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Computation Structures Group

1 Introduction

Qur group is interested in general-purpose parallel computation. Qur approach is centered
on

¢ declarative, implicitly parallel languages.

¢ dataflow architectures, which are scalable because of their tolerance of increased mem-
ory latencies and support for frequent synchronization. Our vehicles for research in-
clude an abstract “Explicit Token Store” architecture (ETS), hardware prototype im-
plementations of ETS (called Monsoon), various software emulators (GITA, MINT),
and a software emulator for a new proposed architecture called P-RISC.

e sophisticated compiling and run-time systems for Id, both for dataflow and other ar-
chitectures. We have also explored the use of dataflow compiling for an experimental
persistent programming language.

e applications programs to guide the language, compiler and architecture research.

Last year, we reported that we had begun negotiations with Motorola for a project to
produce, as a research prototype, a complete system running Id on dataflow machines using
the Monsoon processor architecture. This year, MIT-Motorola cooperation has moved into
high gear. This involves extensive and daily cooperation in the design and production of the
Monsoon hardware, and in the design and production of the Id programming environment.
Two-node prototypes are expected by the end of summer, 1990, and 16-node machines by
spring, 1991. To this end, a formal cooperation agreement has been signed, and Motorola
has established and staffed a new “Motorola Cambridge Research Center” at One Kendall
Square, next door to LCS.

Our main research vehicle for programming languages is Id, which has fine-grained, implicit
parallelism. We have been able to formalize our incremental typing system for Id and to prove
it correct. We have made much progress in developing the “manager” construct in Id, which
is a disciplined way of using imperatives while retaining fine-grained, implicit parallelism and
synchronization. We have continued our work in formalizing Id’s operational semantics in
terms of abstract reduction systems. New applications in Id include the Travelling Salesman
Problem using simulated annealing, the Viterbi Search from speech recognition systems, and
various sparse matrix algorithms.

We have made almost a complete transition from the TTDA (Tagged Token Dataflow Archi-
tecture) compilation schemas to new schemas that incorporate the notion of frame storage
in an integral way. Frame storage is now used for extensive loop optimizations. A new back-
end translates these frame-oriented dataflow graphs into code for Monsoon. We have been
studying resource management for Id in great detail, including compiler-directed garbage
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collection, as well as numerous versions of frame and heap managers for improved concur-
rency.

The porting of Id World to the Unix environment (from our original Lisp machine environ-
ment) is complete, and has been distributed outside MIT.

The Monsoon wire-wrap prototype, which has now been running for over a ear, has been
PP yP¢e, ’
invaluable for testing out our ideas in resource management in Id, for measuring instruction

mixes and for designing its successor,

The second generation Monsoon processor has been designed using various ASICs. Motorola
has done the board-level design, and is fabricating it. The Processor incorporates substantial
improvements from the wire-wrap prototype in speed, functionality and connection to the
Unix world. An I-structure board has also been designed and is being fabricated by Motorola.
The Monsoon interconnection network switching chips (PaRCs) and data link chips (DLCs)
have been designed and fabricated, and are undergoing testing. A 4-by-4 network board has
been designed by Motorola and is being fabricated.

In other work: Kathail has completed his Ph.D. thesis on optimal interpreters for the
lambda-calculus; we have continued our research on P-RISC, a synthesis of von Neumann
and dataflow architectures; we are close to having a stock hardware implementation of Id;
and, we are close to having a dataflow implementation of a parallel persistent language.

In addition to the cooperation with Motorola, we continue to maintain strong and active
contacts with several other dataflow researchers outside MIT. Members of our group partic-
ipated in the international committee that designed the new, standard, functional program-
ming language Haskell,

2 Personnel and Visitors

In January 1990, Greg Papadopoulos was appointed to the MIT faculty in the Department
- of Electrical Engineering and Computer Science. He has been a member of our research staff
since August 1988,

In December, Arthur Altman of Texas Instruments completed a year as a visitor in our
group, and is now a visitor in Prof. Steve Ward’s group.

Rudiger Kreuter from Siemens, Germany, spent the Fall of 1990 as a visitor in our group, In
addition to learning about Id and dataflow, he studied the implementation of 3D graphics
in Id.

As usual, we have had a steady stream of international scholars for short visits and talks.

3 MIT-Motorola collaboration on Id and Monsoon

Through the concerted efforts of Al Vezza, Associate Director of LCS, and Jerzy Skibinski,
Vice President of Motorola’s Microcomputer Division, a joint Research Agreement with
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Motorola’s Computer Division of Tempe, Arizona was formalized in August 1989, although
cooperation had been ongoing for seven months in anticipation of the signing.

The joint effort will result in at least three 16-node Monsoon research prototypes and at least
sixteen 2-node versions. The division of labor between MIT and Motorola is as follows: MIT
is responsible for the overall system, logic and chip designs, chip fabrication, a novel special
tool for generating microcode from opcode specifications, the Id language and compiler
design and development. Motorola is responsible for all board level, enclosure, supporting
hardware infrastructure and I-structure logic design, development and manufacturing. On
the software side, Motorola is responsible for the Monasm assembler, dynamic linking loader,
command line interpreter user interface, all host level software, and debugging tools including
a Monsoon simulator.

Motorola’s project is managed by Jim Richie. Their hardware work is done at their facility
in Arizona, while their software work is done mostly in Cambridge at the new Motorola
Cambridge Research Center (MCRC), which they have established as part of this project.
The immediate focus of MCRC, which is in the Kendall Square office complex next to LCS,
is close cooperation with MIT in the research and development of software for Monsoon. In
the long run, MCRC is expected to take its place alongside the many fine basic research
labs in the vicinity of MIT. The first employee of MCRC was Ken Traub, who completed his
Ph.D. in our group in 1988. Ken was the original architect and builder of our Id compiler.
As a member of MCRC, Ken is playing a leading role as overall architect of the Monsoon
software system.

During the year, we have held numerous review and planning meetings with Motorola:

o August 1, 1989: Review meeting, at MIT.

September 27-28, 1989: Software and Contracts meeting, at MIT

¢ October 19, 1989: Review meeting, at MIT.

December 7, 1989: Monsoon technical discussion meeting, at MIT.

January 25-27, 1990: Monsoon hardware and software progress review meeting, at
Motorola, Tempe, AZ.

March 29-30, 1990: Review meeting, at MIT.

June 25, 1990: Monsoon hardware and software progress review meeting, at Motorola,
Tempe, AZ.

We are happy to report that all critical milestones to date have been met. We expect that
the first 2-node prototype will be available in 3rd Q/90 and the first 16-node prototype in
2nd Q/91.



4 Other external collaborations

Our work on Id and Monsoon has led to collaborative efforts with many research groups
outside MIT.

On leaving MIT after finishing his Ph.D., Bob Iannucci has started the Empire project at
IBM Research, whose goal is to build a hybrid dataflow-von Neumann machine similar to
the one he proposed and studied here in his thesis. We also continue to collaborate with K.
Ekanadham of IBM Research, who is leading the effort to target our Id compiler for that
machine. In the summer of 1989, Shail Aditya worked at IBM Research on their Id compiler.

At Sandia, a group of researchers led by Gerald Grafe is building the Epsilon dataflow
machine which is similar to Monsoon in many respects. J amey Hoch of Sandia is working on
retargeting our Id compiler for Epsilon. In addition, they will be using our PaRC network
switching chip in the interconnection network for their multiprocessor. Ken Steele has just
left our MIT to join the group at Sandia. We have participated in several meetings to discuss
collaboration with the Sandia project:

¢ July 31, 1989: Sandia-DARPA meeting, at Washington D.C.
¢ March 11-13, 1990: Cooperation meeting, at Sandia, Albuquerque, NM.

Karl Ottenstein at Los Alamos and Bob Ballance at University of New Mexico are working
on a compiler for FORTRAN on Monsoon. They plan to use the back-end of our Id compiler.
Similarly, Keshav Pingali at Cornell is also investigating the implementation of imperative
languages on a dataflow machine— he, too, plans to use the back end of our Id compiler in
order to run his codes on Monsoon.

In a separate, but related activity, Arvind, Rishiyur Nikhil and Jonathan Young were mem-
bers of the design team for Haskell, the new, non-strict functional programming language.
The team included about 15 prominent researchers in functional programming from the U.S.
and Europe. The report on Haskell was published in April, 1990. It is hoped that the
international research community will adopt this language as the standard for non-strict
functional languages.

On November 1-3, 1989, we held a Dataflow Workshop here at MIT. In addition to re-
searchers from all the above groups, participants included recent graduates from our group,
and researchers from Yale, Manchester University, Tera Computers, Rice University, Oregon
Graduate Institute, Glasgow University, Motorola and Hewlett Packard Labs.

On April 26-27, we held a Software Cooperation Meeting here at MIT, again attended by
researchers from most of the above groups. The focus was on discussing how each of us could
structure our work to maximize sharing, since many of us are interested in targeting other
languages to Monsoon and in targeting Id to other machines.

One of the outcomes of the Software Cooperation Meeting was a consensus among our guests
that we needed to run a workshop dedicated to furthering the understanding of the internal
structure of the Id compiler. This workshop has been scheduled for, June 28-29, 1990 at
MIT.



On February 2 1990, we held an internal (MIT) workshop on multi-threaded architectures
with participants from our group and the groups led by Prof. Anant Agarwal, Prof. Steve
Ward, Prof. Bill Dally, Prof. Tom Knight, as well as Bert Halstead from DEC Cambridge
Research Lab. The intent was to get a better understanding of each others’ work, since we
are all exploring different kinds of multi-threaded architectures.

As usual, on July 24-28, 1989, the summer dataflow course (6.83s), was taught here at MIT
by Professors Arvind and Nikhil. The course was attended by approximately 20 external
researchers.

In November, 1989, Professors Arvind and Nikhil taught a one-day tutorial on Id at the
Supercomputing '89 Conference in Reno, Nevada.

5 1Id: general topics

5.1 Types and incremental type-checking

Continuing his work on the incremental type inference system for Id, Shail Aditya devel-
oped an abstract model for incremental property maintenance and applied it to show the
correctness of the incremental type inference system developed for Id.

Incremental programming environments, such as LISP, aim at providing the user the flexibil-
ity to write a sequence of definitions constituting the program, one by one and in arbitrary
order, resolving global references to other definitions dynamically. They allow editing and
testing parts of an incomplete program or debug those parts that are incorrect, without
worrying about the status of the rest of the program. However, the Hindley/Milner static
type inference system [6, 2] followed in Id does not naturally lend itself to incremental com-
pilation. Nikhil in [7] discussed the issues involved and outlined a high-level mechanism to
do it.

Following Nikhil’s proposal, Shail Aditya devised an abstract scheme to adapt the Hind-
ley/Milner type inference system for incremental compilation. Subtle incremental interac-
tions were discovered between the types of a given set of definitions and their partitioning
into strongly connected components (SCC), definitions that are mutually recursive with
each other. Development of the necessary theoretical framework guided modifications in the
scheme to handle polymorphic and mutually recursive definitions correctly, Essentially, the
present scheme consists of maintaining an upper and a lower type bound for each toplevel
identifier along with its current SCC. Inconsistencies arising due to the declared type falling
out of the expected range or because of a change in its SCC are detected and the affected
definitions are flagged for recompilation. The goal is to show an exact correspondence be-
tween the types inferred in the incremental scheme with those inferred when a complete and
correct program is given while at the same time performing minimal recompilation work due
to an incremental change in the program. The detailed proofs of the correspondence are due
to appear in Shail Aditya’s forthcoming master’s thesis. Future work in this direction will
be to optimize the space and time requirements of the incremental book-keeping done by
the compiler.



5.2 Managers

Paul Barth and Rishiyur Nikhil continued their work on managers. Managers add non-
determinism to Id, an important property for state-sensitive computation, as required by
operating systems, databases, and 1/0. Although nondeterminism is a powerful feature, it
introduces a new class of programming errors: irreproducible results. We are addressing this
at the language level by encapsulating managers in abstract type definitions. A manager is
an abstract type, consisting of an updatable state and a set of operations that access and
update the state. Each operation computes a new state from the old state. Mutual exclusion
is provided for the state so concurrent operations do not interfere. This encapsulation allows
state invariants to be proved by proving them for each operation.

Several challenging efficiency concerns are now being addressed. For space efficiency, man-
agers with a complex state should mutate the state rather than copy it. For parallelism,
such managers should provide fine-grained mutual exclusion, so independent operations can
proceed concurrently. These concerns raise syntactic and semantic issues in the design and
implementation of managers. A new syntax has been proposed that addresses these issues
while maintaining a clean abstraction.

Manager applications have been written for graph algorithms, sorting, memory management,
union-find, and parallel priority queues. The traveling salesman problem was coded using a
simulated anrealing algorithm, using managers for both path mutation and random number
generation. A detailed study of potential parallelism and synchronization bottlenecks was
performed on several variations of the algorithm.

5.3 Sequentialized Code Execution

We are currently experimenting with writing resource managers and operating systems in
Id. These kinds of programs, which make use of imperative side-effects, must have explicit
sequentialization of reads and writes.

James Hicks has extended the Id language and compiler for sequential constructs. The
new syntax sequentializes the execution of groups of bindings in let blocks or loops. To
sequentialize a group of bindings, use ‘@’ instead of ¢ ;" to separate the bindings, as shown in
this example:

{ x0 = e0;
x1l = e1
& x2 = o2;
x3 = a3
in
ed }

This ensures that the evaluation of e2 and e3 does not begin until all computation has ceased
in the previous two bindings. Note, however, that 6 and ei may execute in parallel, and



that e2 and e3 may execute in parallel — sequentialization is only inserted between binding
groups separated by ‘&’

Parentheses may be used to group bindings and enforce more arbitrary synchronization
graphs. Here is an example:

{ x0 = o0;

( x1 = o1 &
x2 = 62 )

in €3 }

In this example, e0 may execute in parallel with el and e2, but e2 may not begin execution
until expression ei terminates.

5.4 Formalization of Id’s operational semantics

Zena Ariola and Arvind have continued their work on giving a precise operational semantics
for Id. The approach consists of translating Id into a simpler and smaller kernel language, and
giving semantics of the kernel language in terms of an Abstract Reduction System (ARS).
In order to prove the correctness of compiler optimizations, a notion of program equality is
needed. Such a notion is easier to define for an ARS than an interpreter. P-TAC, an earlier
attempt to define such a language and ARS was reported last year [1).

P-TAC was a simple and a low-level language that allowed us to capture most aspects
of the current implementation of Id on the dataflow machines. However, it was so far
from the source language that the translation procedure (from Id to P-TAC) became a
serious impediment in understanding the operational semantics of Id. Even though it allowed
many program optimizations to be described in terms of source-to-source P-TAC program
transformations, it ruled out certain other program optimizations because the information
to perform them was essentially lost in the translation process.

Kid, our current kernel language, is essentially a de-sugared version of Id-, which is Id without
comprehensions, general union types and pattern matching, and non-deterministic features
such as managers. Both array and list comprehensions can be expressed in terms of other
Id features such as loops and “open” lists. Though such a translation is not simple, it can
be understood in its own right. Similar remarks apply to complex pattern maching. The
stage at which type-checking should be performed is still a open question. Given the type
definitions, type checking can be done at the Kid level though it may be profitable to do so
at an earlier stage.

An ARS for Kid, which includes nested function definitions and loops, has been defined.
Many loop optimizations and partial evaluation have been expressed as Kid source-to-source
transformations. The work on formalizing the printable output and termination of Id pro-
grams is under progress.



6 Id: compiler and runtime systems for Monsoon

6.1 New compilation schemas for dealing with frames

James Hicks implemented the code generator for the bounded loop schema for the Monsoon
back end. The TTDA bounded loop schema is much different from the Monsoon bounded
loop schema because each iteration executes in a different context on Monsoon, while in
TTDA only the iteration number within a context changed — this necessitates a change
in the D operator that routes tokens from one iteration to the context, or activation frame,
of the next iteration. Another change is that the synchronization that allows only k itera-
tions to execute at once must be performed using locks and two-phase transactions — this
synchronization was performed with bit-vectors and special instructions in Gita.

The new bounded loop schema consists of three parts: setup, iteration, and cleanup. The
setup portion consists of a 1-bounded, or sequential, loop that allocates a ring of activation
frames and fills in the loop: constants in each frame. The iteration portion consists of the
actual loop body plus the?glue necessary for synchronization and to route tokens to the
next iteration or to the outputs of the loop. The cleanup portion of the loop clears and
deallocates each iteration context. We have taken much care so that the setup, iteration
and cleanup portions of the loop may be overlapped, to reduce the latency incurred by loops
that execute few iterations. The setup portion allows the iterations to begin as soon as it
has one activation frame setup. When the loop predicate evaluates to false, the cleanup
portion of the code is triggered with the continuation of the next context in the ring, which
is guaranteed to be inactive at that point. The cleanup code starts with that context, and
continues around the ring, with the proper synchronization to ensure that it does not overrun

the loop body.

6.2 Staging the Instruction Set Development for Monsoon

The macroinstruction set of Monsoon is a “soft” interface, such that an opcode is successively
decoded through the pipeline by downloadable lookup tables. The decode tables are set up
by a host processor whenever Monsoon is cold-booted. In Monsoon, an opcode encodes
the effective address mode, the matching mode (e.g., join, constant, imperative), the ALU
operation and the number and disposition of result tokens. For example, the double-precision
floating point subtract operation FSUB consumes 32 opcodes for all of its variants of one vs.
two outputs, constant vs. dyadic matching, eic.

The software Monsoon interpreter, MINT, is also indirectly driven by the decode tables. A
pre-processing program, MUD, takes the decode tables as input and, for each opcode, produces
a C (originally Lisp) subroutine which is later compiled and linked into MINT.

In order to manage the “bring-up” and validation of the compiler, the software which gener-
ates the decode tables, and MINT, we have partitioned the instruction set into three subsets,
to be developed in stages. The first set, I50, has approximately 60 opcodes (out of a possible
2048) and represents a very minimal instruction set. IS0 supports frame and I-structure al-



location, but no deallocation and only single deferred readers. Exceptions are not supported,
nor is the runtime type system (Id is statically typed).

The next stage, IS1, brings the total to a few hundred opcodes and is capable of supporting
the entire Id lanaguage, including closures, accumulators, managers, storage reclamation,
and multiple deferred reads against I-structures.

The final stage, IS2, encompasses the whole instruction set, including experimental exten-
sions for temporary registers and threading. As of June 1990, the IS0 set has been certified
by a series of tests on our gate level simulator of a Monsoon processing element, and an
IS0 version of the compiler and MINT has executed a simple successive over-relaxtion 2D
wavefront problem.

6.3 New back end for Monsoon

This past year Andrew Shaw has implemented a new back end for the ID compiler to
transform ID program graphs into Monsoon machine language. Prior to this, we had been
generating code for the Monsoon wire-wrap prototype using an interim back end that was a
modification of the original TTDA (Tagged Token Dataflow Architecture) back end. The new
back end uses the same data-structures as the middle end of the compiler, and several new
optimizations have been implemented, along with the standard peephole optimizations that
were in place with the old TTDA back end. For example, the calling convention constrains
the entry-points of procedures to lie in consecutive address locations; one of the new modules
can relax the conservative selection of these instructions. Since the Monsoon architecture has
some assembly constraints on the layout of machine code, some new algorithms were designed
to enforce these constraints upon the final output code. For example, two-output instructions
are constrained to have one of their destination instructions in the following instruction slot;
a new bipartite-matching algorithm was implemented to find a near-optimum selection of
successor-constrained instructions.

In addition, an interim loader was implemented to interface with the new Monsoon Inter-
preter, since the full loader has not yet been implemented.

6.4 Compiler-directed storage reclamation for Id

We have been experimenting with structure-storage management over the past year. Informal
studies have shown that functional languages typically “cons” at 4 times the rate of Lisp
programs. This high rate of storage allocation means that functional programs have a great
dependency on garbage collection. Unfortunately, garbage collection can be very expensive,
especially on a parallel machine.

We have introduced a pragma, QRelease, into Id to annotate structures that are temporary
and that should be deallocated. When the Id compiler sees an ORelease annotation on a
structure, it inserts code to deallocate the structure upon termination of the nearest enclosing
conditional branch, procedure body, or loop iteration.
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There is one further optimization the compiler can perform with OReleases. If a structure
is allocated in a loop, and deallocated in the same or next iteration, then the compiler can
lift the allocate and deallocate out of the loop to reduce the overhead of calls to the storage
manager. Qutside the loop, k copies of the structure will be allocated, where k is the loop
bound. These will be used by the iterations of the loop. After the loop terminates, all &
structures will be deallocated.

The @Release pragma has been used extensively by Olaf Lubeck in his Id implementations of
the Gamteb photon transport benchmark and the Particle-in-Cell (PIC) code. In October,
1989, Lubeck, Hicks and Johnson got Gamteb to run on the Monsoon prototype. This
version of Gamteb was annotated so that it did not leak any storage — all structures that
became garbage were deallocated. The largest problem that was run on the prototype started
with 40,000 particles. It allocated 300,000 9-tuples, 200,000 3-tuples, and 270,000 activation
frames of size 512. When it completed only 616 words of storage we still allocated — and
that contained the answer. This is quite impressive considering that the prototype only has
128K words of memory, and only half of that is used for the heap. This work has shown that
explicit structure-storage management is useful — it allows us to run programs that could
not be run otherwise.

James Hicks is working on compiler analysis for the verification and automatic insertion
of CReleases as his PhD research. The goal of this work is to have the compiler analyze
programs to determine the lifetime of structures, and to insert code to deallocate struc.
tures that are no longer needed. The compiler performs lifetime analysis by using abstract
interpretation—— it interprets the program over an abstracted value domain at compile time,
in order to determine which expressions in the program allocate structures, and where those
siructures may be used.

In scientific codes, which tend to have very regular control and data flow, most, if not all,
of the structures that become garbage should be detected and deallocated by the compiler.
Hicks has performed some experiments with simple program analyzers that support this
belief. His analyzer detected 23 of the 25 ®Releases inserted into Gamteb by Lubeck. The
analyzer also was run on Siraple; in this case the compiler inserted deallocates that at run
time deallocated 85% of the garbage created by 4 iterations of Simple on a 10 by 10 grid.
By the end of fall 1990, the compiler should be able to insert code to deallocate all of the
garbage created by this program.

6.5 Run time systems for Id

Jonathan Young has led a major effort this year on developing the Id Run Time System
(RTS). The RTS is designed to be a flexible interface to the low-level primitives needed to
execute Id programs. The RTS is composed of three main parts: the allocation and deal-
location of contexts, both fixed- and variable-size, for procedure invocations, the allocation
and deallocation of aggregates for data structures, and the management of input from and
output to the outside world. Most of our work this year has focused on the first two parts.

As a stopgap measure until we have a simulator capable of executing SVC trap instructions,
we have coded primitive heap and context allocators for the new Monsoon machine which
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maintain two pointers to the beginning and end of the heap. Since they do not reuse
storage, when the pointers cross, the machine dies. These allocators are generated inline by
the compiler, and have allowed the rest of the software development to proceed.

We expect that as IS1 (instruction set level 1, including SVC instructions) becomes op-
erational on the simulator, we will be able to test and debug the full functionality of the
two-phase operations and the exception mechanism. Once this happens, the Id RTS can
begin to execute via SVC instructions, although most of the RTS handlers will simply make
a procedure call at this point. When registers are finally added to the simulator (IS2), we
expect that the RTS will become much more efficient.

There are several problems to be addressed in order to manage storage efficiently on a
Monsoon multiprocessor. In particular, we must avoid network traffic — most of the manager
code must be completely local. We also wish to ensure that the critical sections are short
and the reuse of memory is as high as possible.

On the new Monsoon machine, each processor will allocate contexts locally, and, using the
exception mechanism, each thread must be able to allocate a context independent of the other
threads in the pipeline. We have designed and implemented (but not debugged) a scheme
which, on average, achieves this behavior by cacheing a small number (16) of contexts with
each thread while linking the rest into a processor-global context free-list.

Under this scheme, each allocation (and deallocation) of fixed-sized contexts will take ap-
proximately 6 instructions {exception, load cache pointer, return fetched context to caller,
increment pointer, store pointer) normally and 20 instructions for the exceptional case that
the free (or empty) list has over- or underflowed. Since this happens statically once every 16
operations, the amortized cost averages out to no more than 7 instructions.

On the new architecture we aim to solve several new problems when allocating objects from
the global heap. First, the heap will be interleaved across multiple nodes in the system.
While no work is needed to achieve this interleaving, the heap manager will need to create
pointers which take full advantage of the hardware interleaving mechanism.

Second, multiple processors will be handling multiple simultaneous heap requests. Even
though the heap is remote, we desire to handle the majority of all requests locally. This
requires some PE-local heap data structures. Finally, we wish to avoid interference between
different threads executing in parallel on the same PE.

The heap manager on the Monsoon multiprocessor is a hybrid of two schemes. Each processor
will run a local allocator, a version of quick-fit which utilizes the assumption that if an object
is deallocated, it is likely that another object of the same size will be allocated. When the
local allocator runs out of memory, however, it will ask the global allocator for more storage,
pre-allocating a large block of memory for future requests. While consing off the global heap
does require network traffic, this should be tolerable because it is so infrequent.

Arun Iyengar has also begun to be actively involved in designing the Id storage managers.
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7 Applications

Paul Barth and Stephen Brobst implemented a number of approaches to parallel simulated
annealing for the traveling salesman problem. Manager extensions to the ID programming
language were used to facilitate the implementation of critical sections while performing
update-in-place operations on the adjacency matrix of cities in the algorithm. A number of
paradigms for the use of managers in implementing the algorithm were explored: Compare
and Swap, Canonical Ordering, Master Lock, and Locking with Back-Off. It was found
that fine-grained parallelism was exposed very naturally in the model of execution provided
by dataflow. However, it was found that there is significant coarse-grain sensitivity within
the program to the particular algorithm implemented for managing critical sections. It was
important to not over-serialize execution of loops corresponding to different temperatures in
the simulated annealing algorithm. However, it was also critical to consider the contentjon
resulting from too many parallel loop iterations. This contention resulted from two sources.
One source was the contention for the current seed value of the random number generator.
This problem was addressed by initiating multiple, parallel random number generators. The
other source of contention was on the cities to be swapped. In general, to swap two cities,
it is required to grab locks on six cities (the two to be swapped as well as the two neighbors
for each city). The methods of managing this locking had a large impact on performance.
As expected, any use of global locks introduced a major synchronization bottleneck for large
instances of the problem. By optimizing the “fast path” of execution through the locking
primitives we were able to reduce, but by no means eliminate, the impact upon the critical
path of our computation.

Amin Salaam and Rishiyur Nikhil have been studying an implementation of the Viterhj
Search in Id. Viterbi Search is a key component of speech-recognition systems. The inputs
to the search are an Accoustic-Phonetic network (APnet) and a dictionary. The APNet is a
graph generated by an earlier phase that performs signal processing on the accoustic signal
of the speech utterance. Each arc in the graph represents a time interval in the utterance,
and is labelled by a list of probabilities, indicating how well the signal in that time interval
matched each of all possible phonemes. . The dictionary is also a graph, structured around
words. Each word is represented by a sequence of arcs corresponding to phonemes, and
words that can legally appear in sequence are also connected by arcs. Dictionary arcs are also
labelled with probabilities indicating possible omission of insertion in an actual utterance.
The Viterbi Search algorithm matches paths in the APnet to paths in the dictionary, finally
emitting the “most likely” sequence of words in the utterance. Because of this complex graph
structure, the algorithm has not been effectively parallelized to date. We have been studying
existing code (in C and Scheme) for this algorithm since March 1990 in order to extract
the fundamental aspects of the algorithm. We plan to produce a parallel implementation
in Id and to run it on Monsoon. We expect that this will shed much light on dataflow
implementations of graph algorithms in general.

Other applications written by Rishiyur Nikhil and Arvind in Id include: a simulator for a very
abstract model of an Explicit Token Store (ETS) dataflow machine (of which Monsoon is a
concrete example), and various versions of LU-decomposition for dense and sparse matrices.
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8 Id World, the Id programming environment

Development of Id World, the Id programming and experimentation environment continues
with a focus on advances which benefit both the old TTDA/GITA system and the software
system which will support Monsoon. Paul Johnson has worked on improvements in 1d World
on Unix workstations and software system construction tools. Id Mode for Gnu Emacs pro-
vides source code indentation and compilation of Id programs. With the assistance of Hicks,
simulator statistics graphs and overlays of multiple graphs are available under the X Window
System. Id World version 4.3, which was released in April, provides these improvements and
Id compiler pragmas for explicit structure storage management. As of version 4.1 Id World
runs on Unix workstations under common lisp. Version 4.3 has been tested under Allegro
Common Lisp and Lucid Common Lisp running on Mips, Motorola, and Sun workstations.
We were unsuccessful in running Id World under Austin-Kyoto Common Lisp (AKCL) due
to deficiencies in language support for error handling. Improvements in software system
construction tools include: handling filesystem specifics — translation of program filenames
and logical pathname support in the Defprogram facility, startup initializations and banner
customization for Lucid and Allegro disk images, consistent versions of internal software —
generation and use of generic patch files for our development systems.

9 Monsoon Hardware Development

9.1 Monsoon Wire-wrap prototype processing element

The Id compiler now produces Monsoon object code for all of the Id language. The only
restriction to running an Id program on the prototype is the size of memory — the prototype
has only 128K words of data memory, of which half is used for I-structure storage and half
for activation frame memory.

We have a run-time system, written in Id and Monsoon assembly code by Young and Hicks,
that manages the allocation and deallocation of activation frames and heap storage on the
Monsoon processor. Activation frames are managed on a free list, and heap storage is
managed by either the buddy or first-fit system. Implementation of the storage managers
has been very difficult because concurrent calls to the storage manager can be interleaved
on an instruction-by-instruction basis.

The prototypeis currently used to measure performance and instruction mixes of applications
under the Monsoon instruction set architecture with the run time system described above.
These measurements have shown that Id can be run efficiently on Monsoon. The dynamic
instruction mixes collected while running Id applications on Monsoon have shown that the
architecture is well matched to the language, and not too much overhead is introduced to
support instruction level parallelism. However, some of the architectural restrictions imposed
by the implementation of the wire-wrap processor, such as the restriction of one explicit
destination per instruction and 10-bit offsets for addressing of frame locations, have caused
excessive difficulty in compilation and have introduced excessive overhead in the object code.
The processor has been redesigned to mitigate these problems.
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These performance measurements have also shown that better algorithms must be used
for storage management so that concurrent invocations of the storage manager will not
cause excessive sequentialization of the program. This sequentialization will be magnified on
multiple-processor Monsoon systems unless better algorithms are used. Young and Armando
Fox have designed and implemented a storage manager that uses multiple local free lists and
local heaps to allow concurrent access to the heap.

9.2 The Monsoon processing element (2nd generation)

We have made significant progress in the design and verification of a second-generation
Monsoon processing element (PE). This board-level design was transfered to the Motorola
Microcomputer Division, where it was sucessfully layed-out and routed. It is now is the
process of being manufactured. We also designed and fabricated two application-specific
integrated circuits (ASICs): a byte-slice of the datapath and tag/pointer ALU. Gregory
Papadopoulos was responsible for the overall PE and ASIC architectures. Jack Costanza
and Ralph Tiberio executed the detailed designs and simulations.

The original Monsoon wire-wrap prototype processor was made operational in 1988, execut-
ing its first compiled Id program in October of that year. The new PE is largely compatible
with the original prototype, employing an eight-stage pipeline, 64-bit datapaths (plus 8 bits
of type), and 32-bit instructions. The new PE differs in several important respects, however:

¢ Interprocessor Network. The first prototype could only operate as a uniprocessor
because it lacked an interprocessor network. The new PE integrates the network into
the processor by employing an on-board PaRC and Datalink chips, as well as input
and output FIFO buffers.

¢ VME Interface. The new PE is hosted on a 9U form-factor VME bus. The VME
bus interface implements diagnostic functions (access to processor scan state, single
stepping, breakpointing), VME and PE interrupts, and high speed I/0O through a dual
ported frame store.

¢ Exception Handlers. The new PE now provides a way to very efficiently transfer
control to state-preserving exception handlers. Exceptions can be induced uncondi-
tionally (an SVC), elicited by a standard ALU conditions (like overflow) or by operand
typeinconsistencies. In fact, we will use the SVC mechanism to provide dynamic linking
to the resource management system, including frame and heap allocation/deallocation.

* Temporary Registers. The new PE permits state to be communicated between
an instruction and its successor through a small set of temporary registers associated
with the first stage of the ALU. There are eights sets of temporaries with three 72.
bit registers per set, one set for each “logical thread” being interleaved by the eight
stage pipeline. It is expected that temporaries will measurably improve the dynamic
efficiency of compiled code.
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Experience generating code for the wire-wrap prototype has suggested a number of minor en-
hancements to the processor datapath. For example, it is now possible to use the current tag
as one of the arguments to the ALU— optimizing procedure linkage and case statements.
We have also attempted to make the design more manufacturable by providing complete
scan coverage of all internal processor state and parity protection for instruction memory,
frame store and the token queues. Figure 1 gives the block diagram of the processing ele-
ment datapath. The processor is designed to run on a 100 nanosecond cycle time, yielding a
sustained processing rate of 10 million tokens per second. Compiled code presently exhibits
a dynamic average of 1.4 tokens per instruction. Thus, the processor pipe should deliver
approximately 8 million instructions per second, any fraction of which may be floating point
operations. The first set of processors will be equipped with 256 Kwords (32-bits) of instruc-
tion memory, 256 Kwords (72-bits) of frame store memory and 64Kwords (144-bits) of token
queue memory. Both the instruction and frame store memories are upgradable to IMWord.

The processing element detailed design was captured and extensively simulated on our
Apollo/Mentor Graphics design systems. Both arrays were implemented in LSI Logic’s 10K
series of 1.5 micron channeless arrays, and packaged in 144 pin fine-pitch quad flat packs.
The DATAPATH array comprises a little over 10,000 gates and implements a 9-bit slice of
the datapath pipeline registers, temporaries, breakpoint registers, form token multiplexers,
VME interface, and all static RAM parity generation and check. Each processor uses eight
DATAPATH options. The PIU gate array is an ALU function unit specialized for tag and
pointer manipulation. The PIU array comprises approximately 6,500 gates. Both arrays
have been successfully prototyped in volumes sufficient for an initial build of five processing
elements.

Design verification emphasized full-board gate-level simulation and timing verification, in-
cluding all of the gate arrays. Simulation tests generally took the form of small hand-coded
dataflow graphs designed to test various aspects of the instruction processing mechanism.
One or more initial tokens would be introduced into the pipeline, and then the simulation
was allowed to “free-run” using the processing of the tokens themselves to generate the var-
ious test vectors. The simulated design was transferred to Motorola in the Fall of 1989.
A 12-layer surface-mount circuit board was sucessfully routed by Motorola in February of
1990, and assembly began on the first processor prototypes in May 1990. Simulation and
verification of the processor still remains an area of intense activity. We have generated a
set of code fragments with reference timing traces to aid in the hardware debugging and
certification process.

9.3 The interconnection network for Monsoon

Andy Boughton, Christopher Joerg, Juan Ferrera, and Robert Lustberg have continued
development of the network for Monsoon. This network is packet switched and supports
a bandwidth of 800 MBits/sec/port. The two primary components of the network are the
Packet-switched Routing Chip (PaRC) and the Data Link Chip (DLC). These components
were discussed in some detail in last year’s progress report.

PaRC is a CMOS gate array designed by Chris Joerg that forms the basis of the Monsoon
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network. PaRC has 4 input ports and 4 output ports, each of which is 16 bits wide and
has a maximum throughput of 800 MBits per second. Each input port has 4 buffers, each
of which can hold one packet. PaRC has a sophisticated buffering and scheduling strategy
which will allow an output port to transmit a packet whenever possible. PaRC uses a
CRC code to detect errors on received packets. PaRC also allows a processor to get a fast
acknowledgment that its message has been received. The mechanism for this is able to
provide the acknowledgment without further burdening the network.

Joerg has finished the design of PaRC and the generation of a complete set of test vectors.
PaRC has 33,000 used gates and is capable of operating at 50 MHz. It has a low latency
(100ns in light traffic), while making effective use of its bandwidth (90% utilization in heavy
traffic). The set of test vectors allow the vendor to check for defects on newly fabricated
chips.

PaR(C has been fabricated in LSI Logic’s 1.5 micron compacted array series and working chips
have been received. One of these chips has been placed on a simple test fixture constructed
by Juan Ferrera. This setup was used to verify the timing of selected output signals.

The DLC is an ECL gate array that interfaces 16 bit wide PaRC ports to 4 bit wide interboard
cables. Each DLC contains one data link transmitter and one data link receiver. Each of
the 4 bits of the interboard data path is differentially driven at 200 MBit/sec.

Andy Boughton has completed the design of DLC and the generation of a set of test vectors.
DLC has been fabricated in Motorola’s Mosaic II ECL array series and working chips have
been received.

Juan Ferrera, and Robert Lustberg have designed and constructed a test fixture for the DLC
chip. The fixture uses two DLCs to transmit test patterns over a 40’ data link cable. Tests
with this fixture indicate that DLCs can be used to reliably interconnect network boards in
different racks.

The first use of PaRC and DLC will be in the initial version of the Monsoon processor board.
These boards are currently under construction. Each of these boards uses one PaRC chip
and one DLC chip. These boards will allow PaRC and DLC to be more thoroughly tested
in an operational environment.

4 input 4 output network boards using a PaRC and 4 DLCs have been designed by our
industrial partner, Motorola. These boards should be available early in 1991. These boards
will be used in the construction of 16 node Monsoon systems.

9.4 The I-structure memory board

Ken Steele completed his master’s thesis titled “Implementation of an I-Structure Memory
Controller” in February 1990. The design was kept simple to reduce cost and design time.
In particular, the board does not perform local management of deferred continuation lists.
Instead, the compiler allocates storage in the frame for one cell of a deferred list. When an
I-fetch instruction is executed against an empty I-structure location, the I-structure board
automatically responds with a token whose continuation is a small modification of the normal
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return continuation. The effect of this modified continuation is to thread the deferred list
through all the frames from which the deferred I-fetches were issued,

Motorola Microcomputer Division in Tempe, Arizona is building an I-structure controller
based on Steele’s thesis design. Fabrication of the hardware is currently underway.

9.5 Caching for Monsoon

This past year Derek Chioun has been investigating the Possibility of caching on Monsoon,
The prototype Monsoon uses static RAM for all of its memory at the present time. It would
be desirable to use slower, cheaper dynamic RAM for future iterations of the processor. If
the processor is to run at competitive speeds, using slower RAMs will require caching of some
sort. Software has been developed that will produce an instruction trace from either MIN T
or the Monsoon prototype. Derek also wrote a cache simulator which takes an instruction
trace and collects cache data. Most of the serious data collection has been done for very small
caches — generally around 32 words of fully associative cache. Results have been reasonably
promising, with hit rates ranging from 33% to 84%. These results are very preliminary,
however.

9.6 Completion of MINT, a Monsoon simulator

This year, Andrew Shaw has extended MINT to simulate multiple Monsoon processor execy.
tion. The extension has a network simulation that models latency, but not contention. It is

processors. A multiple-processor run-time system was implemented to distribute processes
and to handle resource-manager requests, Several experiments were run that indicate that
GITA simulation was indeed an accurate predictor of performance in Monsoon. In addition,
the capacity of the network was deemed sufficient to handle processors’ memory requesets,
and that the limiting factor in parallel execution is likely to be serialization induced by re-
quests to the resource-manager. In addition to multiple-processor simulation, an I-structure
board simulation was added to MINT.

10 Other activities

10.1 Optimal .Interpreters for the Lambda-Calculus

Vinod Kathail completed his doctoral dissertation [4] in which he developed a new interpreter
for the )-calculus that is optimal in the theoretical sense defined by J.-J. Lévy [5] and gave
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proofs of its correctness and optimality.

The interpreter is based on a new graph representation for A-expressions that permits sharing
of not only subexpressions but also contexts, i.e., parts of an expression that are not complete
subexpressions. This is in contrast to the commonly used representations of expressions,
which permit sharing of only subexpressions.

The interpreter is presented as a graph reduction system along with a normalizing strategy
for applying the reduction rules. The set of rules includes a graph version of the B-rule
of the A-calculus as well as certain other rules, some of which are similar to the rules for
handling environments in an environment-based interpreter for the A-calculus. Some of the
nice features of the interpreter are as follows. First, all the reduction rules are local constant-
time operations on graphs. Second, the reduction strategy for applying the rules is quite
simple. Finally, the input to the interpreter as well as the output of the interpreter are
“clean” representations of A-terms; they don’t contain various new types of nodes used by
the interpreter. A version of the interpreter has been implemented on lisp machines.

To prove the correctness of the interpreter, the thesis develops two calculii, called )¢, calculus
and Ay calculus. A, calculus is essentially the term version of the graph reduction system
underlying the interpreter. A; calculus is obtained from ). calculus by removing certain
types of terms and reduction rules that are not very useful for terms. The thesis shows
the correspondence between the graph reduction system underlying the interpreter and Ay,
calculus as well as correspondence between the two calculii and De Bruijn notation [3].
Although A; calculus was motivated by the interpreter, it may be of general interest because
of the way it simulates changing of De Bruijn numbers.

The thesis also strengthens an earlier result of Barendregt et al that states that if -
expressions are represented as trees, then there is no recursive (one-step) reduction strategy
that is optimal. The extension proved in the thesis provides some justification for the basic
assumption underlying the optimality criterion, i.e., the number of S-contractions performed
in reducing an expression is a good measure of the cost of reducing the expression.

10.2 P-RISC

Madhu Sharma is investigating the design of a processor that is a concrete implementation of
the P-PRISC architecture. Most multi-threaded architectures incur a large context-switching
cost. The cost may be incurred either in hardware— when register space is provided for a
large number of contexts, or in time— when a contexts have to be swapped in and out of
processor register files. The proposed design virtually eliminates both elements of context-
switching cost. It caches contexts in multiple register set in the processor, but manages
to mask the context swapping cost using an additional port to the register file and deep,
deterministic, instruction lookahead mechanism. The design is claimed to be only marginally
more expensive than commercial RISC processors such as the SPARC.

A detailed simulator for the architecture has been developed. Statistics gathered for small
hand-coded programs run on the simulator indicate that the architecture does manage to
mask context-switching cost and performs well under low or high parallelism.
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We are now developing compiling techniques for the architecture. T'wo approaches will be
pursued. The first is a dataflow-graph driven approach, wherein we start with a dataflow
graph, sequentialize threads of the computation to obtain larger threads (whenever there is
no gain in executing the threads in parallel), and arrive at a “control-flow graph”, which
is translated into P-RISC code. The second approach is the conventional “control-based”
approach and will be used for compiling imperative languages.

10.3 Compiling Id for von Neumann machines

Bradley Kuszmaul has been working on retargeting the Id compiler for stock hardware, such
as conventional Unix workstations. Starting with the existing dataflow graphs produced
by the compiler, he translates these into parallel control flow graphs based on the P-RISC
abstract machine model, The major effort is then in analysis and transformations on the
control flow graph, including strictness analysis, subscript analysis, identification of threads,
transformations to lengthen threads and reduce synchronizations, and peephole optimiza-
tions. Finally, these graphs are used to generate object code in the T language (T is a
dialect of Scheme). The existing T compiler already has a very sophisticated code generator
for a variety of stock machines (including register allocation, closure optimization, ete.).

We expect to release a version of Id World using this new compiler by June 30, 1990, This
implementation should substantially increase the availability of Id World to researchers who
may not have access to Lisp machines or the Monsoon dataflow machines. It should shed
light on the differences in implementation requirements between non-strict, lenient languages
like Id, and non-strict, lazy languages like Miranda.

10.4 Parallel persistent languages

Michael Heytens and Rishiyur Nikhil have made significant progress in their project to design
and implement a parallel persistent language. The aim is to produce a system in which (a)

Because of the rich ob ject structure of the language, and because the structure can change
significantly over time, high performance cannot be achieved using conventional database
methods (detailed planning of data layouts on disks and scheduling of disk activity). Our
approach is to use parallelism.

We have designed a kernel database language that is greatly inspired by Id, t.¢., having
fine-grained, implicit parallelism. In addition, in update transactions, each field can only be
redefined once, as in I-structures; this allows update transactions also to be run in parallel.
We have implemented a compiler that translates transactions into dataflow graphs and then
into P-RISC code that is augmented with manager calls for disk I/O. Asin Id and Monsoon,
another objective is to mask disk latencies using parallelism.
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We have designed a segmented, paged, distributed virtual heap for the persistent system.
Pages of the virtual heap reside in files in each processing element, and are fetched on
demand into page frames in each processing element; the protocols for page faults and
flushing on transaction-commit have been designed. The filespace occupied depends only on
the heapspace in use (not the entire virtual heap address space). The files are partitioned
across processing elements, and are partitioned by type, allowing fast traversals of collections
of objects of a given type. The files may also be indexed, allowing fast direct access to
individual objects.

A prototype is being implemented, consisting of an ensemble of P-RISC emulators running
on a network of Sun workstations. It is currently running a subset of the language, and
we expect to support the full language by June 30, 1990. After this, we plan extensive
evaluations, running numerous published and new benchmarks, and porting the system to a
real multicomputer with parallel disks.

10.5 Bachelor thesis and UROP projects

Armando Fox (supervised by Jonathan Young) investigated possibilities for more efficient
runtime storage managers. A number of traditional schemes were analyzed, with particular
attention to projected performance and synchronization requirements for a dataflow archi-
tecture. A prototype of a storage manager was implemented which addressed the problems
of global resource contention and long critical sections, and its performance was compared
to the existing first-fit manager. Although substantial improvements were observed in a
variety of cases, overhead associated with clearing out storage for reuse still accounted for a
significant fraction of the deallocation latency. Increasing the efficiency of this operation and
possibly implementing some sort of garbage collector remain topics for future investigation.

David Plass (supervised by Jonathan Young) implemented a parser generator which produces
LALR shift-reduce tables in the dataflow language Id, for use in an Id parser. The algorithm
employed avoids the creation of the LR(1) kernels by calculating LR(0) kernels and later adds
LALR lookahead information. In addition, a general-purpose parser shell was implemented
which can be used in conjunction with output by a compiler to parse source language inputs.
This work will help in our effort to write the Id compiler in Id.

Alejandro Caro (supervised by Jonathan Young) designed and implemented a symbolic de-
bugger for the Id programming language on the Monsoon processor. The debugger allows
the user to trace function calls and returns, to examine local variable bindings and loop vari-
able bindings, and to examine the state of the machine in detail. Furthermore, the debugger
allows the user to invoke these functions at the source code level, relieving the user from
having to learn the intricacies of the processor and compilation schemes.,

Glen Adams, (supervised by Greg Papadopoulos), extended the LISP MINT simulator to
model I-structure memory. An I-structure module simulator is capable of handling I-store,
I-fetch, I-put, and I-take requests, as well as ordinary reads and writes. This was interfaced
to the MINT system so that it is suitably initialized and driven by the queuing system. The
design is extensible to model multiple I-structure units.
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Mike Flaster (supervised by Rishiyur Nikhil) implemented a compiler for a small, non-strict
language that uses dependence analysis to convert a non-strict program into a strict one.
First, the compiler performs conventional def-use analysis, as well as subscript analysis for
arrays in loops, using the Banerjee-Wolfe and GCD tests, augmented with some symbolic
subscript-expression reduction. Then, the compiler performs loop-splitting, loop-reversal,
loop-distribution, scalar expansion, induction-variable analysis, efc. to ensure that all de.
pendencies are forward-dependencies. The program can now be run with the parallelism
that is best suited to the resouces of a given machine.

UROP student Doug Stetson (supervised by Jonathan Young) implemented a compiler which
translates a small subset of C into an Id Program Graph, the intermediate language of the
'1d Compiler. The subset included assignments, conditionals and loops, but not procedure
calls or pointers. The sequential semantics of C was enforced by artificial dataflow edges.
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