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Absztract

Parallel algorithms for analyzing DNA and protein sequences are becoming increasingly important
a3 sequence data continues to grow. This paper examines the parallel characteristics of four sequence
alignment algorithms. The four algorithms presented are the dynamic programming algorithm developed
by Needleman, Wunsch, and Sellers {the NWS algorithm), Fickett’s algorithm, a parallel algorithm using
some of Fickett's ideas, and an algorithm which uses some of Wilbur and Lipman’s ideas for constructing
alignments which are not always optimal. The NWS algorithm contains the most parallelism but also
does more work than any of the other algorithms which we studied. Fickett’s algorithm contains the
least parallelism. However, a paraliel algorithm which requires significantly fewer instructions than the
NWS algorithm is obtained by modifying Ficketts algorithm, The algorithms have been implemented
for a dataflow computer in the dataflow language Id.

1 Introduction

This paper analyses the parallel characteristics of four algorithms for aligning DNA and protein sequences.
Biological sequence data is accumaulating very rapidly. Increasingly powerful computers will be needed for
analyzing DNA and proteins as databases expand,

All living things transmit genetic information through DNA. Important structural and functional charac-
teristics can be determined from an organism’s DNA. Biological sequence data provides a very powerful tool
for analysing evolutionary relationships. Many biologists want to determine the DNA sequence of the entire
human genome. As more information becomes available, it will become possible to determine important
characteristics of a human being by DNA sequence analysis.

The four algorithms which we analyzed are the dynamic programming algorithm developed by Needleman,
[Needleman 70), Wunsch, and Sellers [Sellers 74], Fickett’s algorithm [Fickett 84}, a parallel algorithm similar
to Fickett’s algorithm, and an algorithm which is similar to Wilbur and Lipman’s algorithm [Wilbur 83]. A
detailed presentation of these algorithms is given in [Iyengar 88].

2 Sequence Alignment

Sequence comparison algorithms are used in several different fields including molecular biology, string editing,
speech processing, and codes and error control [Kruskal 83) . However, the algorithms presented in this paper
are specifically intended for comparing biological sequences, which include DNA sequences and proteins,
From a purely abstract point of view, a DNA sequence is a string defined over an alphabet consisting of

four letters, A protein sequence is a string defined over an alphabet consisting of twenty-one letters. These



definitions are sufficient to undezstand the four algorithms. The following presentation assumes no priot
knowledge of biology. Of course, the reader with a strong biological background will have much more insight
into the motivation behind the algorithms.

An alignment between two sequences defined over an alphabet X is a matrix consisting of two rows.
The upper row contains the source sequence S possibly interspersed with null characters. The bottom
row contains the farget sequence which may also be interspersed with null characters. A null character is
represented by a “”. A column consisting of two null characters is not allowed. Let

2, yeXx.

A column
is 8 deletion . A column

is an insertion . A column

is an identity if 2 = y; it is a substitution otherwise. A gap of length k is a series of & consecutive insertions
or deletions.

DNA sequences are defined over the alphabet
I={4,CaGT}.
For example, one possible alignment betweeen the sequences

51 = CATGCATA

and
Sy = CATTGAAA

isA1:

CAT-GCATA

CATTGAA-A
Ay contains two gaps of length one, one substitution, and six identitjes. Two sequences are homologous if
they are very similar and the degree of similarity is much higher than what would be expected by chance.

'3 Sequence Alignment Algorithms

3.1 Algorithm 1: The NWS algorithm

Needleman and Wunsch [Needleman 70] were two of the first people to use computers for comparing biological
sequences. Their algorithm calculates an alignment which maximizes the similarity between two sequences,
The dynamic programming algorithm of Sellers calculates an alignment which minimizes the difference
between the two sequences. The two approaches calculate the same alignment if parameters are selected
appropriately [Smith 81). We will henceforth refar to the NWS algorithm,



We can assign a difference score d to each alignment:

n
d=s+ ng(ga;)
izl

where s is the number of substitutions, n is the number of Baps, gs; is the size of gap i, and gp is a gap
penalty function assigning positive values to all gap sizes. We will assume that BaP penalties grow linearly
with gap sizes. Thus,

gp(g2) = gs * gap_penalty

where gap_penalty > 1. An optimal alignment with respect to a difference score is an alignment which
possesses the lowest difference score.

The NWS algorithm calculates an optimal elignment between S, and 83 by memoizing optimal alignments
between all prefixes of 5t and S;. Two matrices may be allocated for storing alignments between prefixes
and their difference scores.

score.matriz(a, b)

contains the difference score of an optimal alignment between the first a elements of $; and the first b
elements of S,.
path_matriz[a, b

contains the index of the previous cell in the alignment. The alignment is constructed by following the
indices stored in path_matriz.

The 0th row corresponds to alignments possessing gaps at the beginning of §,. Thus,
score_matriz[0, a] = gp(a).
Similarly, the 0th column corresponds to alignments possessing gaps at the beginning of S,. Therefore,

score.matrizfb, 0] = gp(b).

The remainder of the matrix is caleulated inductively using the formula:
score_matrizfi, j] = min(score.matrizfi — 1, 7} + gap_penalty,
score.malriz(i, j — 1] + gap_penalty,
score.matrizfi — 1,7 — 1] + distance(S; [, $2[5))
where
distance(z,y) = 0 if z= y
= 1 if z#y.

The indices of the previous cell are stored in path_matriz(i, j]. After the matrices have been completely
determined, an optimal alignment between the entire sequences is constructed by following indices starting
at path_matriz(|S,|, |S;|]. The time and space complexity are both O(|S, | » 1Sa]).

The data dependencies in the NWS algorithm define diagonal wavefronts across the alignment matrices.
Cells lying on the same wavefront may be calculated concurrently once the previous wavefront has been
determined (figure 1). An ideal parallel implementation runs in time O(|51] + 1S;]) using min([8,|,15,])
processors [Edmiston 87].

3.2 Algorithm 2: Fickett’s algorithm

Fickett's algorithm requires the user to provide an upper bound d,,,, for the difference score of an optimal
alignment. The algorithm assumes that the difference score of an optimal alignment does not exceed d, . ..
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Figure 1: This figure illustrates how alignment matrices are calculated in a parallel implementation of the
NWS algorithm. All cells belonging to the same diagonal wavefront may be determined concurrently once
the previous wavefront has been calculated.

Under this assumption, an optimal alignment cannot pass through matrix cells which possess differsnce
scores greater than d,,,,. '

The key to the algorithm is to keep track of a group of contiguous cells g at the beginning and end of 5
row which contain difference scores greater than d,,,,. An optimal alignment cannot pass through any cells

in g. g consists of cells containing X’s in figure 2. Any alignment passing through a cell containing a circle
must also pass through g. Thetefore, cells containing circles do not have to be calculated.

Fickett’s algorithm calculates alignment matrices sequentially from lower to higher rows. Ifcells 0 through
k of row i—1 possess difference scores greater than o, .., cells 0 through k of row i do not have to be calculated.
Similarly, if cells j through |S;{ of row i — 1 and cel] [, 7] of score_matriz are greater than dp,,, cells j 41
through |S:| of row i do not have to be determined.

adjacent cells which define its value are unknown. For example, in figure 2, cell [,k + 1] is defined by cells
[i,k, [i — 1,k), and [F~1,k+1]. Cell i — 1,k + 1] is the only one of the three which has been calculated.
Since an optimal alignment cannot pass through cells [, k] or [i — 1, %), these cells are ignored. Thus,

score_matrizi,k + 1] = score.matriz(i — 1,k 4 1) + gap_penalty.

If the score of an optimal alignment exceeds e, Fickett’s algorithm terminates without returning
an slignment. This is useful for comparing several sequences at a time and identifying pairs which are

Fickett’s algorithm can be improved slightly, If
score-matriafi, j] > doya,

Fickett's algorithm concludes that an optimal alignment cannot pass through cell [3, 7l score_matriz[i, 7] is
a lower bound on the difference score for an optimal alignment passing through cell [,7]. Ha greater lower
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Figure 2: Cells at the beginning and end of rows are pruned by Fickett’s algorithm. If the cells containing
X’s have been eliminated, the cells containing circles can also be eliminated.

bound I; J can be calculated, more matrix cells may be ignored.
ay = | 8] —i

¢lements of $; and
ay =8| —j

elements of S, have not been added to the alignment at the time cell [i, 7] is determined. We may calculate
L by assuming that the remaining elements will constitute min(a,, a3) identities and la:r — a3| insertions
or deletions. Thus,

L= score.matriz(i, j] + |a; — az| * gap_penalty.

In the improved version of Fickett’s algorithm, we conclude that an optimal alignment cannot pass through
cell [1,7]if L ; > diney. Our implementation uses the improved version of Fickett’s algorithm.

3.3 A parallel algorithm similar to Fickett’s algorithm

Fickett’s algorithm calculates alignment matrices sequentially. It usually requires fewer total instructions
than the NWS algorithm. However, Fickett’s algorithm contains far less parallelism.

A parallel algorithm which only calculates part of the alignment matrices is obtained by filling in the
matrices along wavefronts instead of rows (figure 1). As each wavefront is calculated, we keep track of
contiguous blocks of cells at the edges of the two previous wavefronts which can be ignored because their
difference scores are too high. Let wavefront k consist of all matrix cells whose row and column indices
sum to k. If all cells along wavefronts k — 1 and & — 9 with row numbers greater than or equal to j possess
difference scores which are two high, we do not have to calculate any matrix cells on wavefront k with row
numbers exceeding j. Similarly, if all cells along wavefronts k — 1 with row numbers less than i and k — 2
with row numbers less than i — 1 possess difference scores which are too big, we do not have to calculate any
cells on wavefront & with row numbers less than ¢ (figure 3).
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Figure 3: If the cells on wavefronts k — 1 and k — 2 containing X’s possess difference scores which are too
high, the cells on wavefront & containing circles do not have to be calculated. This strategy is used by

algorithm 3.

3.4 A fast algorithm which does not always find an optimal alignment

Fast alignment algorithms exist which do not always find optimal alignments. We have implemented an
algorithm which locates the matrix region containing the largest number of exact k-tuple matches between
51 and S; and only calculates cells in this vicinity, A k-tuple match between 51 and Sy is a sequence of k
elements which occurs in both 5, and S,.

Cells corresponding to exact k-tuple matches between $; and S; form diagonal line segments across the
alignment matrix (figure 4). The best alignment is likely to pass through the region of the matrix containing
the most k-tuple matches. Our algorithm locates a group of contiguous diagonals g containing the most k-
tuple matches. It then uses dynamic programming to calculate the best alignment which only passes throngh
diagonals which are no farther than w; diagonals from the middle of - w3 is supplied by the user. The ides
of locating k-tuple matches to quickly calculate alignments which are not always optimal was suggested by
Wilbur and Lipman {Wilbur 83).

K-tuple maiches between 51 and S; may be located by utilizing a hash table of size |Z*) (where |Z] is
the size of the alphabet over which 51 and S are defined). Each of the [Z{* different k-tuples is assigned
to a different bucket of the hash table. The index identifying the position of each k-tuple belonging to §; is
stored in the appropriate hash table bucket. Afier this has occurred, k-tuples belonging to S3 are assigned
to buckets in the hash table. If 5 k-tuple in S, is assigned to a bucket containing an index into S, a match
has been found.

4 Results and Discussion

The four algorithms were implemented in the dataflow language Id. The parallelism in Id is implicit. This
means that the programmer does not have to insert any explicit parallel constructs jn order to write a




Sequence Total % of Critical % of
lengths | instructions | Algorithm 1 path length | Algorithm 1
Algorithm 1 r
15 26,339 100.0% 793 100.0%
30 96,604 100.0% 1,513 100.0%
50 259,239 100.0% 2,473 100.0%
100 1,010,704 100.0% 4,873 100.0%
Algorithm 2 | -
drge = 3 15 13,209 50.15% 2,283 287.9%
Amas = 4 30 26,284 27.21% 4,518 298.6%
dnge =5 50 55,044 21.23% 9,016 364.6%
dimga =8 100 133,431 13.20% 21,152 434.1%
Algorithm 2
dmes =6 15 16,248 61.69% 2,681 338.1%
dinga = 8 30 39,247 40.63% 6,242 412.6%
dmas = 10 50 77,027 20.71% 11,956 483.5%
dmap = 20 100 266,166 26.33% 38,996 800.2%
Algorithm 2
Arnge = 9 15 21,631 82.13% 3,381 426.4%
dmas = 16 30 62,321 - 64.51% 9,306 615.1%
dree = 20 50 127,802 49.30% 18,746 758.0%
drnaa = 40 100 449,272 44.45% 63,602 1305%
Algorithm 3 o]
Amas = 3 15 17,151 65.12% 1,743 219.8%
dyoe = 4 30 34,358 35.57% 3,458 228.6%
dmae =5 50 68,033 26.24% 5,978 241.7%
drea =8 100 158,190 15.65% 12,414 254.8%
Algorithm 3
dee =6 15 20,010 75.97% 1,818 229.3%
dpay = 8 30 46,584 48.22% 3,734 246.8%
dpgs = 10 50 88,733 34.23% 6,435 260.2%
dmas = 20 100 283,185 28.02% 15,105 311.8%
Algorithm 3
dmae =9 15 25,100 95.30% 1,925 242.7%
dmae = 16 30 68,360 70.76% 4,208 278.1%
drmea = 20 50 136,560 52.68% 7,495 303.1%
| dmas =40 100 455,632 45.08% 19,024 390.4%
Algorithm 4
wa =2 15 22,150 84.10% 1,510 196.4%
wy =2 30 49,578 51.32% 3,049 201.5%
w; =3 50 86,915 33.53% 5,006 202.4%
wy =5 100 209,968 20.77% 10,083 206.9%
Algorithm 4
wy =4 15 26,115 99.15% 1,570 198.0%
wy=4| 30 60,032 62.14% 2,994 197.9%
w, =5 50 105,138 40.56% 5,027 203.3%
wy =8 100 265,269 26.25% 10,114 207.6%

Table 1: Simulation statistics for the four alignment algorithms. The critical path length is the longest
chain of operations which must be executed sequentially in any parallel implementation.




51

Figure 4: Cells corresponding to k-tuple matches form diagonal line segments across alignment matrices.
Algorithm 4 only calculates matrix cells in the vicinity of the diagonals containing the most k-tuple matches.

parallel program. Concurrency is detected sutomatically by the compiler. This makes Id very easy to use.
Programming in Id is no more difficult than Programming in a sequential language.

We are currently in the Process of building & dataflow computer which executes Id programs. The results
presented in this paper were produced by a dataflow simulator, Our simulator is not powerful enough to
align two sequences with lengths significantly longer than 100.

e
test each algorithm. In every case, algorithms 2, 3, and 4 constructed alignments using fewer instructions
than algorithm 1, However, algorithm 1 invariably possessed a shorter critical path length. Furihermore,

Algorithms 2 and 3§ were tested using 3 different values for dmaa - Amew is an upper bound on the difference
score which is supplied by the user. The instruction counts for both algotithms increase with dmae. Maximum
efficiency is obtained by making d,,., as small as possible. However, both algorithms will terminate without
returning an alignment if the difference score of an optimal alignment exceeds duas .

Algorithm 3 contains significantly more parallelism than algorithm 2. This becomes more noticeable
when longer sequences are compared with higher values specified for dmea. For example, when sequences of
length 15 are aligned and dmas = 6, the ratio of the critical path length of algorithm 3 to that of algorithm
2is .678. By contrast, this ratio becomes .299 when sequences of length 100 are aligned and d,,,, = 40.

Algorithm 4 was tested using two different sets of values for w3. A trade-off exists between the instruction
count and the quality of alignments constructed by the algorithm. If w3 is small, 8 small number of matrix
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Figuze 5: The parallelism profile which results when algorithm 1 aligns two homologous sequences of length
30. The instruction count and critical path length are 96,604 and 1,513 respectively. The sequential tail

beginning just before 1000 on the X-axis results from constructing the alignment afier the matrices have
been determined.

However, the probability of finding an optimal alignment also increases. Unlike the instruction couat, the
critical path length does not change much with w,.

The lower instruction counts algorithms 2, 3, and 4 possess relative to algorithm 1 become more apparent
when longer sequences are compared. The differences are not significant for sequences of lengths 15 or less.
When longer sequences are compared, algorithms 2, 3, and 4 require significantly fewer instructions than

longer than 100.

5 Summary and Conclusions

None of the algorithms which we studied is unequivocally better than the others. They all have strengths
and weaknesses. The correct algorithm to use cleazly depends upon the nature of the application.

The NWS algorithm contains the most parallelism. It is also the easiest algorithm to implement. However,
it requires many instructions.

The third algorithm which we implemented uses some of Fickett’s ideas. It contains significantly more
parallelism than Fickett’s algorithm, Furthermore, it requires about the same number of instructions. Both
algorithms will not return an alignment if the sequences differ by too much.

The fourth algorithm we implemented does not always find an optimal alignment. However, it finds a
good alignment in the vast majority of cases. Unlike algorithms 2 and 3, it always returns an alignment.
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Figure 6: The parallelism profile which results when algorithm 2 aligns two ﬁomologous sequences of length
30 and d,,ey = 16. The instruction count and critical path length are 62,321 and 9,306 Tespectively.
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Figure 8: The parallelism profile which results when algorithm 4 aligns two homologous sequences of length
30 and w; = 4. The instruction count and critical path length are 60,032 and 2,994 respectively. k-tuple

are calculated by dynamic programming from 1080 to about 2100 time steps. The alignment is constructed
from the matrices from 2100 to 2,994 time steps,

Furthermore, it requires fewer instructions than the NWS algorithm and contains more parallelism than
Fickett’s algorithm.

simplifies the programmer’s Jjob. Explicitly parallelizing the alignment algorithms is a fairly significant
task, The NWS algorithm is the casjest of the four algorithms to parallelize. However, implementing the NWS
algorithm efficiently on a SIMD computer such as a Connection Machine requires a lot of work [Lander 88)].
The other algorithms are even harder to parallelize explicitly because of their added complexity. An Id
programmer does not encounter any difficulties which a sequential programmer would not also face, He is
totally insulated from the characteristics of the machine executing his program.

Acknowledgements: The simulation tools for generating the statistics presented in this paper were devel-
oped by the Computation Structures Group at MIT. Riskiyuz S. Nikhil made many useful suggestions which
improved the quality of this research, The author has been supported in part by a graduate fellowship from
the National Science Foundation.
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