = eN \} :: t \]
behaves as follows. Let v be the value of e. All the patterns $\texttt{pati} \ldots \texttt{patN}$ are matched to v, in no specific order. If \texttt{patJ} matches, then the resulting bindings augment the current environment, ej is evaluated in that environment, and its value is returned as the value of the whole expression.

The patterns must be disjoint, i.e., at most one pattern can successfully match any e (this is checked by the compiler). The order of the patterns is therefore not relevant.

The patterns need not be exhaustive— if no pattern matches, it is a runtime error.

The last clause may be preceded by ".." to designate it as a catch-all clause (this is a limited form of ordering):

\[
\begin{align*}
\{ \text{case } e \text{ of} & \\
& \texttt{pati} = e1 \\
& \ldots \\
& | \texttt{patN} = eN \\
& | \ldots \texttt{patF} = eF \} \quad :\! : \! \text{ t}
\end{align*}
\]

Here, a match of \texttt{patF} to v (the value of e) is attempted only if all other matches fail. Thus, \texttt{patF} need not be disjoint from the other patterns.

2.25 Function Abstractions

A function abstraction expression (a form of lambda-expression) is written:

\[
\begin{align*}
\{ \text{fun } \texttt{pat1} \ldots \texttt{patN} = & \ e1 \\
& \texttt{pat2} \ldots \texttt{pat2N} = e2 \\
& \ldots \\
& \texttt{patM} \ldots \texttt{patMN} = eM \\
& \ldots \texttt{patL} \ldots \texttt{patLN} = eL \}
\end{align*}
\]

and is equivalent to:

\[
\begin{align*}
\{ \text{fun } x1 \ldots xM = & \ \\
& \{ \text{case } (x1,\ldots,xN) \text{ of} \\
& (\texttt{pat1},\ldots,\texttt{pat1N}) = e1 \\
& | (\texttt{pat2},\ldots,\texttt{pat2N}) = e2 \\
& | \ldots \\
& | (\texttt{patM},\ldots,\texttt{patMN}) = eM \\
& | \ldots (\texttt{patL},\ldots,\texttt{patLN}) = eL \} \}
\end{align*}
\]

and represents an "anonymous" function of arity $N \geq 1$ whose formal parameters are the xs and whose body is the case-expression. As usual, static scoping rules are followed.

The final "catch-all" clause (signalled by "..") is optional.

2.26 Function Definitions

A function definition statement is written:

\[
\begin{align*}
\text{def } f & \texttt{pat1} \ldots \texttt{patN} = e1 \\
& | f \texttt{pat2} \ldots \texttt{pat2N} = e2 \\
& \ldots \\
& | f \texttt{patM} \ldots \texttt{patMN} = eM \\
& | \ldots f \texttt{patL} \ldots \texttt{patLN} = eL
\end{align*}
\]

and is equivalent to the simple binding statement:

\[
\begin{align*}
f = \{ \text{fun } x1 \ldots xM = \\
& \{ \text{case } (x1,\ldots,xN) \text{ of} \\
& (\texttt{pat1},\ldots,\texttt{pat1N}) = e1 \\
& | (\texttt{pat2},\ldots,\texttt{pat2N}) = e2 \\
& | \ldots \\
& | (\texttt{patM},\ldots,\texttt{patMN}) = eM \\
& | \ldots (\texttt{patL},\ldots,\texttt{patLN}) = eL \} \}
\end{align*}
\]

The final "catch-all" clause (signalled by "..") is optional.

2.27 Lists

The standard list type can be defined as:

\[
\text{type list } \ast0 \equiv \text{nil } | (\:) \ast0 \ (\text{list } \ast0)
\]

where ":;" is the infix "cons" operator.

2.27.1 Binary Infix List Operators

Appending two lists:

\[
\begin{align*}
\ast+ & : \ (\text{list } \ast0) \to (\text{list } \ast0) \to (\text{list } \ast0)
\end{align*}
\]

Indexing a list (first element is 0'th):

\[
\begin{align*}
\ast! & : \ (\text{list } \ast0) \to \# \to \ast0
\end{align*}
\]
2.27.2 Arithmetic Series Operators

Assuming:

\[e1::N \quad e2::N \quad eInc::N \]

evaluate to integers \(v1 \), \(v2 \) and \(vInc \), respectively, then the expressions:

\[e1 \ to \ e2 \ by \ eInc \quad :: (\text{list } N) \]
\[e1 \ downto \ e2 \ by \ eInc \quad :: (\text{list } N) \]

produce lists containing \((v1, v1 + vInc, v1 + 2vInc, ..., v2) \), and \((v1, v1 - vInc, v1 - 2vInc, ..., v2) \), respectively.

Note: \(vInc \) must always be positive.

The short forms:

\[e1 \ to \ e2 \quad :: (\text{list } N) \]
\[e1 \ downto \ e2 \quad :: (\text{list } N) \]

assume that \(vInc \) is +1.

Precedence of \(\text{to} \), \(\text{downto} \) and \(\text{by} \): the parentheses may be omitted in each of these examples:

\[... \ to \ (f \ x) \]
\[... \ downto \ (f \ x) \]
\[... \ to \ (e1 + e2) \]
\[... \ by \ (f \ x) \]

2.27.3 List Comprehensions

A list-comprehension is written:

\[\{ : \ e \ \mid \ \text{GEN1} \ & \ ... \ & \ \text{GENn} \} \]

\((n \geq 1)\). Each generator \(\text{GEN} \) is written in one of two ways:

\[\text{pat} \leftarrow e \ \text{FILTER1} \ ... \ \text{FILTERm} \]
\[\text{pat} = e \ \text{FILTER1} \ ... \ \text{FILTERm} \]

\((m \geq 0)\). Each \(\text{FILTER} \) is written in one of two ways:

\[\text{when epw} \]
\[\text{unless epu} \]

Generator behavior

In the first form (using \(\leftarrow \)), \(e \) must be a list of values; \(\text{pat} \) is matched to each element of the list, generating a sequence of environments that bind the pattern variables.

In the second form (using \(* \)), \(\text{pat} \) is matched to the value of \(e \), generating an environment that binds the pattern variables.

The environments are then filtered, \(i.e., \) those environments in which an \(\text{epw} \) evaluates false or an \(\text{epu} \) evaluates true are discarded. The filters are tried in sequence from left to right, \(i.e., \) if a filter rejects an environment, the subsequent filter expressions are not evaluated for that environment.

Generator sequence behavior

The generators are evaluated from left to right. For each environment \(Env \) in the sequence of environments produced before \(\text{GENj} \),

- \(\text{GENj} \) is evaluated in \(Env \), and produces a set of environments \(Envj1, Envj2, ... \)
- \(Env \) is replaced in the sequence by the augmented environments \(Env + Envj1, Env + Envj2, ... \)

Thus, the net result of the generator sequence is a sequence of environments containing bindings for the pattern variables of all the generators.

List-comprehension behavior

The expression \(e \) is evaluated in each environment produced by the generator sequence, and the values are collected into a list (in the same order), which is the result of the whole expression.

Examples

A list of \(x \)-\(y \) coordinates in the first octant of a 100-square:

\[\{ : x, y \mid x <- 0 \ \& \ y <- 0 \ \& \ x \} \]

A list of \(x \)-\(y \) coordinates in a 100-square that are not on the axes or on the diagonals:

\[\{ : x, y \mid x <- 0 \ \& \ y <- 0 \ \& \ x < 0 \ \& \ y < 0 \ \& \ x = y \} \]

See also Appendix A.5 for standard list functions.
2.28 Arrays

Arrays are collections of uniformly-typed objects, with a constant access-time for each component.

2.28.1 Array Types

An \(n \)-dimensional array (\(n \geq 1 \)) whose components have type \(t \) has type:

\[
\text{nd_array } t
\]

Arrays can contain objects of any type, including other arrays. The following two types are not equivalent:

\[
\text{2D_array } t \\
\text{1D_array (1D_array } t)
\]

(But see Appendix B).

Synonyms for 1D_array: vector, array

Synonym for 2D_array: matrix

2.28.2 Array Selection

Assuming:

\[
\begin{align*}
a & :: (\text{nd_array } t) \\
e & :: (N, \ldots, N)
\end{align*}
\]

then the array-selection expression:

\[
a[e] :: t
\]

returns the value of the \(j_1, \ldots, j_n \)'th component of the array "a", where \(j_1, \ldots, j_n \) is the value of "e".

Note that the index expression can be any expression that returns an \(n \)-tuple of integers, i.e., it does not have to be a literal tuple-expression. (But see Appendix B).

2.28.3 Array Index Bounds

For each \(n \geq 1 \), there is a function that returns the index bounds of \(n \)-dimensional arrays:

\[
\begin{align*}
\text{1D_bounds} & :: (1D_array \to 0) \to (N, N) \\
\text{2D_bounds} & :: (2D_array \to 0) \to (N, N, (N, N)) \\
\vdots
\end{align*}
\]

Synonym for 1D_bounds: bounds.

2.28.4 Array Comprehensions

Array comprehensions are used to create (define) arrays.

For each \(k \geq 1 \) and \(n \geq 1 \), assuming a bounds expression (an \(n \)-tuple of integer 2-tuples):

\[
eBounds :: ((N, N), \ldots, (N, N))
\]

and a set of index expressions (each an \(n \)-tuple of integers):

\[
eJ1 :: (N, \ldots, N)
\]

and a set of component expressions (each a \(k \)-tuple):

\[
eJ2 :: (t1, \ldots, t_k)
\]

then the array comprehension expression:

\[
\{ k_{\text{nd_arrays}} eBounds \\
| \{ eJ1 \} = eJ2 \mid \text{gen } k \ldots k \text{gen} \\
| \ldots \\
| \{ eM1 \} = eM2 \mid \text{gen } k \ldots k \text{gen} \}
\]

returns a \(k \)-tuple of \(n \)-dimensional arrays. Each gen is a generator, possibly including filters (exactly as in list-comprehensions).

Array comprehension behavior

eBounds is evaluated to produce lower- and upper-bounds for each of \(n \) dimensions. \(k \) arrays with these dimensions are created. Then, the subsequent clauses are all executed in parallel to fill the arrays. (The top-to-bottom order of the clauses has no significance.)

Clause behavior

See Generator behavior and Generator sequence behavior in Section 2.27.3 on list comprehensions to see how each generator sequence

\[
\text{gen } k \ldots k \text{gen}
\]

produces a sequence of environments. Now, in each such environment, \(eJ1 \) is evaluated to produce an index into the arrays (an \(n \)-tuple). \(eJ2 \) is evaluated to produce a \(k \)-tuple specifying the contents of that location in each of the \(k \) arrays.
A runtime error occurs if the contents of an array at some index is defined more than once, i.e., if the array comprehension specifies values twice at the same index \((j_1, \ldots, j_N)\).

If, at some index, the array comprehension specifies no value at all, then that location simply remains undefined (indistinguishable from a non-terminating computation).

The generator sequences "\(\|\) gen k \(\ldots\) \& gen" are optional. In this case, \(e_1\) and \(e_2\) specify the contents of a single location.

The \(\k\text{nD_arrays}\) keywords have synonyms for some common cases:

<table>
<thead>
<tr>
<th>(n)</th>
<th>(k = 1)</th>
<th>(k > 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>array</td>
<td>(\k\text{arrays})</td>
</tr>
<tr>
<td></td>
<td>vector</td>
<td>(\k\text{vectors})</td>
</tr>
<tr>
<td>2</td>
<td>matrix</td>
<td>(\k\text{matrices})</td>
</tr>
<tr>
<td>(\geq 1)</td>
<td>(\k\text{nD_arrays})</td>
<td></td>
</tr>
</tbody>
</table>

2.29 Accumulators

Accumulators are an extension of arrays.

\[
\{k_1_nD_arrays \ \text{e}^\text{bounds1} \mid [e_1] = \text{e} \mid \text{gen} \ \& \ \ldots \ \& \ \text{gen} \mid \ldots
\mid [e_1] = \text{e} \mid \text{gen} \ \& \ \ldots \ \& \ \text{gen}
\}
\]

\[
\{k_2_nD_arrays \ \text{e}^\text{bounds2} \mid [e_1] = \text{e} \mid \text{gen} \ \& \ \ldots \ \& \ \text{gen} \mid \ldots
\mid [e_1] = \text{e} \mid \text{gen} \ \& \ \ldots \ \& \ \text{gen}
\}
\]

\[
\ \ldots
\]

\[
\{k_\text{M_nD_arrays} \ \text{e}^\text{boundsM} \mid [e_1] = \text{e} \mid \text{gen} \ \& \ \ldots \ \& \ \text{gen} \mid \ldots
\mid [e_1] = \text{e} \mid \text{gen} \ \& \ \ldots \ \& \ \text{gen}
\}
\]

\[
\text{accumulate } k_\text{ops}
\]

| \(e_1\) gets \(\text{e} \mid \text{gen} \ \& \ \ldots \ \& \ \text{gen} \mid \ldots
\mid \(e_1\) gets \(\text{e} \mid \text{gen} \ \& \ \ldots \ \& \ \text{gen} \}

This returns a tuple containing \(k\) arrays \((k = k_1 + k_2 + \ldots + k_M)\). The first \(k_1\) arrays have bounds \(\text{e}^\text{bounds1}\) and are initialized according to the first set of clauses, the next \(k_2\) arrays have bounds \(\text{e}^\text{bounds2}\) and are initialized according to the second set of clauses, and so on.

After the keyword \text{accumulate}, the expression \(k_\text{ops}\) returns a tuple of \(k\) operators that are the accumulation operators.

The final set of clauses specifies the indices and values for the accumulation. In each clause, \(e_1\) is a \(k\)-tuple of indices \(i_1, \ldots, i_k\), and \(\text{e}\) is a \(k\)-tuple of values \(v_1, \ldots, v_k\), specifying the accumulation:

\[
X[i_1] := \text{op}_1 X[i_1] v_1
\]
\[
\ldots
\]
\[
X[i_k] := \text{op}_k X[i_k] v_k
\]

The number of accumulations implicitly is the total cardinality of all the environment-sequences produced by all the generators of the accumulation clauses. The array value of the entire expression is returned only after all the accumulations have been done.

Examples

The vector sum of two vectors \(A\) and \(B\):

\[
\{\text{array } (1,N) \mid [i] = A[i]+B[i] \mid i < -1 \text{ to } N \}
\]

An array defined using a "wavefront" recurrence:

\[
A = \{\text{matrix } (1,N),(1,N) \mid [i,1] = 1
\mid [1,j] = 1 \mid [i,j] = A[i-1,j] + \ A[i-1,j-1] + \ A[i,j-1] \mid i < 2 \text{ to } N \mid j < 2 \text{ to } N \}
\]

An array containing the inverse of a given permutation in array \(A\):

\[
\{\text{array } (1,N) \mid [A[i]] = i \mid i < -1 \text{ to } N \}
\]

See also Appendix A.7 for standard array functions.
Note: since the order in which the accumulation operations are performed is non-deterministic, it is the programmer’s responsibility to ensure that the accumulation operators have the following property:

\[(\text{op } (\text{op } x \ y) \ z) = (\text{op } (\text{op } x \ z) \ y)\]

so that the whole construct is deterministic.

Example

A 10-category histogram of a zillion things:

\[
\text{array (1.10)}
\]

\[
| \text{[i]} = 0 \text{ if } i \text{ from 1 to 10} \\
\text{accumulate (+)} \\
| \text{classify x} \text{ gets } 1 \text{ if } x \text{ <> zillion_things} \\
\]

2.30 Abstract Types

A new abstract data type is declared using this statement:

\[
\text{abtype NEWTYPE} \\
\text{typeof x1 = TYPE1 ;} \\
\cdots \\
\text{typeof xN = TYPEN} \\
\text{rep} \\
\text{REPRESENTATION-TYPE} \\
\{ \\
\text{...} \\
\text{def x1 = ... ;} \\
\text{...} \\
\text{def xN = ... ;} \\
\text{...} \\
\}
\]

NEWTYPE is the (possibly parameterized) new type expression.

The subsequent typeof statements specify the signature (or interface) of the abstract type.

The REPRESENTATION-TYPE is a type-expression specifying the internal representation of objects of the new type.

The statements in the braces specify definitions for the identifiers in the signature. There may be other identifiers defined in the braces, but they are not exported— they are local types, local definitions etc. for the xIs.

The net effect of the abtype statement is to introduce the new type identifier and the identifiers x1 through xN into the current scope. Each xi has the specified type signature and bound value.

Within the braces, the abstract type is treated as equivalent to the representation type. Outside the abtype statement, the abstract type and the representation type are treated as distinct (different) types.

Example

A stack, with a list representation:

\[
\text{abtype (stack *0)} \\
\text{typeof empty = (stack *0);} \\
\text{typeof empty? = (stack *0) -> B;} \\
\text{typeof push = *0 -> (stack *0) -> (stack *0);} \\
\text{typeof pop = (stack *0) -> (stack *0);} \\
\text{typeof top = (stack *0) -> *0} \\
\text{rep (list *0)} \\
\{ \\
\text{empty = nil ;} \\
\text{empty? = nil? ;} \\
\text{push = () ;} \\
\text{def pop (x:s) = s} \\
\text{| pop nil = error "Stack underflow" ;} \\
\text{def top (x:s) = x} \\
\text{| top nil = error "Stack underflow" ;} \\
\}
\]

2.31 Loops

While list- and array-comprehensions are convenient for expressing “mapping” operations over sequences, loops are convenient for expressing “reduction” operations.

The general while-loop expression form is:

\[
(\text{while eb do} \\
\text{STATEMENT ;} \\
\cdots \\
\text{STATEMENT} \\
\text{finally e})
\]

where eb :: B.

Assuming

\[
e\text{Index :: (list N)}
\]
then the general for-loop expression form is:

\[
\{ \text{for } x \gets \text{eIndex} \text{ do} \\
\quad \text{STATEMENT} \\
\quad \cdots \\
\quad \text{STATEMENT} \\
\quad \text{finally e} \}
\]

which is equivalent to:

\[
\{ L = \text{eIndex} \\
\quad \text{In} \\
\quad \{ \text{while } (L \not\leftarrow \text{null}) \text{ do} \\
\quad \quad x := \text{next L} = L ; \\
\quad \quad \text{STATEMENT} \\
\quad \quad \cdots \\
\quad \quad \text{STATEMENT} \\
\quad \quad \text{finally e} \}
\]

Here, eIndex is normally an arithmetic-series expression (see Section 2.27.2).

The braces are compulsory. The type of the entire loop expression is the type of the expression in the "finally" phrase.

The loop body is a series of statements, with the following extension: a binding occurrence of an identifier (say "x") may be prefixed by the keyword "next", denoting the value to be used for "x" in the next iteration. This value is also available in the current iteration because "next x" may be used as an expression.

2.31.1 Scope of Variables in Loops

We use the phrase loop context to refer to the set of variables available to the loop expression from the surrounding scope. Any variable "x" from the loop context takes on a new value at each iteration if there is a "next x" binding in the loop body.

In while-loops, the predicate may only use identifiers from the loop context, and is re-evaluated each time before entering the loop body.

The loop is terminated in while loops when the predicate evaluates to false. Then, the finally e expression is evaluated and returned as the value of the loop. It may only use identifiers from the loop context.

Within the loop body, only variables from the loop context may be "next'fied". The loop body may also contain ordinary identifier bindings. The scope of all bindings is the entire loop body (this includes the next-fied variables, since "next x" may be used as an expression within the body).

For any next-fied identifier "x", the bound value becomes the value of "x" at the end of the iteration.

Examples

Successive approximations until convergence to a limit:

\[
\{ \text{approx } = \text{first guess} ; \\
\quad \text{delta } = \text{infinity} \\
\quad \text{In} \\
\quad \{ \text{while } (\text{delta } > \text{epsilon}) \text{ do} \\
\quad \quad \text{next approx } = \text{improve approx} \\
\quad \quad \quad \text{next delta } = (\text{next approx } - \text{approx}) \\
\quad \quad \quad \text{finally x} \}
\]

The n'th Fibonacci:

\[
\{ x, y = 1, 1 \\
\quad \text{In} \\
\quad \{ \text{for } j \leftarrow 1 \text{ to } n \text{ do} \\
\quad \quad \text{next x, next y } = y, x+y \\
\quad \quad \quad \text{finally x} \}
\]

2.32 Errors

The (pseudo-) function:

\[
\text{error } :: \text{S } \rightarrow \ast 0
\]

always creates a run-time error. The argument string should be a meaningful error-message.

2.33 Pragmatics

A function definition

\[
\text{def } ...
\]

may also be written:

\[
\text{def subst } ...
\]
in which case the compiler will try to expand the function in-place wherever possible (But see Appendix B). This has no semantic consequence; it merely removes the overhead of function-calls.

The substitution is semantically transparent (it is not a macro). The function itself is still available as a value.

2.34 Annotations for Delayed Evaluation

Annotations for delayed evaluation are currently experimental features of Idr to gain experience with infinite structures. Semantically, their only effect is to change the termination behavior of programs. Pragmatically, they can drastically change the runtime resource requirements of a program.

2.34.1 General Delayed Evaluation

Assuming:

\[e :: t \]

is an expression that evaluates to \(v \), then the expression:

\[(\# e) :: t \]

returns \(d \), an unevaluated representation of \(e \) called a thunk.

The standard (pseudo-) function:

\[\text{force} :: \#0 \rightarrow \#0 \]

takes a thunk \(d \), evaluates the delayed expression in it, and returns \(v \), its value. It also "memoizes" the value, so that in multiple evaluations of \((\text{force} \ d)\), the delayed expression itself is evaluated only once.

There is no implicit forcing. Delayed objects must be explicitly forced, and it is an error to force a non-delayed object. Thus, the first two expressions below are correct, the latter two are incorrect:

\[
\begin{align*}
1 + 5 \\
1 + (\text{force} \ (\# 5)) \\
1 + (\text{force} 5) & \% \text{ forcing non-thunk} \\
1 + (\# 5) & \% \text{ no implicit forcing}
\end{align*}
\]

The function:

\[\text{delayed?} :: \#0 \rightarrow \# \]

may be used to test whether an object is a thunk or not. Note: this is not the same as a (non-deterministic) test of whether it has been forced yet or not.

2.35 Delayed Evaluation Tied to Data Structures

When delayed evaluation is tied to data-structures, it is often more convenient (implicit forcing) and more efficient (less space overhead for thunks).

First, we define Constructor Terms as applicative forms:

\[c \ e1 \ldots \ eN \]

where \(c \) is a constructor of arity \(N \) of some algebraic type. Example:

\[e1 : e2 \]

but not:

\[(:) e1 \% \text{ arity not satisfied} \]

In a constructor term, any argument may be annotated by "\#" to indicate that it should be delayed. Examples:

\[
\begin{align*}
e1 & : e2 \% \text{ eager head, eager tail} \\
e1 & : \# e2 \% \text{ eager head, delayed tail} \\
\# e1 & : e2 \% \text{ delayed head, eager tail} \\
\# e1 & : \# e2 \% \text{ delayed head and delayed tail}
\end{align*}
\]

The delayed components will be evaluated automatically (and stored in the data structure) when an attempt is made to select it (usually in some pattern-match).

Note: the following:

\[
\begin{align*}
f & = (:) ; \\
y & = f \ e1 \# e2
\end{align*}
\]

15
is a compile-time error because (f e1 e2) is not a
constructor term—f is not a constructor identifier.

The "#" annotations in constructor terms are not
equivalent to using (# ...) and force. Consider:

(A) e1: [# e2]
(B) e1: # e2

In (A), the tail slot of the cons cell contains a refer-
ence to a thunk. When the tail is selected, this
pointer is returned, which must then be explicitly
forced to get the value of e2.

In (B), the thunk is stored directly in the tail slot
of the cons cell. When the tail is selected, the the
thunk is automatically evaluated, and the value re-
places the thunk in the cell.

3 Non-functional Constructs

Warning: Programs that use constructs from this
section are not likely to be referentially transparent
(purely functional).

3.1 Void

Some constructs can be written in syntactic short-
hand in which certain expressions may be omitted.
Usually, the missing expression is equivalent to the
expression

voidvalue :: void

voidvalue is a "useless" value—there are no inter-
esting operations defined on it. It is an error to
bind this value to an identifier, apply a function to
it, store it in an array, etc. (But see Appendix B.)

We encourage the programmer to think of expres-
sions of type void as "returning no value".

3.2 I-structures

Array comprehensions (Section 2.28.4) specify two
things simultaneously—the "shape" of a data-
structure (i.e., index bounds) and its contents.

In I-structures, these two specifications are sepa-
rated. An I-structure is an array-like data struc-
ture with empty locations which can be assigned subse-
quently.

3.2.1 I-structure Types

An n-dimensional I-structure whose components are
of type t has type:

nD_I_array t

Synonyms for the type name 1D_I_array:
I_vector I_array
Synonym for the type name 2D_I_array:
I_matrix
3.2.2 I-structure Creation

An n-dimensional I-structure is created using:

\[\text{nd}_{\text{I-array}} : ((N, N), \ldots, (N, N)) \rightarrow (\text{nd}_{\text{I-array}} \star 0) \]

i.e., it takes an index-bounds expression (an n-tuple of integer 2-tuples) and returns an empty I-structure with those bounds.

Synonym for \text{1D}_{\text{I-array}} I-structure allocator:

\text{I-vector} \quad \text{I-array}

Synonym for \text{2D}_{\text{I-array}} I-structure allocator:

\text{I-matrix}

Example

A 2-dimensional 10 \times 10 I-structure:

\text{I-matrix} (((1,10),(1,10)))

3.2.3 I-structure Assignments

Assuming:

\[a ::= (\text{nd}_{\text{I-array}} \ t) \]
\[e1 ::= (N, \ldots, N) \]
\[e2 ::= t \]

then the I-structure assignment statement:

\[a[e1] = e2 \]

assigns the value of \"e2\" to the \((j1, \ldots, jn)\)'th component of the I-structure \"a\", where \((j1, \ldots, jn)\) is the value of \"e1\". (But see Appendix B).

The I-structure in the lhs must be designated by an identifier and not by an arbitrary expression.

A runtime error occurs if a component of an I-structure is assigned more than once. Thus, every location makes at most one transition from the "empty" state (i.e., containing \(\perp\)) to the "full" state (i.e., containing some value \(\sqsupset\perp\)).

There is no race-condition between selections and I-structure assignments. A selection \(a[j]\) returns a value only after the location is full.

3.2.4 Delayed I-structure Assignment

This is an experimental feature of Id (See Section structure selection expression:

\[a[e1] ::= t \]

returns the value of the \((j1, \ldots, jn)\)'th component of the I-structure \"a\", where \((j1, \ldots, jn)\) is the value of \"e1\". (But see Appendix B).

There is no race-condition between selections and I-structure assignments. A selection \(a[j]\) returns a value only after the location is full.

3.2.5 I-structure Index Bounds

For each \(n \geq 1\), there is a function that returns the index bounds of \(n\)-dimensional I-structures:

\[\text{1D}_{\text{bounds}} ::= (\text{1D}_{\text{I-array}} \ t) \rightarrow (N, N) \]
\[\text{2D}_{\text{bounds}} ::= (\text{2D}_{\text{I-array}} \ t) \rightarrow (N, N), (N, N) \]
\[\text{3D}_{\text{bounds}} ::= (\text{3D}_{\text{I-array}} \ t) \rightarrow (N, N), (N, N), (N, N) \]

Synonym for \text{1D}_{\text{bounds}}:

\text{bounds}

See also Appendix A.9 for standard I-structure functions.

3.3 One-Armed Conditionals

Assuming:

\[e1 ::= B \]
\[e2 ::= void \]

then the one-armed conditional expression is:

\[\text{if } e1 \text{ then } e2 ::= \text{void} \]

An \text{else} matches the nearest preceding unbalanced then. Leaving out the \text{else} clause is syntactic shorthand for saying

\[\text{else void value} \]
3.4 Call Statements

Call statements contain expressions that are executed only for their side-effect (i.e., their I-structure assignments):

 call e

Though not required, e normally has type void.

If the expression e is a conditional, a loop or a block, the call keyword may be omitted.

3.5 Block Statements

The phrase "in e" in a Block-expression may be omitted. This is syntactic shorthand for saying:

 in voidvalue

3.6 Loop Statements

The "finally e" phrase may be omitted; this is syntactic shorthand for saying

 finally voidvalue

Example

An I-structure containing j^2 at the jth index:

```plaintext
{x = I_structure (1,10)
  {for i <- 1 to 10 do
    x[i] = j * j}
  In
    x}
```

We strongly recommend against loops where variables depend on computations in future iterations, e.g.,

```plaintext
{ A[10] = 0 ;
  {for j from 1 to 9 do
}
```

Our implementation will not guarantee arbitrary look-ahead, i.e., loop unfolding.
A Standard Identifiers

Id has standard libraries that implement many useful functions. The names and semantics of these functions are based on the corresponding Common Lisp functions wherever possible. The names for these functions are not reserved words, but for readability and re-usability of code, the programmer is strongly advised not to redefine them.

The compiler will usually expand these functions in situ, so that there is no procedure-calling overhead.

Since the Id libraries are a continuously growing repository of useful functions, the following list is necessarily incomplete. The libraries themselves must be consulted for the current set.

A.1 Booleans

- Truth values:

 \[
 \begin{align*}
 \text{typedef } & \text{true } = \text{B} \\
 \text{typedef } & \text{false } = \text{B}
 \end{align*}
 \]

 These are also constructors (can be used in patterns).

- Negation:

 \[
 \text{typedef } \text{not } = \text{B } \rightarrow \text{B}
 \]

A.2 Numbers

- General:

 \[
 \begin{align*}
 \text{typedef } & \text{pi } = \text{N} \\
 \text{typedef } & \text{2pi } = \text{N}
 \end{align*}
 \]

 \[
 \begin{align*}
 \text{typedef } & \text{odd? } = \text{N } \rightarrow \text{B} \\
 \text{typedef } & \text{even? } = \text{N } \rightarrow \text{B}
 \end{align*}
 \]

 \[
 \begin{align*}
 \text{typedef } & \text{max } = \text{N } \rightarrow \text{N } \rightarrow \text{N} \\
 \text{typedef } & \text{min } = \text{N } \rightarrow \text{N } \rightarrow \text{N}
 \end{align*}
 \]

- Exponentiation:

 \[
 \text{typedef } \text{exp } = \text{N } \rightarrow \text{N}
 \]

 where \((\exp y) \Rightarrow e^y\)

- Logarithms:

 \[
 \begin{align*}
 \text{typedef } & \text{log } = \text{N } \rightarrow \text{N} \\
 \text{typedef } & \text{log10 } = \text{N } \rightarrow \text{N}
 \end{align*}
 \]

 where \((\log x) \Rightarrow \log_e x\),
 and \((\log10 x) \Rightarrow \log_{10} x\)

- Square root, absolute value:

 \[
 \begin{align*}
 \text{typedef } & \text{sqrt } = \text{N } \rightarrow \text{N} \\
 \text{typedef } & \text{abs } = \text{N } \rightarrow \text{N}
 \end{align*}
 \]

- Trigometric functions (angles in radians):

 \[
 \begin{align*}
 \text{typedef } & \text{sin } = \text{N } \rightarrow \text{N} \\
 \text{typedef } & \text{cos } = \text{N } \rightarrow \text{N} \\
 \text{typedef } & \text{tan } = \text{N } \rightarrow \text{N}
 \end{align*}
 \]

 \[
 \begin{align*}
 \text{typedef } & \text{asin } = \text{N } \rightarrow \text{N} \\
 \text{typedef } & \text{acos } = \text{N } \rightarrow \text{N} \\
 \text{typedef } & \text{atan } = \text{N } \rightarrow \text{N } \rightarrow \text{N}
 \end{align*}
 \]

 where \((\text{atan} y x) \Rightarrow \arctan y/x\), in the range \(-\pi\) to \(+\pi\). The arguments cannot both be zero.

- Hyperbolic functions:

 \[
 \begin{align*}
 \text{typedef } & \text{sinh } = \text{N } \rightarrow \text{N} \\
 \text{typedef } & \text{cosh } = \text{N } \rightarrow \text{N} \\
 \text{typedef } & \text{tanh } = \text{N } \rightarrow \text{N}
 \end{align*}
 \]

 \[
 \begin{align*}
 \text{typedef } & \text{asinh } = \text{N } \rightarrow \text{N} \\
 \text{typedef } & \text{acosh } = \text{N } \rightarrow \text{N} \\
 \text{typedef } & \text{atanh } = \text{N } \rightarrow \text{N } \rightarrow \text{N}
 \end{align*}
 \]

- Conversion to integers:

 \[
 \begin{align*}
 \text{typedef } & \text{floor } = \text{N } \rightarrow \text{N} \\
 \text{typedef } & \text{ceiling } = \text{N } \rightarrow \text{N}
 \end{align*}
 \]

 where \text{floor} truncates towards \(-\infty\).

 \[
 \begin{align*}
 \text{typedef } & \text{ceiling } = \text{N } \rightarrow \text{N}
 \end{align*}
 \]

 where \text{ceiling} truncates towards \(+\infty\).

 \[
 \begin{align*}
 \text{typedef } & \text{truncate } = \text{N } \rightarrow \text{N}
 \end{align*}
 \]

 where \text{truncate} truncates towards 0.
typedef round = N -> N

where round truncates to the nearest integer, with 0.5 truncated towards the even integer.

typedef mod = N -> N -> N

where \((\mod x y) \Rightarrow x - q y\), where \(q = \text{floor} \ (x/y)\).

typedef rem = N -> N -> N

where \((\text{rem} x y) \Rightarrow x - q y\), where \(q = \text{truncate}(x/y)\).

A.3 Characters

- Character functions:

 typedef digit? = C -> B
 typedef uc? = C -> B
 typedef lc? = C -> B
 typedef C_to_uc = C -> C
 typedef C_to_lc = C -> C
 typedef C_to_N = C -> N
 typedef N_to_C = N -> C

A.4 Strings

- Convert to and from arrays of characters:

 typedef array_to_S = (array C) -> S

 The argument must have index bounds \((0, n - 1)\)
 when \(n\) is the length of the string.

 typedef S_to_array = S -> (array C)

 The result has index bounds \((0, n - 1)\) when \(n\) is
 the length of the string.

- Convert to and from lists of characters:

 typedef list_to_S = (list C) -> S
 typedef S_to_list = S -> (list C)

- Length of a string:

 typedef S_length = S -> N

- Indexing a string (first character has index 0):

 typedef S_nth = S -> N -> C

 • Extract a substring, given a starting position and
 substring length:

 typedef substring = S -> N -> N -> S

 • Concatenate two strings:

 typedef S_conc = S -> S -> S

 • Map a character function over a string:

 typedef S_map = (C -> C) -> S -> S

 • Convert a string to upper- or lower-case:

 typedef S_to_uc = S -> S
 typedef S_to_lc = S -> S

A.5 Lists

- Basic functions:

 typedef nil = (list *0)
 typedef nil? = (list *0) -> B
 typedef cons = *0 -> (list *0) -> (list *0)
 typedef hd = (list *0) -> *0
 typedef tl = (list *0) -> (list *0)
 typedef length = (list *0) -> N

 • Last element of a list:

 typedef last = (list *0) -> *0

 • \(N\)'th tail of list (i.e., \(\text{tl}^n\), so 0'th tail is the list itself):

 typedef nthtl = N -> (list *0) -> (list *0)

 • Zipping and unzipping lists—a family of functions, for each \(N\):

 typedef zipN = (list *1) ->
 ...
 (list *N) -> (list (*1, ..., *N))

 It is an error if the \(N\) input lists are not of equal length.
typedef unzipN =
(list (*1,...,*N)) ->
(list *1,
... ,
list *N)

• Reverse a list:

typeof reverse = (list *0) -> (list *0)

• Apply a function to each member of a list, returning
list of results in same order:

typeof map_list =
(*0->*1) -> (list *0) -> (list *1)

• Filter a list, retaining only those elements that
satisfy a

typeof filter =
(*0 -> B) -> (list *0) -> (list *0)

• Left-associative reduction:

typeof foldl_list =
(*0 -> *1 -> *0) ->
*0 ->
(list *1) -> *0

Example:

foldl_list f z l

returns

f (f (... (f z 10) 11) ...) ln

where 10, ..., ln are the elements of the list l.

• Right-associative reduction:

typeof foldr_list =
(*0 -> *1 -> *1) ->
*1 ->
(list *0) -> *1

Example:

foldr_list f z l

Returns

f 10 (... (f ln z))

where 10, ..., ln are the elements of the list l.

• Iteration:

typeof iterate =
(*0 -> B) ->
(*0 -> *0) ->
*0 -> (list *0)

where iterate p f x returns the list containing x,
(f x), (f (f x)), ..., as long as (p (f^n x)) is true.

• Simultaneous mapping and left-associative reduc-
tion of a list:

typeof map_foldl_list =
(*0->*1->(*0,*2)) ->
*0 ->
(list *1) -> (*0,list *2)

Example:

map_foldl_list f z l

returns (zN,m), where:

z0,m0 = f z 10
z1,m1 = f z0 11
...
zN,mN = ...

10, ..., lN are the elements of the list l, and m0, ...,
mN are the elements of the list m.

For example, if f was

def f x 1j = { v = z + 1j
IN w,u } ;

z was 0, and 1 contained 1, 2, and 3, then the result
m would be a list of partial sums: 1, 3, and 6, and
the result m would be the sum 6.

• Simultaneous mapping and right-associative reduc-
tion of a list:

typeof map_foldr_list =
(*1->*0->(*2,*0)) ->
*0 ->
(list *1) -> (list *2,*0)
Example:

```plaintext
map_foldr_list f z l
```

returns (m, z0), where:

- \(m_0, z_0 = f 10 z_1 \)
- \(m_1, z_1 = f 11 z_2 \)
- ...
- \(m_N, z_N = f 1N z \)

10, ..., 1N are the elements of the list l, and m0, ..., mN are the elements of the list m.

For example, if f was

```plaintext
def f l x = { v = x + 1j
            IN x, y }
```

z was 0, and 1 contained 1, 2, and 3, then the result m would be a list of partial sums (from back to front): 6, 5, and 3, and the result z0 would be the sum 6.

A.6 Lists as Sets

All these functions require, as their first parameter, an equality function between elements of the sets.

- Conversion from list to set (remove duplicates):

```plaintext
typeof setify =
    (N -> N) ->
    (N -> N)      -> (N -> N)
```

- Membership test:

```plaintext
typeof member? =
    (N -> N) ->
    (N -> N)      -> N
```

- Union, intersection, difference:

```plaintext
typeof union =
    (N -> N) ->
    (N -> N)      -> (N -> N)
typeof intersection =
    (N -> N) ->
    (N -> N)      -> (N -> N)
typeof difference =
    (N -> N) ->
    (N -> N)      -> (N -> N)
```

- Subset test:

```plaintext
typeof subset? =
    (N -> N) ->
    (N -> N)      -> N
```

- Set equality test:

```plaintext
typeof set_equal? =
    (N -> N) ->
    (N -> N)      -> N
```

A.7 Arrays

In the following, we describe families of functions, for 1D arrays, 2D arrays, etc. We describe the entire family using the “\(n \)” meta-syntex. In addition, the substring 1D.array can always be replaced by array or vector, and the substring 2D.array can always be replaced by matrix.

We refer to a sequence of indices for an array by its endpoints “first” and “last”, meaning n-tuples containing the lower bounds and upper bounds, respectively, along all dimensions, and stepping the rightmost index fastest.

- Index bounds:

```plaintext
typeof nD_bounds =
    (nD_array N) -> (N, ..., N)
```

Synonyms:

1D_bounds vector_bounds array_bounds
2D_bounds matrix_bounds

- Create \(k \) arrays, given a “filling” function:

```plaintext
typeof make_k_nD_arrays =
    (N, N) -> nD_array N
    (N, ..., N) -> (nD_array N)
    ...
```

Example:

```plaintext
make_k_nD_arrays b f
```
returns \(k \) arrays \(a_1, \ldots, a_k \) with bounds \(b \), such that if

\[
f(j_1, \ldots, j_M) = (v_1, \ldots, v_k)
\]

then

\[
a[i_1, \ldots, i_N] = v_i
\]

Synonyms:

<table>
<thead>
<tr>
<th>(n)</th>
<th>(k = 1)</th>
<th>(k > 1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>make_array</td>
<td>make_k_arrays</td>
</tr>
<tr>
<td>2</td>
<td>make_matrix</td>
<td>make_k_matrices</td>
</tr>
<tr>
<td>(n \geq 1)</td>
<td>make_nD_array</td>
<td>make_k_vectors</td>
</tr>
</tbody>
</table>

- Map a function over an array:

\[
\text{typeof } \text{map_nD_array} = \\
(\ast 0 \rightarrow \ast 1) \rightarrow \\
(\text{nD_array} \ast 0) \rightarrow (\text{nD_array} \ast 1)
\]

Example:

\[
\text{map_nD_array } f \ a
\]

returns an array with same bounds as array \(a \), containing \(f \ a[j] \) at each index \(j \).

- Left-associative reduction over an array:

\[
\text{typeof } \text{foldl_nD_array} = \\
(\ast 0 \rightarrow \ast 1 \rightarrow \ast 0) \rightarrow \\
\ast 0 \rightarrow \\
(\text{nD_array} \ast 1) \rightarrow \ast 0
\]

Example:

\[
\text{foldl_nD_array } f \ z \ a
\]

returns:

\[
f (f \ldots (f z \ a[\text{first}]) \ldots) \ a[\text{last}]
\]

- Right-associative reduction over an array:

\[
\text{typeof } \text{foldr_nD_array} = \\
(\ast 0 \rightarrow \ast 1 \rightarrow \ast 1) \rightarrow \\
\ast 1 \rightarrow \\
(\text{nD_array} \ast 0) \rightarrow \ast 1
\]

Example:

\[
\text{foldr_nD_array } f \ z \ a
\]

returns:

\[
f a[\text{first}] \ (\ldots (f a[\text{last}] z))
\]

- Tree-reduction over an array:

\[
\text{typeof } \text{fold_nD_array} = \\
(\ast 0 \rightarrow \ast 1 \rightarrow \ast 0) \rightarrow \\
\ast 0 \rightarrow \\
(\text{nD_array} \ast 1) \rightarrow \ast 0
\]

Example:

\[
\text{fold_nD_array } f \ z \ a
\]

reduces the array to a value by first computing the \(\text{fold}_i \)s of all the innermost vectors (rightmost index varying), then the \(\text{fold}_i \)s of those results with the next innermost index varying, and so on. \(\text{fold} \ldots \) has more parallelism than \(\text{foldl} \ldots \) and \(\text{foldr} \ldots \).

- Simultaneous mapping and left-associative reduction of an array:

\[
\text{typeof } \text{map_folds_nD_array} = \\
(\ast 0 \rightarrow \ast 1 \rightarrow (\ast 0, \ast 2)) \rightarrow \\
\ast 0 \rightarrow \\
(\text{array} \ast 1) \rightarrow (\ast 0, \text{array} \ast 2)
\]

Example:

\[
\text{map_folds_nD_array } f \ z \ a
\]

returns \((z\text{Last}, b) \), where \(b \) is an array with same bounds as array \(a \), and

\[
z\text{First}, b[\text{first}] = f z \quad a[\text{first}] \\
z\text{Second}, b[\text{second}] = f z\text{First} \quad a[\text{second}] \\
\ldots \\
z\text{Last}, b[\text{last}] = f z\text{LastButOne} a[\text{last}]
\]

For example, if \(f \) was

\[
def f z a j = \{ \ w = z + aj \\
\
\}
\]

IN \(w, w \) ;

23
z was 0, and a was a vector containing 1, 2 and 3, then the result b would be a vector of partial sums: 1, 3 and 6, and the result zLast would be the sum 6.

*Simultaneous mapping and right-associative reduction of an array:

```haskell
typeof map_foldr_nD_array =
    (1→*0→(*2,*0)) ->
    *0 ->
    (array *1) -> (array *2,*0)
```

Example:

```haskell
map_foldr_nD_array f z a
```
returns (b,zFirst), where b is an array with same bounds as array a, and

```haskell
b[first], zFirst = f a[first] zSecond
b[second], zSecond = f a[second] zThird
...
b[last], zLast = f a[last] z
```

For example, if f was

```haskell
def f z aj = { w = z + aj
            IN w,w ;
```

z was 0, and a was a vector containing 1, 2 and 3, then the result b would be a vector of partial sums (from last to first): 6, 5 and 3, and the result zFirst would be the sum 6.

A.8 Delayed Evaluation

```haskell
typeof force = *0 -> *0
```

```haskell
typeof delayed? = *0 -> B
```

A.9 I-structures

* I-structure allocators:

```haskell
typeof nD_I_array =
    ((N,N),...,((N,N)) -> (nD_I_array *0)
```

Synonyms for 1D_I_array: I_vector, I_array

Synonym for 2D_I_array: I_matrix

* I-structure index bounds:

```haskell
typeof nD_bounds =
    (nD_I_array *0) -> ((N,N),...,((N,N))
```

Synonym for 1D_bounds: bounds

* Fill an empty rectangular region of k existing arrays, given a “filling” function:

```haskell
typeof fill_k_nD_arrays =
    ((N,N),...,((N,N)) ->
    ((N,...,N) -> (*1,...,*k) ->
    (nD_array *0, ..., nD_array *k) -> void
```

Example:

```haskell
fill_k_nD_arrays r f (a1,...,ak)
```
fills region r of arrays a1,...,ak such that if

```haskell
f (j1,...,jN) = (v1,...,vk)
```
then

```haskell
ai[j1,...,jN] = vi
```

B Notes on the Current Implementation

This section describes some restrictions and quirks in the current implementation.

Void: Even though it is an error to use the void value in any way, it will not currently be caught as an error.

Multi-dimensional arrays: (type (nD_array t) where n > 1). Currently, these are not correctly implemented. They are implemented only as nested 1-dimensional arrays.

I-structure Index Expressions: Currently, the index expression “a” for an n-dimensional array must syntactically be an n-tuple; it cannot be an arbitrary expression that returns an n-tuple.

Top-Level Definitions: Currently, pattern-bindings are not allowed as top-level **STATEMENTS** in a program.
References

July 11, 1988
Contents

1 Introduction and History .. 1
 1.1 Incompatible Changes ... 1

2 Functional Id ... 2
 2.1 Expressions, Statements and Types 2
 2.2 Programs .. 2
 2.3 Grouping .. 2
 2.4 Comments .. 2
 2.5 Identifiers .. 2
 2.5.1 Reserved Words .. 3
 2.5.2 Standard Identifiers .. 3
 2.6 Types ... 3
 2.6.1 Precedence in Types .. 3
 2.6.2 Polymorphic Types .. 3
 2.7 Overloading .. 4
 2.8 Type Declarations .. 4
 2.9 Algebraic Types ... 4
 2.10 Function Applications ... 5
 2.11 Operators .. 5
 2.11.1 Operator Precedence ... 5
 2.12 Equality and Inequality ... 5
 2.13 Booleans .. 6
 2.14 Numbers .. 6
 2.15 Characters .. 6
 2.16 Symbols .. 6
 2.17 Strings .. 7
 2.18 Tuples .. 7
 2.19 Conditional Expressions .. 7
 2.20 Blocks .. 7
 2.21 Patterns .. 8
 2.22 Pattern-Matching .. 8
 2.23 Pattern-Binding Statements ... 8
 2.23.1 Simple Binding Statements 8
 2.24 Case-expressions .. 8
 2.25 Function Abstractions ... 9
 2.26 Function Definitions ... 9
 2.27 Lists .. 9
 2.27.1 Binary Infix List Operators 9
 2.27.2 Arithmetic Series Operators 10
 2.27.3 List Comprehensions ... 10
 2.28 Arrays .. 11
 2.28.1 Array Types .. 11
 2.28.2 Array Selection .. 11
 2.28.3 Array Index Bounds .. 11
 2.28.4 Array Comprehensions 11
 2.29 Accumulators .. 12
 2.30 Abstract Types .. 13
 2.31 Loops .. 13
 2.31.1 Scope of Variables in Loops 14
 2.32 Errors .. 14
 2.33 Pragmatics .. 14
 2.34 Annotations for Delayed Evaluation 15
 2.34.1 General Delayed Evaluation 15
 2.35 Delayed Evaluation Tied to Data Structures 15

3 Non-functional Constructs .. 16
 3.1 Void ... 16
 3.2 I-structures .. 16
 3.2.1 I-structure Types ... 16
 3.2.2 I-structure Creation ... 17
 3.2.3 I-structure Assignments 17
 3.2.4 Delayed I-structure Assignment 17
 3.2.5 I-structure Index Bounds 17
 3.3 One-Armed Conditionals .. 17
 3.4 Call Statements .. 18
 3.5 Block Statements ... 18
 3.6 Loop Statements ... 18