MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Project MAC

Computation Structures Group

Memo No. 30

The Design and Transformation of

Asynchronous Computationmal Structures

(Part I1 - Output Deterministic Structure Graphs)
by

Fred Luconi

Summaty

This paper describes a structural design schema for digital systems.
structures are assembled by intercopnecting sets of processing units and control
cells. Except for the sequencing constraints implemented by explicit data path-
ways and control limks, the processing cells operate asynchronously with respect
to one another. The schema consists of a few types of uninterpreted processing
cells and control cells plus rules for their intercommectilon via communication
links. The schema is such that if the rules of construction are followed, cne is

guaranteed to generate a structure which is output functional.

-1-

Introduction

, . de
In previous works the notion of a computational schema was :|.ntroduced.1'2

The desire for establishing local rules of comstruction which could guarantee
complete functiomality was explained and satisfied; the definition of a well-formed
computational schema (wfes) resulted. It has been shown that the streams of data
appearing on each of the communication links of a wfcs during execution are uniguely

determined by the imitial "state" of the system.

Since links designated as output are a subset of a schema's link set, a wies
is output functional. The problem to which we mow address ourselves is how the wfcs
may be generalized to structures which guarantee only ocutput functionality. Such
structures are needed to model systems in which processing capabilities are shared
by several processes. The structual schemata to be described will provide such a

modeliling techmnique.

A structural schema is defined by a set of input links, a set of output links,
and a set of enabling limks, A functiom defined over the schema inputs is
associated with each enable link, A unique set of output lipks is associated with
each function. When data 1s supplied to the inputs of a schema and some of the
enable links are "activated", the data streans which become defined for the indicated
cutput link sets are uniquely determined by the respective functioms. Tn this sense

a structural schema is said to be terminally functional.

A structural schema consists of a data structure, a control structure and an
interface structure. The interface structure defines a set of input and output linmks

for the schema. The data structure consists of a set of comnected functional

*
This paper will assume a koowledge of the fechmiques and motation used in the
references.

operators. These functional operators which may be primitive functional operators
or other structural schemata are characterized by a set of input links, a set of
output links, and a set of enabling links. When enabled, the functional operator
will apply a specified function te the data in its input links and store the results

in its output links. MNo constraints are placed on the time taken for such executioms,

Any network of functiomal operatoers may provide a specification of various
transformations on data stored in the interface structure; each transformation of
function is defined by some particular ordering of functienal operator application.
The specification of such sequencing is called the schema's control structure.
guch structures deline algorithms for implementing the input-output transformations
supplied by the schema. These algorithms may describe parallel processing implemen-
tations wherein several functional operators in the data structure may be enabled
simultaneously. Even more important is the fact that the services of particular
functional operators may be shared by several such processes. The structure of the

schema guarantees the non-conflicting use of these operators.

To aid in the understanding of structural schemata, the following interpretation
may be helpful. Think of the data-structure as specifying fixed data paths between a
set of functiomal operators. To conetrain the sequence in which the operatars of the
data-structure may be applied, a precedence assigoment is defined (the contrel structur
Together, the data- and control- structures define a functiomal transformation between
input and output data streams. Several precedence assignments may be associated with a
given data-structure with each specifying a different funetional transformation. 1If we
think of each contrel structure as defining a computation, then a structural schema may
describe a system in which not only are various functional units shared by several com-
putations, but the rules of system construction will guarantee that all such processing

can be done comcurrently without conflict. This technique enables us to implement

computational systems which provide several input-output transformations

simultaneously.

structural Schemata

A structural schema consists of three conmected sub-structures; the data

processing strue

ture, the control or sequencing structure(s), and the interface.

These three sybsystems of a structural schema will now be defined.

The Data-Structure

{D- structure}

The D-structure is an ordered

1) F =
2) D=
3 A=
4 E =
5) & =
6} p =
) e=

D- structures are represented as a sub-class of computational schemata.

{fl, EZ’
{ﬁl, £2’
[al, g,
{el, €ys

cen fa} is

ey 'E‘.b} is
e ac} is
ey ed} is

7-tuple D = <F, D, A, K, &, p, ¢, where

a

a

finite

finite

finite

finite

set

set

set

seil

of functional operators.

of data links.
of arbiters.

of enabling links.

*
F <+ P(D) ig a function over the set F which defines the set of

F =+ P(D)

F + P(E)

input links in D associated with each fi-

is a function over the set F which defines the set of

output links in D associated with each fi.

is a function over the set F which defines the set of

enabling 1inks associated with each fi'

following rules direct the construction of valid D-structures.

The

i) Each functional operator f € F is a valid structural schema or a primitive

functional operator having an input vector, § (f), an output vector, p(f), and

cne enabling link, e(f).

figure 1.

* p() denotes the power set of the argument.

e(f)

A primitive functional cperator is 1llustrated in

-

A structural schema which is used as a functional operator is illustrated
in figure 2. A gtructural schema may provide several functions each of
which is activated by a separate enabling link. Associated with each of
these functions is a disjoint subzet of the operator's output set. This

recursive definition of structural schema will allow hierarchical design.

Figure 2

i1i) The transformation secs of each operator constrain fi to be applicable
only if a 1 is associated with lipk e(fi). When functicn fi is applied, the
value of e(fi) is set to "2" and the values of the respective oubtput Llinks

are replaced as specified by the function. In a primitive functicmal operator,

each transaction will take the form:

e(f) 8(f) e(£f) p(£)
1 El -+ 2 El

iii) Like well-formed computational schemata, every D-structure must be

transformation lossless. However, unlike wies', write-conflicts will be

prevented not by restricting the transaction sets of operators but by the

inclusion of a set of non-deterministic operators called arbiters. One

arbiter is associated with every data link appearing in the output set of more than
one functional operator or monitor operator (see section om interface structure).

As 1its name would suggest, the arbiter resolves write-conflicts for its associated
data link. If £, and £, have an output link in common (p(fl) N p(fz) # 8), them the
enabling links of these two operators will be "connected" to the arbiter, a;,
associated with the "shared" data link, i.e., E(fl) € e(ai) and e(fz) € e{ai). The
enabling links associated with arbiters arc arranged in pairs. Ome enabling link
pair, will exist for each operator connected to the arbiter. In figure 3, we see
that link e(fl) is a member of e(al) and will be referred to as an output link of
arbiter a,- Corresponding to e(fl) ig the arbiter input link e‘(fl) € e(al). Using
the data found in its enabling set, am arbiter performs the non-deterministic function

described as follows:
1) TIf all links e(f) assoclated with arbiter, a have a O-value, and if
link e‘(fi) [e(ak) has a l-value, arbiter & will store a2 1 in link e(fi).
If more than one of the arbiter's input links (e'(fi)) has a l-value, the
arbiter may service only one request by setting e(fi) to 1. 7The operation
of the arbiter is non-detcrministic because the choice of which imput link
to service is arbitrary., It is important to note that at most one arbiter

output link may have a l-value at any given time.

2y If some link e(fi) has a 2-value, the arbiter stores a O-value in that

link, and stores a 2-value in link e'(fi).

If but a single arbiter becomes associated with functional operator f in order
to resolve write-conflicts for some member of f's output vector, the "econnection' is
aimply accomplished by identitying the appropriate arbiter output, e(fy, as f's
enzbling link. 1If, however, several of £'s output links are "ghared', it then becomes
necessary tao associate several arbiters with f£. Since f has only a single emabling
link, a comjunctive input operator (CI-operator) is used to guarantee that L becomes

applicable only after being activated by all associated arbiters. If f is comnected

-6-

to n arbiters, the transaction set of the associated Cl-operator appears as:

el(f) ez(f) en(f) e(f) el(f) ez(f) en(f) e(f)
1 1 ‘e 1 a - 1 1 Iy 1 1
1 1 s 1 2 -+ 2 2 e 2 0

where ei(f) is the output of an arbiter aund e(f) is the enabling link of operator f.
in order that all functional operators may be activated by a call to a single
enabling link, a junction-operator (J-operator) is introduced. when set with a
i-value a J-operator merely distributes l-values to all the arbiters associated
with a given operator, and then waits for the completion detecting 2-value. &n

n-output J-operator has the following transactions:

e' (£ Eiiil e (£} e' (f) Ei(f) e'(f
1 0 se 0 -+ i 1 rree 1
1 2 e 2 -+ 2 y “.e- 0

where ei(f) is the inmput of an arbiter and e'(f) is the pseudo-engbling link of

operator f.

Figure 3 illustrates a D-structure with all necessary arbiters, CI-operators,
and J-operators included. The Cl- and J-operators are diagramed as shaded circles;

the arbiters as diamond shaped operztors.

c’(«F,)

elF) [et ecf,) Clf)
“/ o VA o g 0
]
Figure 3

(I-structure)

The Interface Structure
*
=<«M, T, %, p, e> where

The I-structure is an ordered 5-tuple T

md] ig a finite set of interface monitor operators.

.
a

1) M= tmli mz: n

te} is a finite set of terminal links.

2y T-= {tl, tz, e,
Each monitor has one

An I-structure is a well-formed computational schema.

ipput link, § (m), one output limk, p(m), and one enabling link, e{m}. A monitor is

illmstrated in Figure &,

5, p, ¢ are functions over the operabor set as defined earlier,

-8-

e(m)

SmY (:(m)

Figure 4

Fither §(m) or p(m) must be a member of the terminal link set T. The

transaction of a monitor implements a gated identity function as shown below:

e b(m e _o(m)

1 X 2 X

The Control Structure (C-structure)

The C-structure is an ordered 6-tuple C =< s, L, be, %, p, e > where

1y 5

It

[sl, g5 "7 sf} is a finite set of control operators.

2) L

{2qs 295 """ zg} is a finite set of control links.

3) ze €L is the contrcl structure emabling link.

A C-structure is a well-formed computational schema. Each control operator
5 € § has an input vectot, §(s), an oufput vector 7(s}, and an excitalory link,
e(s). The input links may be either control links or data-links. A control

operator is illustrated in figure 5.

-9-

e(s)

Figure 5

A control operator may apply only if iis enabling link has a 0-value. The
operator changes this value to a 1-value (which as we shall see causes a functional
or monitor operator to become applicable). When a 2-value is returned to the
enabling link, the control operator may store new values into the members of its
output set and a 0-value into the enabling link. Each transaction appears in two

parts as shown:

e(s) 6{(s) e(s) p(s)

o s 4 1 -

2 3o+ 0 T
An example of a useful control schema is described in Appendix I.

The Structural Schema

A structual schema is an ordered 4-tuple< D, I, G, E > where D is a data-
structure, T 1s an interface structure, C is a contrel structure, and E is an enabling
link set. By restricting the neonnection” of three such structures, we can guarantee

the output-functionality of structural schemata.

-10-

1) Comnection of D and I-structures (D,I-structures)

The monitors of 1 are used to get information in and out ol the D-structure
during the course of a computation. The input or output link of each monitor

muist be a member of the terminal set T; the other link must be a2 member of the

data link set D. If p{m)e D, then m is am input-monitor, transmitting imformation
from terminal 1ink §{m) to the D-structure via data link p(m). TL{8(m)€ D, m

is an output-monitLor.

if p(m)¢ D and is shared as am output link by some other operators, an

arbiter must be used between m and the ather operators.

2) Connection of € and the D,T-structure

The control-structure directs the actioms of the D,I-structure. This is
done by identifying each e(s) of the control structure as an enabling link of the
D,I-structure. If anm operator, f or m, in D,I is not conpected to an arbitrating
configuration, then e(s) is simply jdentified with the link e(f) or e(m). If f or
m 1s associated with an arbitrating structure, then the control operators must be
connected through that unit. Any number of control operators may be identified
with a given e(f) link, but only & single control operator cam be identified with

a particular e(m) limk.

In order to guarantee non-conflicting use of the enabling links, we will make
the following restrictions on the class of control-structures which may be commected
to a particular D,I-structure. The C and D,I-structures must be related and connected
in such a way that a control node conpected to some functional operator f must become
applicable only after the application of other comtrol operators im C have assured
that data resides in all the data links imput to f. Since there can be arbitrary

information in the data

-11-

links before schema execution, output-functionality can be guaranteed only by
assuring that functional operators get proper inputs. The restriction also
requires that all initially applicable control operators be commected to input

mopitors. We will call this set of control operators, the initialization set.

As explained in Appendix I, control operators which implement data-controlled
branching are desireable. The ome restriction we make on the use of data in
p-links by the control operators is: the D-links which are used must be members of
the input vector for the functiomal operator enabled by the contreol operator.

This restriction guatrantees that the appropriate branching data will be present

when the control operator applies.

Execution of Structural Schemata

1) The structure is initialized by associating values with the terminal links and
setting O-valuee in the enabling links. The values of the data and control links
are arbitrary to the point that operators imput to them are not restricted from

becoming applicable.

Execution is begun by storing a l-value in link ze of the controel structure.

This should make various members of the initialization set applicable.

2) Whenever an operator is applicable, it may apply itself, revising the values

of links in its cutput and enable sets.

3) 1If execution terminates, we require that the final state always be one in which

Le has an assoclated 2-value and all the other links in L have O-values.

-12-

Concluding Hemarks

A structural schema which satisfies all therules of construction is described
in Appendix II. ‘The structure illustrated shows how sequencing of the D-structure
operators can be directed by control structures which look like program graphs.

It is interésting to see how two such structures (one to calculate a simple
arithmetic expression, the other to calculate a square root) can be simultaneously

directing the actions of the D-structure,

The theorem on which we are now working is to show that if the terminal links

comnected to output monitors are defined as system outpuls, then all structural

schemata are output functional. The theoretical work which leads to the definiticn

of structural schemata amd the proof of the fumctionality theorem will be given in

a forthcoming dectoral thesis.

A generalizetion of structural schemata as now defined is presently being
studied. We are interested not only in the "sharing' of functional operators but
also in the freedom of allowing a control operator function request Lo chcose from

several fumctional operators.

Interpretations of structural schemata in terms of moderm computer technelogy
must also be made. Perhaps new insights into the comstruction of distributed

computational systems may evolve.

-13-

Appendix T

A Control Schema

The control schema presented in this seclion is an adaptation of the thesis
regearch being conducted by Jorge Rodriguez.3 This schema is well-formed and
satisfies the construction rules for control structures. The schema, which defines
the concept of program graphs, aliows easy description of algorithms as directed

graphs. The utilization of parallel processing capabilities is easily specified.

A program graph may be constructed out of control links and six types of
control operators; these will be explained in detail shortly. For ease of specifica-
tion the description of contrel operators will omit the required treatment of
enabling links (see secbion on C- structures). The control operators will be named

according to the functional-operators or monitors which they activate.

The transformatiom sets for each operator type are shown in table 1. Two
characteristics are common to all of the operator types. First, every transaction
requires that all output links have O-values; second, for each operator but the loop

junction, all input links must have values other than 0.

The function- and junctiom-type control operators are explained adequately by
their transackion sets. The selector operator enables the contrel sequencing to
branch aceording to data conditioms; it is able to read the contents of a data link
input to its associated functional operator in the D-structure. Loop junction
operators are used to control cyclic processing. Imput link 6% of a loop junctiomn
is used to imitialize the iteration. Input linok 62 receives control after each
iteration. The data-link supplies the information on which loop exiting depends.

Loop output operators are provided to define what is to be considered the result of

-14-

an iterative process while guaranteeing that the structure is tranformation lossless.
6% of loop output operators must be control output connectors for loop junctions,

4 X .
i.e., Ps of loop junctions.

A program graph is a C-structure formed by interconnecting a finite set of

control operators according to the following rules:

1) Le must be the exclusiwe input link to a control operatar comnected to an

input monitor,
2) Loop junctions and loop output operators must be connected as described above.

3) Tke terminating operation of every program graph mist be to stere a 2-value in

link ze. This is done by use of the termination operatot.

In order to guarantee output functional structural schemata, a few restrictions

must be placed on the relationship of a program graph and its connected D,I-structure:

1) There must exist an empty- or cleared-value for data links, and the operators
of a D,I-structure must be allowed to write only inlto the links of their output sets

which contain this value,

2) 1If a control operator activates an operator of the D,I-structure, the rtopology
of the control structure must be such that previously executed contrel operators
have supplied all necessary data to the input links of the activated functional-

operator or monitor.

The examples of Appendix II will serve to clarify the concepts of program
graph construction and the effect of contrel structures on structural schema

execution.

-15-

aperatoyr

types

function
operator

selector

junction

loop junclion

gchematic representation

Table 1

! T
K|
'
[A 3
! 1
3
1 2
3 “

transaction sets

1 1

-1 1
1-1

-1 -1

1 0

-1 0

-lx 1

1 -1

-1 -1

1 0 0
2 1 0
2 -1 0
-1 0 0O
1 1 0
1 -1 0
-1 -1 0
-1 1 0

0

0
it
0

[}

o o o o o o o Qo

+ 0
-+ 0O
+ 0
+ 0
io
-
0
-+ 0
-
+ 2
-+ 2
+ 0
-+ 2
4 2
-+ 2
+ 2
+ 2

0 1
0 -1
o -1
o -1
-1 1
1 -1
-1 -1
0 1
¢ 1
o1
0o 1
o0 1
0 2
0 -1
1 1
0 1
0 -1
1-1

4

R T - L

* QOperators naming no function in the D,I-structure require no enabling link.

Operators which do name a function in the D,T-structure activate the

corresponding enabling link only during application of the starred

transactions.

~16-

¥

L

-1 0 » 0 O

1 0 « 0 1
-1-1 0 a4+ 0 -1
1 0+ 0 0

1
1
-1
2

[
7

loop output

1
-1
-1

0

1 ¢ + 0

2 -1 0 4 @
2 0 0 4+ 0

2

1 0 =+ 0

=
a
o
i
«
=1
e
B
O
@
o

-17-

Appendixz 1T

Part I - D,I-structure (the naming conventions have heen altered to
provide a clear exposition)

t, ts

1 L

da.!

t.
[| |
(:::) m,
|

?

t,

arbiter for all
operators input
to a.l

&

adel
sub

Ia Ll 19
o

@ Compnts
o
CLEAR

arbiter for all
operators input
to a.2

-1§-

1)

2)

3)

4)

5)

6)

-m4 -

Explanation of Function

input moniters

mS, m6 - output monitors

$1.1 (s2.1) -

fi.i (f2.1i) -

copy -

arith -

Functional operator which stores the contents of tink a.l (a.2)

into data liok d4.i.
This sction does not clear the contents of link a.1 {(a.2).
d.1 must be empiy (cleared) before the operator can
become applicable.
functional operator which fetchs the contents of link d.i
into data link a.l1 (a.2)
This action clears the contents of d.i,
a.l (a.2) must be empty before the operator can become applicable.
Functional operator which copies the contents of a.l iato a.2

This action does not clear the contents of a.l

a.2 must be empty before the operator can become applicable.

structural schema which adds, subtracts, multiplies or
divides the contents of a.l and a.2 and then stores

the result in a.l.
This action clears the contents of a.2

A compare operalion is used to supply data to a control
structure. After such an action both a.l and a.2

are cleared.

a.1 and a.2 must be non-empiy before the schema can

become applicable.

-19-

Part 11 - Sample control structures using the conventions described in

Appendixz I.

Example 1; calculate the function (X2 + Y)(X2 + Z)

inputs - m, : X utputs -
1 cutpule "5 enabling link - ge

Example 2: Calculate the square Toot of M

inputs - oy M output - m
m, + initial guess for M
my : allowable squared error, ¢
m, * 2

enabling link - g,

Note: convention corresponds to the read-write funtiom —>""

Store
M oa ol

-

>

shere M
M, -h
‘dﬁnf W a‘.l} (ﬂ-‘ﬂ) @
data
from
1.} mnd
a.2

share
& in d3

SJ’@[{
.Z L} GJ“

0,0.9,0.0,.0,0,0.60:0,6.0

¥ — "_—--—M—-—-—-—.\

-21-

example 3

it is very importamt to realize that although the two algorithms specified
in examples 1 and 2 specify the use of common computational resources, the two
control structures may concurrently be comnected to the D,I-structure of part I.
The sharing of operators and data links specified by the resulting configuration

1s guaranteed not to cause cutput-nondetermini sn,

The resulting structural schema may now be diagrammed as an operator which

supplies two functions as illustrated below:

-22-

