LABORATORY FOR
COMPUTER SCIENCE

MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

\-

/

A Dataflow \pproach to General-purpose
Farallel Computing

Computation Structures Group Memo 302
July 7, 1989

Arvind
Rishiyur S. Nikhil

Prepazed for the proceedings commemorating the
25th Anniversary of Project MAC.

This report describes v search done at the Laboratory for Computer Science of
the Massachusetts Institute of Technology. Funding for the Laboratory is provided
in part by the Advance. Research Projects Agency of the Department of Defense
under the Office of Navi | Research contract NG0014-84-K-0099.

.

545 TECHNOLOG Y SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

A Dataflow Approach to General-purpose Parallel
Computing
Arvind
Rishiyur S. Nikhil

July 7, 1989

1 Introduction

Our dataflow group at MIT has two goals related to parallel processing:

o To raise the level of parallel programming by designing and implementing an expressive,
powerful programming language in which the natural description of an algorithm has
abundant parallelism, without having to specify partitioning, mapping and scheduling.

¢ To design architectures that are more suitable to the requirements of parallelism than
the traditional von Neumann design that has served so well for uniprocessors in the
past.

While each goal is independently worthwhile, they achieve an exciting symbiosis when pur-
sued together.

Our approach is based on the research programming language Id, its compilation to Tagged
Token dataflow graphs— a parallel machine code— and architectures for direct execution of
dataflow graphs. Our current architectural focus is on an abstract model called the Explicit
Token Store model and its concrete implementation in the Monsoon dataflow machine. In
this article we provide an overview of our approach.

2 Functions and Reduction

We are all familiar with the following simple notion of computation. Given an expression
like this:

(2 +3)+4

we can reduce it (or rewrite it) to the expression
5+ 4

which can be rewritten further to the expression
¢

No further reductions can take place, so we call this the “result” of the computation.

This simple principle is the basis of computation in functional languages such as Id. In
addition to the fixed repertoire of rewrite rules for primitive operators such as “+”, the
programmer may specify additional rewrite rules through function definitions.

1

We begin with a simple example. It doesn’t do much— it simply takes two arguments, adds
them up, and returns the result.

def plus x y = x + y ;

The identifiers x and y are called formal parameters or arguments because they are just
dummy names that stand for actual values, or actual parameters that will be supplied when
this function is used.

The function can be read as a rewrite rule, i.e,, whenever we see an expression that matches
the left-hand side:

plus e; ez

where e; and e; are any expressions, we can always reduce it as specified by the right-hand
side, to

ep + ez

Suppose we were given the expression “plus 2 3”. We can perform the rewrite as fol-
lows:

pPlus 23 = 2+ 3 = 6

A more complicated example:

plus (2 * 3) (plus 2 3)

= plus 8 (2 + 3)
= plus 6 &

= 6 +6

= 11

In general, whenever we see any expression that matches the left-hand side of a function
definition, we can always replace it by the right-hand side, substituting formal parameters
by actual parameters. By repeatedly performing such rewrites, we reduce the program
expression to its result, i.e., an expression that cannot be rewritten any further.

3 Parallelism and determinacy

At each point in the computation there may be many rewrite rules that are applicable, i.e.,
many sub-expressions that are reducible. In our example above, we could have chosen to
perform the rewrites in the following order instead:

plus (2 * 3) (plus 2 3)

= (2% 3) + (plus 2 3)
= 6+ (2 + 3)

= 6 +65

== 11

Happily, the result is still 11, as before. In fact, this is no accident— it is a very deep
property of functional languages called the Church-Rosser property. It arises from the fact
that, as in mathematics, expressions do not have any side-effects— each expression uniquely
stands for some value, and can be replaced by any other expression denoting the same value
without changing the meaning of the program. Reductions in a functional language are thus
confluent, or determinate, i.e., no matter what order we choose to perform the reductions,
the resulting value for all terminating reduction sequences is always the same. This has
major implications on parallel computation:

o We are free to perform as many rewrites as we wish in parallel.

¢ We have great flexibility in scheduling the computations on a real machine, because
the order in which we choose to do the reductions can affect termination but not the
result value.

Determinacy is an invaluable property for parallel programs, because it guarantees repeata-
bility of results. It is extremely difficult to debug a program if different runs of the same
program on the same inputs can produce different answers.

4 Higher order functions

Consider the following expression:

{ ¢ = plus 1
In
£33}

which says: let £ name the value of the expression “plus 1”; using this name, compute the
value of the expression “f£ 3”.

Is the expression “plus 1” meaningful? Is there an argument missing? No! We treat “plus 1”
as an expression whose value is itself a function of one argument, i.e., ¢ represents a function
that adds one to its argument and returns its value.

Intuitively, the definitions in a block can themselves be regarded as rewrite rules that are
used in reducing the “return expression” of the block (i.e., following the In keyword) to a
value:

{t
= {z

Plus 1 In £ 3 }
plus 1 In (plus 1) 3 } using the definition of ¢

f]

where “(plus 1) 3” is a fully parenthesized version of “plus 1 3”. By convention, application
associates to the left, so we can drop the parentheses. Continuing,

{£ = plus 1 In plus 1 3 }
=> {f=plusifni+3} using the definition of pius
= {t=plusi1ns}
= 4

The last step was performed using a rewrite rule for blocks which states that when the
return-expression has been reduced to a value, the block may be replaced by that value.

This notation, whereby “plus e;” can itself be treated as a function, is a very clever and
powerful notation found in functional languages, and is called “currying” after Haskell B.
Curry, a famous logician who invented it earlier in this century. We will make much use of
it in later examples.
Now, let us look at a really fascinating program.

def twice £ x = £ (£ x) ;
In words: twice takes a function £ and an argument x, and applies £ to x twice. For example,
the expression:

twice sqr 4
should apply the squaring function sqr twice to 4, i.e., sqr (sqr 4), producing 256. What
about the following expression?

twice (plus 3) 4
Recall that “pius 3” represents a function of one argument that adds 3 to its argument.

Thus, when applied twice to 4, we will add 6 to it, giving 10. Let us watch the reduction
process:

twice (plus 3) 4

= (plus 3) ((plus 3) 4) using the definition of twice
== (plus 3) (3 + 4) using the definition of plus
=> 3+ (3+4) using the definition of plus
= 10

Notice again the role of parentheses. The expression (aqr sqr) 4 would indicate the appli-
cation of the sqr function to itself, followed by the application of the result to 4. As one
would expect, this is a meaningless expression— it does not make sense to apply sqr to itself.
More formally, we say that it is a data type error, because sqr expects an argument of type
integer, but is being given an argument that is a function instead.

As an interesting exercise, the reader may wish to determine what the following expression
reduces to:

twice twice aqr 2

Hint: the answer is the address space of the venerable old 8080 and 6502 microprocessors!

5 Data structures

The most basic kind of data structure in Id is a tuple, which is just an aggregation of some
component values. For example, the expression:

(2,3

represents a 2-tuple (or pair), which is a data structure whose first component is the number
2 and whose second component is the number 3.
The tuple notation can be used in any context. For example,

(1+1i,plus 1 2)

and

{f =plus 1
In
(£ 1,2 2) }

are also expressions that evaluate to 2-tuples containing the numbers 2 and 3.

Once a tuple is constructed, how do we gain access to its components? We use pattern match-
ing. For example, suppose we want to define a function that takes a 2-tuple as argument
and returns the sum of its components. This is how we would write it:

def add (x,y) = x + y ;

i.e., the formal parameter (x,y) is regarded as a pattern that is matched against the actual
2-tuple supplied as an argument, and the effect of this is that x names the first component
and y names the second.

Again, let us observe the reduction process:

add (2,3)
== 2+ 3
= §

What is the difference between the functions add and pius? What happens if we said
this?

add 2 3
Remember that, fully parenthesized, this really stands for:
(add 2) 3

Thus, adq is being applied to a number instead of a 2-tuple. This is another example of a
data type error. Similarly, consider:

plus (2,3)
(The parentheses are necessary here to override the default that application binds more

tightly than the tupling comma.) Here, plus expects a number but is being given a 2-tuple,
and so, this is also a type error. Here is a legal expression:

add (2 * 3,(plus 4 B))

= add (2 * 3,4 + 5) using the definition of pilus
=> (2 *3) + (4 +5) using the definition of aad
= .
= 1B

Tuples are “first class values”, i.e., they can be nested within other tuples, returned as
results from functions, efc. For example:
def grid n = (1,n),{1,n) ;

is a function that t{akes a number n and returns a 2-tuple, each of whose components itself
contains a 2-tuple containing 1 and n. The value of the expression “grid 10” can be visualized

as shown in Figure 1.

Y |
110 | 1]10]

Figure 1: Value of “grid 10” (= ((1,10),(1,10)))

6 Arrays

Tuples are “small” data structures whose components are specified and selected by textual
position. In contrast, arrays and matrices are “large” data structures whose components are
specified and selected by an indez, which is a numeric name. For example, if 4 is an array,
then a[5] and a[2+3] are expressions that select the component of 4 at index 5.

In principle, an array selection like 4L6] and a function application like (£ §) are very similar.
However, there are two main differences:

® An array is defined only on a finite, contiguous domain of numbers. We say that an
array i has indez bounds [and u, indicating that it is always an error to evaluate a[j]
where ;7 < lor u < j. The index bounds of an array are specified in the program at
array-construction time.

¢ Pragmatically, arrays are implemented so that selection of a component always takes
a fixed amount of time, independent of the size of the array or the value of the index.

This intuitive connection between arrays and functions is used to specify the construction of
an array. The expression:

make_array (1,10) £

produces an array (call it X)) with index bounds 1 to 10, and with components such that
X[j]=fj,for 1 <5< 10.

For example, the expression:
make_array (1,10) (plus 10)

is an array (call it X) such that X[] = (plus 10 j) within its index bounds, as depicted in
Figure 2.

This idea is readily generalized to multidimensional arrays:

6

i &2 & 4 5 8 T 8 8 10

111121314115 16| 17| 18| 19| 20

Figure 2: Value of: make_array (1,10) (plus 10)

make_matrix ({1,n),(1,n)) g
is a 2-dimensional array (call it Y} such that Y[i,j] = g(i,7/)for 1 <i<nand 1< j <n.
In general, a k-dimensional array is specified using a function that takes a k-tuple argument.
For example, the expression:

make matrix (grid 10) add

is an array (call it Y') with index bounds ((1,10),(1,16)), within which Y'[¢,j] has the value
t + 7, as shown in Figure 3.

Xt £ 8 4 5 6 7T 8§ 8 10
.: ¥ T T L) L) L) L) L L)
1233 (45)6)7 1819 10'n
Sbeb et el Bt TR el el TR R TR
213 j4i6 16)7 18190 lwolu'
---«——+—-4--4--4—--r-—r—-7--1---
2|45 161718 19 10011)12)1s
YT FOPIPR RN Y PR I S B Ty
]]] i 1 [}] [}]
4 § 16 17 18 19 1101111121138 14
PRl I ot DA e S i S S B
5 |s i'7’lrs'ig'il :11112i_13-14n15
R AP T TR il Al Ml Tt il S
6 |7 18 19 '10111}12! 13! 14! 15! 186
Z0mim St Sbats B hubede bt aiadel stk Skl abod
7|8 9 j10}11})12}13)14)15] 18! 17
St St e et sl adeded bl ELE Eobel
8§ |9 j10)11]12{18,14} 16} 18} 17} 18
ot r e e e - - =
9 1071112} 13)14}15) 18} 17} 18! 19
PRI S T St B e DS S
10 11: 121 131 14: 15: 161 17: 18: 19 20

Figure 3: Value of: make matrix (grid 10) add

Both examples are declarative specifications of arrays, i.e., there is no implication of any
particular order in which to compute the components. In principle, they could all be com-
puted in parallel. The subtlety of this issue will become much more apparent in our next
example,

6.1 Example: A Wavefront Computation

Suppose we want to construct an » X n matrix X as follows:

e Cells along the left and top borders contain 1, i.e., X[1,7] = X[i,1] = 1.
o All other cells contain the sum of their neighbors to the left and to the top, i.e., X[i,7] =
X[- 1,71+ X[, 5 — 1].

This can be expressed in Id as follows:
I = make_matrix (grid n) f ;

def £ (i,j) = if (i == 1) then 1
else (if (j == 1) then 1
else X[i-1,5]1 + X[i,j-11) ;
Some syntax explanations: in a conditional expression “if e; then e; else e3”, €, is evaluated
first to a boolean value, i.e., true or talse; depending on this value, either e; or ez (but not
both!) is evaluated and returned as the result. Equality of two values is tested using the
infix operator “==".

There is something quite unusual going on here— in the first line, we are defining x using
£, whereas in the second line we are defining # using 1. The reason it makes sense is the
same reason that recursive function definitions make sense— it is inductive, i.e., no array
component is defined in terms of itself. There is a base case where components are defined
independently— when ¢ = 1 or § = 1. Ultimately, every other component is defined in terms
of these base components. Thus, the definition is perfectly meaningful.

Using our currying notation, the reader may be interested to note that the program could
have equivalently been written thus:

X = make_matrix (grid m) (f X) ;

def 2 X (i,j) = #f (i ==1) then 1
else (if (j == 1) then 1
else X[i-1,3]1 + x[i,j-11) ;

Let us take a moment to examine the potential parallelism in the wavefront program. Imag-
ine that make.matrix initiates n? computations, one to fill each component of the array. Most
of these computations must suspend because they try to read neighboring components that
are still empty. However, all computations for components in the top and left border can
complete immediately, since they do not depend on anything else. When the border compo-
nents at (1,2) and (2,1) have been filled, the computation for component (2,2) can proceed.
As soon as it has completed, the computations for components (2,3) and (3,2) can proceed,
and so on. Figure 4 shows a snapshot of the array during this process. The left and top
borders, and some components on the top left have been computed. The shaded squares
show the next components that can be computed, because all the components that they
depend upon have already been computed. Thus, computation can proceed along a diag-
onal “wavefront” that sweeps across the matrix filling in components from the top left to
bottom right. Parallelism grows until we reach the maximum diagonal, and then shrinks as
we approach the bottom-right corner.

This behaviour is illustrated in the parallelism profile in Figure 5. The profile is generated
automatically by GITA, a tool that can show the maximum parallelism in the dataflow
graphs produced by our Id compiler. As we shall see, a dataflow graph is a partial order on
instructions, and GITA plots the maximum number of instructions that can execute at each
time step, assuming each instruction takes one time step.

We had stated earlier that make.matrix does not by itself imply any particular ordering on the
computations for the array coriponents. It is clear from the wavefront program, however,

8

- (B |) 1 [' ' ' o
S [Iy T T T T o
al ='! 1 1 ' 1 1) 1 t e
IS T N [N [P DY R S HRP S K
[T | [1 P =
%
| eleabootoboLloto] &
- 1 ' ' o g
TN S Y TR T T T SO I
1] 1
w | - 1 1 | ..m
||||||||||| R o
] ™ 1 1] ..m
= “r=r=T-9 P
~| - w ' [o
- == “-r=r-T-1 W
wlmteatol / ' [.
b ==y - - - e
= 1_2.3_4.5.6% ' 1 v
I R (Y P - - =+ = =]
N I T T TSN RN SR S B S =Y
1) 1 1 A 1 1 L 1 =9
tl T S S Y

time

0 150 200

104

B0
Figure 5: Parallelism profile for wavefront program

140
120]
100]
80
60
40

FUCHDIRA() PUSLININOD

20 |

that some ordering may be implied by the data dependencies in a particular program. In
functional languages like Id, all the ordering is based on data dependences; it can change
from program to program and, indeed, on the particular input to a given program.

How can we implement this notion of dynamically adjusting the order of computations to
accommodate the data dependencies that may arise in a particular run of a program? This
is the rationale behind dataflow graphs, which constitute a parallel machine language, and
dataflow architectures. Before we look at them, however, let us briefly examine conventional
programming and machine languages.

7 Parallelism in conventional languages

In imperative languages like FORTRAN, a total, sequential order on computations is speci-
fied by the language definition. The compiler must, therefore, work very hard to analyze a
particular program to discover where this total ordering is too conservative. If it can detect
such situations, the compiler can then generate parallel code.

Let us take a moment to see how the wavefront program may be expressed in FORTRAN.
DIMENSION X(10,10)

¢ Initialize boundaries
€ Fill in the middle

DO 200 i = 2,10
DO 100 § = 2,10
1(i,3j) = x(i-1,j) + x{i,j-1) Loop body
100 CONTINUE
200 COKTINUE

For those unfamiliar with FORTRAN: the DIMENSION statement declares x to be an 10 x 10
array; as is usual in FORTRAN, we assume that each array index ranges from 1 to 10;
comments are on lines beginning with “c”; the ellipses represent the code to set up the
boundaries; finally, we have a doubly nested loop; for each i and each j in the range 2 to 10,
the statement in the loop body specifies the computation of the (,7)’th array element.

To run this code, we compile it (translate it) to a machine language representing instructions
for a computer. A typical computer has two major components, a processor and a memory.
The memory is a linear sequence of cells and, usually, the components of program arrays like
X reside in a “flattened” form in the memory, for example, as shown in Figure 6.! Thus, if
we let X, stand for the address of the first element of x then, to access element x(2,3), the
processor must fetch the value from memory location X, + 21.

The processor also has some local memory called registers. Typically, they will contain the
values ¢, 7, X, and other intermediate (temporary) results of the computation. In order to
perform any arithmetic operation, the processor must copy the input data from the memory

!The figure shows what is commonly called the column-major representation, which is only one out of
many possible representations of a matrix in a linear memory.

10

(; I(1.1) [Xx{2,1) b x(10,1) |x(t.,2) ¢ 1(10,2) s X{10,10) ()

Figure 6: Layout of array X in memory.

into its registers, perform the operation locally, and then store the results back into memory.
To copy data from memory location @ into a register r, the processor must execute an
instruction “r := FETCE r,” where r, is a register, containing the address a. To copy data
back to memory, the processor must execute a “STORE r r,” instruction.

Why do we not have an instuction “r := FETCH a”? That is, why does FETCH name a register
r, containing the address a instead of naming the address a directly? The reason is that a
itself has to be computed at run time.? In general, to access X(i,j), the processor needs to
compute the address Xp + (7 — 1) + 10(5 — 1).

We can now see, in outline, the machine code corresponding to the body of the wavefront
loop. We assume that 11, r1, 12, r2, 13, and x3 are registers in the processor.

11 := compute address of X(i-1,j)
rli := FETCH 11
12 := compute address of X(i,j-1)

r2 := FETCH 12

r3 :=r1 + r2

13 := compule address of X(i,j)
STORE r3 13

In a typical processor, these instructions are executed in sequence, one at a time, from top
to bottom, i.e., control flows sequentially from one instruction to the next. By examining
it in a little more detail, we see that, in fact, the following rearrangement of the code would
also be correct.

11 := compute address of X(i-1,j)
12 := compute address of X(ij-1)
13 := compule address of X(i,j)
rl := FETCH 11

r2 := FETCH 12

r3 :

13

rl + x2

2An historical aside: Originally, FETCH instructions in von Neumann machines did directly name an
address. The only way to access locations whose addresses were computed dynamically was, therefore, to
modify the instruction itself with new addresses at tun time. This is not considered acceptable anymore, both
because such programs are extremely opaque as well as because it complicates the design of the high-speed
processors. Ironically, it was one of von Neumann’s remarkable observations that, by allowing modification
of instructions one could build & universal computing machine!

11

STCORE x3 13

Of course, several other orderings are possible. In general, instead of specifying a total order
on instructions, we would like to specify only a partial order, as shown in Figure 7. This

13 := compuie address of X(1j)

H

i

i

' 11 := compute address of X(i-1,5} 12 := compuie address of X{ij-1}
' L] L]

1

: ¥ ¥

: rl := FETCH 11 r2 := FETICH 12
! L

: ——— , I — .

!

: i Y

|' r3d :=rl + r

i)|

store r3 13

Figure 7: Partial order of instructions for loop body.

control flow graph specifies only the necessary constraints on the ordering. It illustrates
clearly that all three address calculations can be performed in parallel and that both the
FETCHes could be done in parallel.

This kind of reordering of instructions for higher performance was pioneered by Seymour Cray
in the 1960’s— his design of the CDC6600 was a breakthrough in that regard. It remains
the key idea behind compilers and architectures for pipelined machines, RISC processors,
VLIW machines, shared memory multiprocessors, etc.

8 Dataflow graphs

To achieve the full parallelism of the wavefront program, however, we need to go much
further. We need to specify that all the address computations in all the iterations can
proceed concurrently, not just the three within a single iteration. Much more tricky is this:
we need to specify that the FETCHes in one iteration can proceed as soon as the corresponding
STOREs in some previous iterations have completed. It is not easy to generalize control flow
graphs to express these ideas.

It was Jack Dennis of MIT who, around 1970, developed the idea of Dataflow Graphs as
a suitable formalism for expressing parallel computations. Dataflow graphs constitute a
parallel machine language that is suitable both as a target for compilers for high-level parallel
languages and as a language that can be directly executed by parallel hardware.

There are many variations on dataflow graphs in the literature. The simplest are direct
expressions of an underlying hardware organization, and are often used for signal-processing

12

applications. Dataflow ideas are also used in many of today’s supercomputers in expression
evaluation and vector “chaining”. For more general computations, however, one usually
talks of machines that inierpret a dataflow graph in the same sense that a von Neumann
machine interprets a machine language. Static dataflow graphs allow control structures such
as loops and conditionals, whereas dynamic dataflow graphs permit arbitrary recursion and
data structures. In this article we concentrate on dynamic dataflow graphs that are also
called “Tagged-token Dataflow Graphs”.

Each node in a DFG represents an instruction and each edge in a DFG specifies a data
dependency between two instructions, i.e., an edge from instruction I; to instruction I

specifies that the output value produced by instruction I is an input value for instruction
I,.

The dataflow graph for the loop body of the wavefront program is shown in Figure 8. Recall

o

+ 10

FETCH rs'rcnl 7

o
T,
- s
_**_I
? lsm

0

Figure 8: Dataflow graph for wavefront loop body.

that the address of X(i,j) is given by the expression Xo + (i — 1) + n(j — 1). Withn = 10
and a little algebraic manipulation, we can see that the addresses of x(i,j), x(i-1,j) and
X(i,j-1) are given by

Xo+i+105 —11,

Xo+1i+10j — 12 and
Xo 414+ 105 — 21

respectively. Instructions 1 through 3 compute the common expression X +i+ 107; the rest
of the graph is self-evident. Notice that all the “register variables” of the previous section

13

are depicted here as labels on edges in the graph. We have also labelled each instruction
with a number; initially, we will just use them for reference but later we will interpret them
as addresses in an instruction memory.

The simplest way to visualize the execution of the DFG is as follows. Think of the edges as
tubes. Imagine that we drop one token into each of the three input edges of the DFG, the
value the starting address of array X in memory, and the values of i and j respectively. We
now repeatedly apply the following simple “firing rule”:

Whenever an instruction has tokens on all its input edges, remove the tokens,
compute the result value according to the instruction, and produce tokens on all
its output edges carrying this value.

Initially, both instructions 0 and 1 are ready to fire. The former adds the values of X,
and i, and the latter multiplies the value of j by 10. A constant like 10 can be regarded
as a “literal” that is part of the instruction itself. Now, instruction 2 can fire, and it puts
its value onto tokens on each of its three output edges. Then, instructions 3, 4 and 5 can
fire concurrently, completing the address computations. Instructions 6 and 7 can then fire
concurrently, followed by instruction 8 and, finally, instruction 9. It is this visualization of
tokens “flowing” through the graph that gives rise to the name “dataflow”.

Note that at each instant, there may be more than one instruction ready to fire. This is in
sharp contrast to conventional machine languages where, at each instant, there is exactly
one instruction that is ready to be executed. This is why we say that DFQGs specify only a
partial order on instructions.

We do not have to fire all ready instructions at each instant; indeed, in any real machine,
we will not usually have the resources to fire all of them at once. Fortunately, DFGs are
determinate, i.e., we can safely fire any subset of ready instructions for which we have
machine resources available.?

9 The Explicit Token Store processor model

Now that we have the intuition behind dataflow graphs under our belts, it is time to be less
abstract and to work out some details. How is a dataflow graph represented? How is a token
represented? What does it mean for a token to be placed on an edge? How do we detect that
an instruction is ready to fire? What happens when an instruction is fired? To explain all
this, we use a processor model developed by G. P. Papadopoulos called the Explicit Token
Store (ETS) model. The ETS model is suitable for direct hardware implementation and is
shown in Figure 9.

Without loss of generality, we take the following position: each instruction has exactly one
or two input edges, i.e., it is either monadic or dyadic. When a token arrives for a monadic
instruction, the instruction can be fired immediately. On the other hand, when the first token

SHowever, differenct choices of the instructions to fire may entail different machine resource requirements,
and this is always a concern in & rea. machine.

14

Ca o O

Instruction

Memory
o[+ 2L 1]
1 | *10 2R -
2+ 3,4, 611
s -1 oL -
i[C1a_[s -
5 1-21 7 -
8 | FETCH | 8L -
7 | FETCH | 8R - Token
8|+ 9R 2 Memory
| BTORE | - 3 Tok
Iy oken . .
T —— Fetch
k3
£ |8 !
8 2 | Instruction
(-]
Bl S (£ Fetch
& 3 5
(=] (=1 B ‘
[
=
Waiting Wast-Maich %
Memory &
1
ALU
—————— Operation
=
)
g
g H]
$ 2 Form - -
o > Token

Figure 9: Block diagram of an ETS processor

15

arrives for a dyadic instruction, whether on the left or the right edge, it must wait until its
partner arrives. Thus, we need to reserve a storage location for each dyadic instruction
where its first input token will wait. This motivates our representation of dataflow graphs,
as shown in the Instruction Memory part of Figure 9.

Our previous instruction numbers can now be seen as addresses in instruction memory. Each
instruction has three fields: an Opcode, Destinations and Waiting Location. The opcode is
an operation, such as + or * or »2. The destinations encode the edges of the dataflow graph.
For example, the destination of instruction 3 is 9L (instruction 9, left-hand port). The L
and R port designations are present only for binary destinations. The waiting location r is
an address in Waiting Memory for dyadic instructions. For example, the waiting location
for instruction 8 is location 3 in waiting memory.

For simplicity, we are assuming separate instruction and waiting memories, i.e., instruction
2 and data location 2 are distinct. Further, both these memories are local to the processor,
unlike the separate data memory that holds the array x.

There is one more memory in the processor, called the Token Memory, each location of which
can contain a token. A token consists of two fields <ip,v>. IP (for “Instruction Pointer”) is
the address and port to which the token is destined, and v is the value that it carries. To
execute our example graph, suppose that token memory contains our initial three tokens:

<0L, Xo> value of X, destined for left port of instruction 0
<OR,i> value of i destined for right port of instruction 0
<1,j> value of j destined for instruction 1

The machine executes programs by repeatedly doing the following:

1. Token Fetch: remove a token <IP,v> from token memory.

2. Instruction Fetch: fetch the instruction <op;dt,...,dN;r> from IP in instruction mem-
ory.

3. Wait-Match: If op is monadic, execute the instruction (steps 4 and 5 below). If it is
dyadic, examine location r in waiting memory to see if it is empty or full, i.e., check if
this token is the first or second to arrive for this instruction. If the location is empty,
store the value v from this token there, mark it “full” and extract the next token (step

1). Otherwise, extract the value in the waiting location and execute the instruction
(steps 4 and §).

To implement this, every waiting location r must have some additional bits called
“presence bits” indicating whether it is full or empty.

4. ALU Operation: compute the output value by applying op to the input value(s).

5. Form Token: attach the result value to a1, ..., a¥, producing N new tokens, and place
them in the token memory. Go to step 1 to process another token.

16

In fact, as suggested by Figure 9, these steps are independent and can be pipelined quite
easily for high performance.

There is a serious issue not yet addressed by the scheme just described. We can have many
simultaneous invocations of the same dataflow graph (once for each iteration of the loop).
So, we need a way to send multiple sets of tokens through the same dataflow graph and to
have some way to avoid mixing up tokens from the two sets. Abstractly, if we think of one
set being red and the other set being green, we should not fire an instruction using a red
and a green token. Technically, we need to make the code re-enirant.

To handle this, we change our interpretation of the waiting-location addresses. With each
invocation of a dataflow graph we associate a fresh chunk of storage in waiting memory
called a frame. Each token now has three fields <1p,FP,v>. FP (Frame Pointer) is the starting
address of the frame representing the invocation that this token belongs to. Now, instead
of interpreting the waiting-location address r as an absolute address in waiting memory,
we interpret it as an address relative to FP, i.e., in the wait-match stage, we examine the
location FP+r instead of the location r.

The step we have just taken is analogous to the step from FORTRAN to Algol which in-
troduced stack frames, allowing recursion and re-entrancy. The only difference is that here
we have a parallel runtime structure, i.e., a tree of frames instead of a stack. Of course,
we need a linkage mechanism by which we can dynamically allocate new frames, deallocate
used frames, send arguments and return results; we omit these details for lack of space.

10 Data structures and I-structure memory

We have one more implementation issue to tackle. We have already captured the parallelism
within one iteration of the wavefront loop. Further, if all iterations are initiated in parallel,
then all the address computations can indeed proceed in parallel. However, we still need
to express the idea that the FETCHes in one iteration must wait, if necessary, until the cor-
responding STOREs in other iterations have completed. To deal with this, we must refine our
machine model a little. All that we have described so far was within a single processor. We
now turn our attention to the interaction between the processor and the data memory that
holds the array x.

In conventional machines, we are used {o the following two transactions between the processor
and memory. When the processor sends a <STORE,d1,1> message to memory, it stores the
datum 4l in location 1. When the processor sends a <FETCH,1> message to memory, it extracts
the datum 41 from location 1 and sends back the message <d1>. In a dataflow machine, there
is an additional kind of transaction which we get by replacing a FETCH instruction by an
I-FETCH instruction. This is shown in Figure 10 using an excerpt of our previous dataflow
graph. When the 1-fetchsr at address 7 is executed relative to a frame FP, the processor
sends the following message to memory:

<I-FETCH,1;8R,FP>

The memory, in turn, reads the value d1 in location 1 and sends a message back to the
processor containing <8R,FP,d1>. Note that this message has exactly the form of a token. In

17

#l-a1
5-at l
7
I-FETCH . .
A = S,
FETCH| o ____ .. Memory S M
 — <> System ! ! <8R,FP;d1> System
b=q -
l—i i—l A
8 + 8 +
Figure 10: FETCH vs. I-FETCH instructions

fact, when it is received at the processor, it is processed exactly like any other token. Unlike
a FETCH transaction, both the request and the response carry additional <IP,FP> information.

A complementary mechanism is found in the memory system, as shown in Figure 11. Such
a memory is called an Lstructure memory. Like frame memory, each I-structure memory

3
g 3
=
<I-FEICH,1;IP,FP> §‘E K
1;IP, &3
<IP,FP;dl> I f fat al
il
<I-FETCH,m;IP 3 ,FPy> m | empty —
<I-FEICH,m;IP p,FPp>
Deferred-read liets
<STORE,m > <IP, ,FP, > | -
o
<IP¢,FPy dm>
- FILLH
<IP p,FPg; dm>
—— 2Py <IPy FP> | end
Figure 11: I-structure memory.

location has presence bits indicating whether it is full or empty. When the I-structure module
receives <I-FETCH,m;IP,FP> messages for a location m that is still empty, it builds a “deferred-
read” list locally, containing all the <1p,FP> pairs that accompanied such requests., The list
is anchored at location m, i.e., each location can have its own deferred list. Later, when it
receives a <STORE,m,dm> message, it writes the value dm to location m, marks it “full”, and also
sends all the responses <IP,FP,dm> for the I-FETCHes deferred at that location.

It is this protocol that allows us to initiate all iterations of the wavefront loop in parallel,
and allows an I-FETCE in one iteration automatically to wait for the corresponding STORE in

18

another. This protocol is, in fact, one of the key reasons that the dataflow approach is so
attractive for parallel machines:

e Assuming that there are enough tokens in the processor’s token memory, it can continue
to process other tokens during the I-siructure memory transaction, i.e., the processor
does not have to be idle during long memory reads. This tolerance of memory latency
is becoming increasingly important in high-speed machines. For example, in the Cray
2, while the processor can initiate an arithmetic operation on every cycle, it takes 40
to 60 cycles to access a memory location. In large multiprocessors, memory latency
can be much worse.

¢ The processor can issue many I-structure memory reads before it has received the
response to the first, i.e., the memory system can be pipelined for better performance.

¢ When a processor issues several I-structure requests, it is ready to receive the responses
in a different order. This may happen either because the distances to different memory
modules may vary in a parallel machine, or because some reads are deferred at the
memory.

11 Which language should we program in?

A popular approach to parallel programming is to take a sequential, imperative language
and extend it with new, parallel constructs. For example, in a FORTRAN program we can
specify that all iterations of a loop are to be done in parallel by using the keyword poaLL
in place of po. Recognizing the wavefront parallelism in our example, we could express it
explicitly as follows. We chang= the program so that we are no longer iterating on columns
and rows, but on diagonals:

DIMENSION X(n,n)

C Initialize boundaries

C Fill in the upper triangle

DO 200 m = 4,n+1 traverse diagonal sequentially
DOALL 100 i = 2,m-2 compute cross-diagonal elements in parallel
j=m-1i
x(i,j) = x(i-1,3j) + x(i,j-1)
100 CONTINUE
BARRIER

200 CONTIKRUE

¢ Fill in the lower triangle

19

The BARRIER statement specifies that all the parallel computations on one cross-diagonal have
completed before the program moves on to the next cross-diagonal.

There are several problems with this “explicit parallelism” approach. First, the parallel
FORTRAN program has already lost the intuitive nature of the original sequential program,
i.e., the task of programming has been seriously complicated.

Second, it opens the door to new bugs due to non-determinacy. For example, if we acciden-
tally omit the BARRIER statement, the program would continue to run, except that we may
now read an array location in the m+1’st iteration too early, i.e., before its value has been
stored during the w’th iteration. Another example: in the poALL loop, each iteration writes
a value into j and reads it. Clearly, all iterations cannot share the same location for j. We
have failed to declare that j must be a private variable, i.e., a separate location for each
iteration of the loop. These kinds of bugs are quite pernicious because they happen silently,
i.e., it may not be obvious from the output of the program that something went wrong.
Even if we knew that something was wrong, tracking down such bugs is a nightmare because
it is difficult to repeat the experiment— even the act of debugging can change the schedule
of computations, thus obscuring the bug.

Another approach, pioneered by David Kuck of the University of Illinois, is to stay with a
sequential language, leaving it up to the compiler to “parallelize” it automatically. Using
sophisticated dependency analysis, the compiler attempts to discover the data dependencies
in a program by identifying which parts of the program read and write to each data location.
Once such dependencies are known, the compiler can reorder the instructions in the code
to allow maximum parallelism while preserving these dependencies. Because all parallelism
is introduced by the compiler using transformations that have been proved correct, this
approach is not subject to the non-determinacy bugs mentioned earlier.

However, we have serious doubts whether much parallelism can actually be detected au-
tomatically using this approach. Dependency analysis is difficult for several reasons. The
first is that the exact location read or written by a program fragment may not be statically
predictable, because the index expression for an array can be very complex, e.g., involving
a function call or another indexed expression. Procedure calls, pointer variables, efc. are
further factors complicating the analysis. Whenever the compiler is unable to detect the
dependencies accurately, it must err on the conservative side; often, this means giving up
much parallelism.

To illustrate these problems further, let us move to a slightly more complicated example
called successive overrelazation (SOR). Here, we compute a succession of matrices. In each
matrix, the (7, 7)’th element depends not only on some of its neighbors (as in the wavefront
computation), but also on some elements of the previous matrix. Figure 12 depicts a stylized
SOR in which the (7,5)’th element depends on two of its neighbors and on the (2, 7)th
element of the previous matrix (in an actual SOR application, the recurrence may involve
more terms). The Id code to express this computation is shown below:

def SOR kmax X = { for k <- 1 {0 kmax do
next X = make_matrix {(grid n) (£ (nezt X) X)
finally X} ;

20

Figure 12: Successive overrelaxation

def £ X 01dX (i,j) = if (i == 1) or (j == 1) then 1
else X[i-1,j1 + X[i,j-11 + oldx[i,j] ;

Some notation: kmax is the number of matrices to be computed. The body of the for-loop
specifies the relationship between each matrix (x) and the next one (nezt X). The finally
expression specifies that the last matrix x is the final result. The function # is similar to the
previous one except that it also takes the previous matrix o1dx as parameter.

Apgain, let us take a moment to analyze the parallelism of this program. All the borders of
all the matrices can be computed in parallel. At some point, it will become possible to define
the [2,21’th element of the first matrix because its neighbors, on the border, are ready. Of
course, this makes it possible to define the [3,2] and [2,31’th elements of the first matrix,
but it also enables the computation of the [2,21’th element of the second matrix. This, in
turn, makes it possible to compute elements of the first matrix at [4,2],[3,3] and (2,41,
elements of the second matrix at [3,2] and [2,3]1, and the element of the third matrix at
[2,2). Thus, where previously our wavefront was a diagonal line sweeping across a single
matrix, it is now a diagonal plane sweeping across a collection of matrices. Figure 13 depicts
two stages of the wavefront.

f’*

Figure 13: Wavefront parallelism in successive over-relaxation.

21

Figure 14 shows the parallelism profile for the SOR program with xmax = 10. It also shows the
profile for a version of SOR in which we artificially hold back the &+ 1’st iteration until the
k’th iteration completes, i.e., simulating a BARRIER between the k iterations, as may happen
in a FORTRAN program that is unable to exploit the parallelism between the k iterations.
This graph is essentially like the concatenation of 10 copies of the wavefront profile of Figure
5. The example vividly demonstrates how the dynamic exploitation of parallelism in Id can
drastically increase the parallelism (from about 150 to 1500 in this example) and reduce the
critical path (from about 1700 down to about 250 in this example).

1,400 n

1,200

1,000 SOR

800

600

400 4

Concurrent Operations

SOR with a BARRIER between iterations of the outer loop

200

]] I 1
500 1,000 1,600 2,000 fime

Figure 14: Parallelism profiles for successive over-relaxation, both with and without a
barrier between relaxation steps.

Let us now look at SOR in FORTRAN. A typical sequential solution needs only a small
modification to our original wavefront program:

DO 300 k = 1,kmax
DO 200 i = 2,10

DO 100 j = 2,10
X(i,j) = x(i-1,j) + X(i,j-1) + X(4,j) Loop body
100 CONTINUE
200 CONTINUE

300 CONTINUE

Here, despite the fact that all the x’s in the loop body refer to the same storage area, the
loop body actually computes the recurrence shown below.
k k k e—
X =Xilay + X+ X550
This relies crucially on the sequential semantics of FORTRAN loops. For example, if we
replaced “j-1” by “j+1” in the third term of the loop body, it also changes the k superscript

in the corresponding recurrence term, i.e., from X,-’fj_l to X:‘;_ll The programmer has

22

cleverly exploited this behavior in being able to perform the entire computation in place,
t.e., with a single matrix.

If the compiler is to match the parallelism found in the Id program, however, it must re-
construct the 3-dimensional abstract recurrence from the FORTRAN program, change the
2-dimensional matrix X into a 3-dimensional array and, finally, set up the parallel computa-
tions to fill up the array. There are major pitfalls at each stage.

First, the programmer’s cleverness in reusing storage in the sequential program makes de-
pendency analysis (to discover the 3-dimensional recurrence) much harder.

Second, if kmax is not known at compile time, it is difficult to convert the matrix into a 3-
dimensional array because in FORTRAN, storage must be allocated statically. Even if xmax
is known statically, the permanent allocation of all the storage for the entire 3-dimensional
array is wasteful, since only a small part of it is used at a time (along the diagonal wavefront
plane).

Finally, because of the lack of fine-grained parallelism enabled due to I-structures, the parallel
program must have the following structure:
DD 200 p = 1, number bf wavefront planes
DOALL 100 for each 1,3,K in wavefront plane p
X(1,7,K) = X(I-1,7,K) + I(1,J-1,X) + X(I,J,K-1)
100 CONTINUE

BARRIER
200 CONTINUE

It is actually very tricky to set up the iterations that we have abbreviated in the poaLL line
because the boundary of the wavefront plane varies greatly. It may be a triangle, pentagon,
trapezoid or rectangle depending on the position of plane (two of these planes are shown
in Figure 13). The resulting program would be practically unreadable and is certainly not
something that ought to be programmed manually.

Thus, in FORTRAN, clarity of expression and maximal parallelism are often contradictory
requirements. In Id, on the other hand, the most natural expression of the program is the
parallel version. The “3-dimensional” storage arises because each iteration of the Id loop
dynamically allocates a new matrix. Unlike the FORTRAN version, all xmax versions of the
matrix do not have to be permanently allocated. When a matrix in one k iteration is no
longer in use, i.¢., all references from the k + 1’st iteration have been completed, its storage
can be reclaimed dynamically. The general mechanism for this is a, continuous process known
as “garbage collection”. In fact, it is possible to be even more efficient— using a technique
known as “loop bounding”, it is possible to build a circular list of frames and matrices
for the k loop and to cycle through them. The language semantics, which guarantees that
data-structure components are defined uniquely, allows the compiler to exploit dataflow I-
structure hardware fully, so that it can initiate many the iterations concurrently, leaving it
to dynamic scheduling to achieve the wavefront parallelism.

23

12 Current status

Two dynamic dataflow machines have been built to date. The first was the Manchester
Dataflow Machine at the University of Manchester, England, and was operational in 1982.
It is only a single-processor prototype (with multiple function units) without I-structure
storage, but it has confirmed the basic viability of fine-grained dataflow parallelism. The
second machine was the Sigma 1, built at the Electro-Technical Laboratory in Japan. It has
just become operational and consists of 128 processors and 128 I-structure units.

Both these machines use an earlier design in which the wait-match operation is done using
an associative memory. The ETS model described in this article, because of directly ad-
dressed wait-match memory, is much easier to implement and provides much more flexibility
in controlling the use of storage. At MIT, we are constructing a machine based on this
model called “Monsoon”. A single-processor wire-wrap prototype has been operational since

October 1988, and an 8 processor, 8 I-structure machine is expected to be complete by the
fall of 1990.

Concurrently, our software effort concentrates on two related areas. One is on compiler
optimizations, building on the excellent Id compiler implementation by Ken Traub. The
second is on resource management— the efficient dynamic management of frames and data
structures. Of course, we are also continually upgrading “Id World”, our incremental pro-
gramming environment for Id and Monsoon.

The ETS model has also given us deeper insight into the essence of dataflow and von Neu-
mann models, which, in turn, has led to many ideas on integrating the best of both. Research
projects in this area include the Hybrid von Neumann/Dataflow machine of R. A. Iannucci
of IBM Research, the EM-4 at Electro-Technical Laboratory, Japan, the Eps-88 at Sandia
National Laboratory, New Mexico, and the P-RISC processor here at MIT.

Dataflow research is at an extremely exciting stage. We are confident that these projects will
take us closer towards the “right” building-blocks for scalable, programmable, general pur-
pose parallel machines. Perhaps by 1995 we will have commercially viable parallel machines
which are actually a pleasure to program.

Further reading:

All the technical reports cited below are available from:
Computation Structures Group,
MIT Laboratory for Computer Science
545 Technology Square, Cambridge, MA 02139, USA.

The original “classic” by Jack Dennis:

24

Dennis, J. B. First Version of a Data Flow Procedure Language. In Proceedings
of Programming Symposium, Paris 1974, Lecture Notes in Computer Science 19,
Springer Verlag, Berlin, 1974,

(Revised: technical report MAC TM61, May 1975)

This paper is an overview of MIT Tagged-token dataflow approach, including example Id pro-
grams, their translation to dataflow graphs, and an overview of the Tagged-token Dataflow
Architecture (TTDA):

Arvind and R. S. Nikhil. Executing a Program on the MIT Tagged-Token
Dataflow Architecture. To appear in IEEE Transactions on Computers. An
earlier version appeared in Proceedings of the PARLE Conference, Eindhoven,
The Netherlands. Springer-Verlag LNCS Volume 259, June 1987. Also: CSG
Memo 271.

‘This memo is the current Id language reference manual:

R. S. Nikhil. Id (Version 88.1) Reference Manual. CSG Memo 284. August 29,
1988. 26 pages.

This paper develops excerpts of the SIMPLE hydro-dynamics code written in Id, demon-
strating the level of programming and comparing it with the FORTRAN version:

Arvind and K. Ekanadham. Future Scientific Programming on Paralle] Machines.
In Proceedings of the International Conference on Supercomputing (ICS), Athens,
Greece, June 8-12 1987,

This paper develops an Id solution to David Turner’s “paraffins problem”, demonstrating
the level of programming and the inherent parallelism obtained:

Arvind, S. K. Heller anc R. S. Nikhil. Programming Generality and Parallel
Computers. In Fourth International Symposium on Biological and Artificial In-
telligence Systems, Trento, Haly, September 18-22, 1988. Also CSG Memo 287.

This thesis is a detailed description of the Id compiler and basic optimizations.

K. R. Traub. A Compiler for the MIT Tagged-Token Dataflow Architecture.
MIT/LCS/TR-370, August 1986.

This paper is a survey of data-driven architectures, including static dataflow machines, the
Denelcor HEP, the MIT TTDA, the Japanese ETL Sigma-1, efec. :

Arvind and D. E. Culler. Dataflow Architectures. Annual Reviews in Computer
Science, Volume 1, Annual Reviews Inc., Palo Alto, CA, 1986, pages 225-253.
Also: MIT/LCS/TM-294.

25

This thesis develops the Explicit Token Store (ETS) dataflow model and Monsoon, a specific
implementation:

G. M. Papadopoulos. The Monsoon Dataflow Architecture. Ph.D. Thesis, De-
partment of Electrical Engineering and Computer Science, Massachusetts Insti-
tute of Technology, August, 1988.

This paper discusses the role of latency and synchronization in parallel machines, and an
analysis of how von Neumann and dataflow architectures address these issues:

Arvind and R. A. Jannucci. Two Fundamental Issues in Multiprocessing. In
Proceedings of DFVLR - Conference 1987 on Parallel Processing in Science and
Engineering, Bonn-Bad Godesberg, W. Germany, June 25-29 1987. Also: CSQ
Memo 226-6.

This paper describes P-RISC, a processor element whose instruction set and architecture
properly extends a conventional RISC element, giving it a fine-grained dataflow capbility:

R. S. Nikhil and Arvind. Can dataflow subsume von Neumann computing? In
Proceedings of the 16th Annual Symposium on Computer Architecture, Jerusalem,
Israel, May 29-31, 1989, pages 262-272. Also: CSG Memo 292.

26

