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Abstract

A Monsoon multiprocessor includes any number of processing elements and I-structure
boards, connected by a network. The Monsoon ID Run Time System (RTS) is that collection
of low-level resource management routines which must exist in order for compiled ID programs
to execute on a Monsoon multiprocessor. We describe implementations of the two most prim-
itive RTS routines, GET-CONTEXT and RETURN-CONTEXT. A contezt (or frame) is a contiguous,
non-interleaved block of storage, and one is necessary for every procedure call. We concentrate
on the implementation of context management routines which are completely processor-local,
which are highly optimized, and which have a high degree of thread independence. We first
develop schemes which lock processor-global resources, including a simple free-list and various
queue implementations. We then discuss more independent, two-level schemes, including one
which provides for automatic deferral of GET-CONTEIT requests.

1 Introduction

A Monsoon multiprocessor includes any number of processing elements (PEs) and I-structure (IS)
boards, connected by a network [5, 2]. The Monsoon ID Run Time System (RTS) [1] is that
collection of low-level resource management routines which must exist in order for compiled ID
programs [4] to execute on a Monsoon multiprocessor.

In this document, we describe several implementations of the two most primitive RTS routines,
GET-CONTEXT and RETURN-CONTEXT. A contezt {or frame) is a contiguous, non-interleaved block
of storage on a processing element. One context is necessary for every procedure call (as well as
certain other operations). Since each context points to storage on one particular PE, we plan to
achieve load balancing in the near term by distributing the contexts randomly to all PEs, so each
PE manages a collection of contexts from all other PEs. Currently, there is no plan to achieve load
balancing by migrating contexts across PEs; a context will always be managed by the same PE.

The Monsoon PE is a pipelined architecture. Currently, the machine can execute up to eight
separate “sequential threads” in parallel. Although the ID language and compiler ensure that
no two user threads can interfere with each other, the RTS routines must use locks and careful
discipline to avoid interfering with any other thread.

RTS routines are called via asynchronous traps from user code. On the Monsoon PE, asyn-
chronous traps are allocated a special ephemeral contezt. There is a different ephemeral context
for each thread. Thus, trap code such as the RTS is constrained to be an uninterrupted thread of
instructions unless it allocates another context.

Non-local memory references are two-phase, and may take an arbitrary amount of time to
transmit and process. Thus, low-level RTS routines may access only processor-locel state. This
restriction is most exacting on the context-management routines; all other traps may simply allocate
a context (e.g. make a procedure call) in order to access non-local state.



SEND(cont, value)
value — PLT(pir)

PLP(ptr, value)
value — STAKE(loc) loc a known absolute location
MoV(loc, value) loc a known absolute location

Table 1: Pseudocode Primitives

In the following presentation, we concentrate on the implementation of context management
routines which are completely processor-local, which are highly optimized, and which have a high
degree of thread independence. We begin by introducing the imperative local memory operations
and other primitives used in the pseudocode to follow. Qur first context manager is a simple free-
list. We discuss various queue implementations, and then more independent, two-level schemes,
including one which provides for automatic deferral of GET-CONTEXT requests.

2 Machine Primitives

The sequential pseudocode in this document requires some notational explanation. Identifiers are
either lc (lowercase) or UC (uppercase). Uppercase identifiers either point to a known absolute
location in processor-local frame memory, or begin with a T', are thread-local, and are accessed by
offsets from the base of the ephemeral frame. Lowercase identifiers denote values with no particular
location; we assume that these values will be stored temporarily in processor registers and spilled
to frame slots if necessary. Either type of value may be modified imperatively (“a « »”). Multiple
assignments (“a,b — c,d”) are performed in parallel.

Besides integers, we will manipulate two other types of primitive data: continuations and
pointers to memory. A continuation contains both code and frame (stack) pointers, and is roughly
equivalent to a return address on a von Neumann-style architecture. SEND(cont,value) returns
value to the continuation coni.

Pointers allow more operations, including comparisons to other pointers, and addition or sub-
traction of an integer. Although most memory requests are two-phase and do not preserve the
thread, two highly-optimized transactions have been designed to allow an indirect reference to a
location on the same processor without losing the current thread. The PLT operation, or processor-
local take, takes 2 instructions and extracts a value from a location with presence bits pl-present,
while PLP, processor-local put, takes three instructions and stores a value in an empty location.
Any other use of these operations, e.g. non-local pointers, PLT on a location which is not pl-present,
or PLP on a location which is not empty, is an error.!

Synchronization between threads on a processor is performed by means of the STAKE instruction,
which spins on an absolute location until there is a value present, in which case it extracts the value
and returns it. Becaunse spin-locks are expensive, we try to avoid using them where possible. A
spin-lock is released by the MOV instruction.

3 A simple free-list

1There is still some controversy over the completeness of this choice of primitives, particularly regarding the
presence-bits transitions. Note that of all the schemes presented in this paper, only the free-list scheme depends on
the presence bit transitions of PLP and PLT - locations must become empty after PLT.
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Figure 1: A free-list of local objects

GET-CONTEXT(cont) :

oldp «— STAKE(FLP) - Begin FLP critical section
newp — PLT(oldp)

MOV(FLP,newp) - End FLP critical section
SERD(cont, oldp)

RETURN-CONTEXT(newp) :

oldp «— STAKE(FLP) - Begin FLP critical section
PLP(newp, oldp)
MOV(FLP,newp) - End FLP critical section

Figure 2: Pop-Free-List and Push-Free-List

Perhaps the simplest mechanism for managing a collection of blocks is a free-list, a linked list of
free objects [3]. In Figure 2, we implement GET~CONTEXT and RETURN-CONTEXT in pseudocode using
a free-list. The free-list pointer, or FLP, points to the beginning of the list, and the first word in
each block points to the next block (see Figure 1). All blocks in this scheme must be local to the
processor which is managing them.

We use STAKE to synchronize on the location holding the free-list pointer, because this is a
(processor) global resource, and other threads may attempt simultaneous access to the free-list.
The critical section extends in both cases from the time when the STAKE instruction extracts the
old pointer to the time when the MOV instruction returns the new one.

Implementation Status: Free-listing of contexts has been implemented on both the wire-
wrap Monsoon prototype and the simulator for the new machine. Although the critical sections are
very small, the spin-locks have been observed to be very inefficient — several simultaneous procedure
calls in different threads will interfere. Furthermore, each object managed must be processor-local,
and the behavior of GET-CONTEXT at the end of the list is undefined.

4 A double-buffered queue

The free-list implementation presented in the previous section suffers from one fatal flaw: because
each context contains a pointer to the next, it must be local to the processor which manages it. This
can be avoided by using processor-local indirection cells (Figure 3), or by using a circular queue
with pointers to the beginning and the end of the active region [3]. Because of our multithreaded
architecture, however, one lock must control access to both pointers in such a queue.

It is possible, however, to implement a double-buffered queue, in which access to the input and
output buffers are controlled by different locks (Figure 4). Let one buffer, the Input Block, begin



Figure 3: A free-list with local indirection cells
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Figure 4: A double-buffered queue

empty and become gradually filled by enqueue requests, while the other buffer, the Output Biock
begins full, and gradually empties via dequeue requests. When the output block becomes empty,
the buffers change roles: the input block becomes the output block, and the output block becomes
the input block. The pseudocode for dequeue and enqueue appears in Figures 5 and 6.

Notational Convention: for consistency of presentation, all pointers will point to the nezt
available location. For instance, the input block pointer, IP, points to the next empty slot (where
the next object enqueued will be stored), while the output block pointer, OP, points to the next
available object. Pointers are thus generally incremented, and memory grows downward in our
diagrams.

In order to keep track of both buffers, several pointers are needed. IB (Input Begin) points to
the beginning of the Input Block, IE (Input End) points to the end, and IP (Input Pointer) points
to the next slot to fill. Similarly, OB (Output Begin) points to the beginning of the Output Block,
OF points to the end, and OP points to the next object we will return. We also need a pointer,
OF to (one past) the end of the valid objects in the output block.

Because of the possibility of multiple readers of the queue state, we must synchronize all readers
of the state of each buffer. Since any operation on a buffer involves the pointer, this synchronization
is efficiently achieved by storing IP in a locked cell at location IPP (and similarly for OP at location
OPP), and using STAKE to ensure mutual exclusion.

Note that there are two possible errors raised by the enqueue and dequeue code. While we offer
no constructive method for handling the empty queue condition at this time (see Section 6), we
can avoid ever raising the queue full exception by the simple exp+ilient of making both buffers at
least as large as the number of objects managed. This also eliniinates all need for pointers IE and
OF to the end of each block.

Perhaps a more major disadvantage is that this mechanism will “thrash” if the average size
of the queue is small, since the buffers are swapped (a relatively expensive operation} each time



GET-CONTEXT(cont) :

op «— STAKE(OPP) — Begin OP critical section
if op < OF then
ctz «— PLT(op)
MOV(OPP,op + 1) — (Normal) End OP critical section
SEND(cont, ctz)
else
- Swap input and output buffers!
ip «— STAKE(IPP) — Begin IP critical section
IS,ip,IE,08,0p,0F,OF «— 05,08,0E,I5,15,ip,1E
MOV(IPP,ip) —~ End IP critical section
if op < OF then
ctz « PLT(op)
MOV(OPP,op+ 1) - (Alt) End OP critical section
SEND(cont, ctz)
else
PANIC(“Dequeue — Queue empty”)
end if
end if

Figure 5: Double-Buffered Dequeue

RETURN-CONTEXT(ctz) :
ip +— STAKE(IPP) — Begin IP critical section
if ip < IE then
PLP(ip,ctz)

MOV(IPP,ip+ 1) — (Normal) End IP critical section
else

PANIC(“Enqueue — Quene full”)
end if

Figure 6: Double-Buffered Enqueue



the output buffer is exhausted. Our primary objection, however, is to the existence of the two
processor-global locks. The next two sections present a two-level scheme with infrequent demands
on global resources, and an extension which can defer GET-CONTEXT requests.

5 A simple two-level scheme

Our dissatisfaction with the above resource management schemes stems from the fact that they all
rely on processor-global spin-locks. Thus, different threads can interfere if demand for the resources
is high.

Of course, we can trivially achieve our goal of context management without inter-thread inter-
ference by making eight different context pools, one for each thread. Unfortunately, this scheme
can run out of contexts in one thread while there are contexts available in another. In fact, it seems
clear that if we want our threads to share their resources, they must communicate at some point.
Thus, we are willing to accept some degree of processor-global synchronization provided it is not
too often.

Our first attempt at a non-interfering resource management resulted in a two-level scheme which
pre-allocated a small cache of contexts to each thread, and pooled the rest. “Most of the time”,
the idea was, we would add and delete contexts from our local cache; only infrequently would we
need to access the processor pool. Unfortunately, this resulted in a bad borderline effect: if our
cache were almost empty, one allocate would empty it, so we would fill it from the processor-global
collection. Then, of course, one deallocate would force us to empty the cache again. Although
adding hysteresis to the system (e.g. by only copying half of the buffer on over- or underflow) might
alleviate this problem, we felt that we would spend much time copying things, and thus judged this
not to be a good option.

Instead, we noticed that we could copy “full” or “empty” blocks of contexts just by shuffling
pointers. Thus, our next scheme resembles a double-buffered queue for each thread, but the buffers
are spilled to processor-global pools instead of to the other local buffer. This is achieved by
postulating two routines, ptr «— GET-BLOCK(pool) and RETURN-BLOCK(pool, ptr), which manage a
processor-global collection (named pool) of buffers using one of the previous schemes.?
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Figure 7: Thread-local double-buffered quene

Each thread manages a small cache of contexts usfng two buffers, in a manner similar to the
double-buffered queue scheme. The Input Block gradually fills with pointers to contexts, and the
Output Block is gradually emptied of contexts (see Figure 7). TIB points to the beginning of the

2 As long as the number of such pools is small, this can be done within the addressing limits of the architecture.
Of course, in an efficient implementation, these “procedures” will be inlined.



GET-CONTEXT(cont) :

¢tz «— PLT(TOP); TOP «- TOP +1
SEND(cont, ctz)
if TOP > TOE then
— Restore invariant
RETURN-BLOCK( the-empty-pool, TOB)
b « GET-BLOCK(the-full-pool)
TOB, TOP, TOE « b,b,b+ len
end if

-Figure 8: Two-Level Get-Context

RETUR]-COITEIT(ctt) :

PLP(TIP,ctz); TIP « TIP +1

if TIP > TIE then
— Restore invariant
RETURN-BLOCK(the-full-pool, TIB)
b — GET-BLOCK(the-empty-pool)
TIB, TIP, TIE « b,b,b 4 len

end if

Figure 9: Two-Level Return-Context

Input Block, TIE points to the end, and TIP points to the next slot to fill. TOB points to the
beginning of the Qutput Block, TOE points to the end, and TOP points to the next context we
will return. For definiteness, we also enforce the invariant that TIP < TIE and TOP < TOE,
i.e. we can always get or return one more context. Note that no locks are required, because all of
the queue state is thread-local, and that the pseudocode below assumes nothing about the block
size, len.

Instead of copying contexts on over- or underflow, however, we access the appropriate global
pools. In particular, on overflow we get a new empty block of contexts from the pool of empty
buffers, and add our full block to the full pool. On underflow, we get a new full block of contexts
from the full list, and add our empty block to the empty list. (Figures 8 and 9.)

Because we have a cache of contexts — and places to put returned contexts — we often avoid
accessing the global queues. This avoidance can even be quantified: assuming the size of a block is
16, only 1/16 of the time does a GET-CONTEXT (or RETURN-CONTEXT) result in a global queue access.
On the other hand, the most common case (15/16 of the time) requires only a few instructions,

Varying the block size is a trade-off between decreased global accesses and decreased hoarding
of contexts in the local caches. In addition, we now have a significant storage overhead for the
individual blocks. We need two blocks for each thread, and enough additional blocks to store all
the contexts. Assuming that this processor manages 400 contexts, this amounts to at least 41
blocks, or 656 words. After the required 16 blocks, the marginal overhead is one word per context
managed, which is quite reasonable.

Unfortunately, this scheme does not check for the possibility of failure within GET-BLOCK. While
careful preallocation of blocks should ensure that there is always a block on the empty list whenever



we need one in RETURN-CONTEXT (similar to the method discussed in the case of double-buffered
enqueue, 'a.bove), we cannot similarly guarantee the existence of a full block of contexts on the
full list in GET-CONTEXT. In the next section, we consider the possibility of deferring GET-CONTEXT
requests until more contexts arrive.®

Implementation Status: This scheme has been coded in MONASM and is currently being
tested. For GET-BLOCK and RETURN-BLOCK, we use the double-buffered queue described in section
4, using the optimization described to avoid the need for end pointers.

6 Deferring Requests

The basic idea behind deferring a GET-CONTEXT request is simple: when we cannot immediately
satisfy a request, we store the continuation somewhere in the hopes that a context will soon be
deallocated. Unfortunately, this “steady-state” ideal is quickly contaminated by the realities of our
situation. Where is this storage to come from? How is it to be allocated? Will it be thread-local
or a global resource?

‘We have considered many schemes for implementing deferred context allocation, and are satisfied
with none of them. Nevertheless, we present here one of the more promising schemes, along with
indications of possible weaknesses and areas of flexibility. The fundamental choice — where to store
deferred readers — is a simple extension of the local caches from the previous, two-level scheme: to
each thread, we add a third block in which we cache deferred requests, and we add a global list of
blocks of deferred requests.*

Each thread thus has additional pointers TDB, TDP, and TDE to the beginning, middle, and
end of the deferred block. We add another bit, TD?, to each thread to indicate whether or not we
are deferred. Unlike the previous scheme, however, the invariant that “there is always one more”
no longer holds, so we must always check first before storing anything in a buffer, Preliminary
investigations have indicated that this adds significantly to the critical path of GET-CONTEXT and
RETURN-CONTEXT.

In each thread, we preserve the following invariant: if TD¢ (we are deferred), then the output
block is empty (TOP = TOE), and if we are not, then the deferred block is empty (TDB = TDP)®
Furthermore, if the global list of deferred blocks is not empty, then the global list of full blocks is
empty. Note, however, that a thread can be deferred without the global list of full blocks being
empty, because the full block could be deallocated by one thread after another thread became
deferred.

In addition, we explicitly allow failure as one of the possibilities from the procedure GET-BLOCK.
In our code, GET-BLOCK is considered to return a boolean as well as a block pointer (see Figure 10).

In spite of the change in invariant, deferring GET-CONTEXT is very similar to the previous scheme:
if there is one more context, return it {(Figure 11). When there are no more cached contexts and
we are not already deferred, we attempt to get more from the global collection of contexts via
GET-BLOCK.

If GET-BLOCK fails, then we must defer this request. Since at this point the output block is

3] am indebted to Mike Beckerle for encouraging me to look for a robust storage management scheme which could
also defer GET-CONTEXT requests.

*Note that local deferring may not be desirable. Since each thread defers and satisfies deferred requests inde-
pendently (“most of the time”), if one thread deferred one request, and never handled another request, the deferred
request would never get satisfied. We do not have a solution to this problem.

®Experienced hackers will see numerous ways to exploit this invariant, e.g. avoiding the need for both an output
block and a deferred block or coding TD? as a contorted logical case of the other pointers. We have resisted this
temptation in the name of clearer exposition.



if b — GET — BLOCK(pool) then
(Success, b is a valid block)
else
(Failure, b is not a valid block)
end if

Figure 10: Interpretation of success/failure of GET-BLOCK

GET-CONTEXT(cont) :

if TOP < TOE then
— Return available context
ctz — PLT(TOP); TOP + TOP +1
SEND(cont, ciz)

else if TD?¥ then
— Already deferred (Figure 12}

else
— Not deferred (yet)
if b «— GET-BLOCK(the-full-pool) then
— We have a new (full) output block!
RETURN-BLOCK( the-empty-pool, TOB)
TOB, TOP, TOE < b,b,b + len
ctz — PLT(TOP); TOP «— TOP +1
SEN D(cont,ctz)
else
— No more full blocks — defer!
TD? « True
PLP(TDP,cont); TDP «— TDP +1
end if
end if

Figure 11: Deferring Two-Level Get-Context



empty, we can safely change our state to deferred. We must also store the continuation in the defer
block, which must have been empty (since we were just recently not deferred).

Of course, we could have chosen to test the state of TD? before testing for the availability of
another context. By our previous design heuristic, this code attempts to optimize for the case where
requests are not deferred at the expense of more overhead on deferred requesis. Alternatively, we
could try to get a full block before testing TD?. More experimentation will be needed to tune this
code for the best performance.

Another optimization available would be to return one of our incoming contezts (if possible)
either before attempting to get a full block or before deferring. We have not explored this option.

When we are deferred (Figure 12), we again try to obtain a full block of contexts from the
global pool. If this is successful, we first satisfy all of the pending deferred requests. If there were
not 16 pending deferred requests, we then also satisfy our own request, and become un-deferred
(because we have emptied the deferred block and filled the input block). Otherwise, this request®
becomes the only deferred request.”

When we are already deferred and there are no global full blocks of contexts, we must also
defer this request. If there are already 16 deferred requests, this means swapping this full block
of deferred requests out to the global list and finding another empty block in which to store this
continuation. Note that this preserves the second half of the invariant stated above: if the global
deferred block list is not empty, then the global full block list is empty.

Unfortunately, continuous GET-CONTEXT requests can still result in an error condition: there
may not be another empty block available. This can be shown to happen under this scheme only
wlhien there are more than 16 deferred requests, although this is not likely to be of much consolation.

The code for RETURN-CONTEXT is similar to GET-COBTEXT. If there is room to store one more
context, we store it. When we fill a block of contexts (and we are not deferred), we check for a full
block of deferred requests before adding our block to the full pool (preserving our global invariant).
When we are deferred, we satisfy our own requests.

This is another trade-off. If deferring is not common, then it may be acceptable to wait up to
16 RETURN-CONTEXT requests in this thread before one deferred GET-CONTEXT request is satisfied.
If this is not acceptable, then every RETURN-CONTEXT request must first attempt to satisfy any
deferred GET-CONTEXT requests, resulting in a performance penalty. (See also footnote 7.)

7 Conclusion

In this document, we presented two processor-global context management schemes (a free-list and
a double-buffered queue). We then presented a two-level scheme in which each thread managed a
local collection of contexts and only accessed the global collections of full and empty buffers of con-
texts when absolutely necessary, and extended it to allow GET-CONTEXT requests to be temporarily
deferred. We expect to have performance data on these schemes soon.

$Obviously, any request could be chosen. Since the current one is clearly younger than any pending request, we
have chosen to satisfy the older requests first.

"Note that there may be more than one full block available, although we only check for one. In the unlikely event
that this happens, one request will be deferred until the next GET-CONTEXT request in this thread.

10



— Already deferred
if b — GET-BLOCK(the-full-pool) then
— But lots of contexts now available!RETURN-BLOCK(the — empty — pool, TOB)
TOB, TOP, TOE « b,b,b+ len
— Satisfy all prev deferred readers
while TDB < TDP do
cont’' — PLT(TDP); TDP « TDP -1
ctz «— PLT(TOP); TOP « TOFP +1
SEN D(cont', ctz)
end while
- Try to satisfy this deferred reader, too
if TOP < TOF then
— Not all gone!
ctz — PLT(TOP); TOP « TOP +1
SEN D(cont,ctz)
TD? « False
else
— Defer this reader — there were 16 before us
PLP(TDP,cont); TDP « TDP +1
end if
else
— Defer this reader
if TDP < TDE then
— Room for one more
PLP(TDP,cont); TDP «— TDP +1
else
- Get empty block for more defers?
if b «— GET-BLOCK(the-empty-pool) then
— Yes: add this one to global pool
RETURN-BLOCK( the-deferred-pool, TDP)
TDB, TDP, TDE « b,b,b + len
else
— No more empty blocks
PANIC(“Defer — Out of storage”)
end if
end if
end if

Figure 12: Deferring Two-Level Get-Context (when deferred)
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RETURNE-CONTEXT(ctz) :

if TIP < TIE then
PLP(TIP,p); TIP « TIP + 1
else if TD? then

— We have a full block, but this thread is deferred!
— See Figure 14

else
— We're not deferred, but others might be
if tdb — GET-BLOCK(the-deferred-pool) then
— Yes: satisfy others (Unroll this loop!)
— For tdp — tdbtoTDB + len — 1 and TIP «— TIBtoTIB + len — 1 do
i— 10
tdp — tdb
TIP — TIB
while i < len do
cont — PLT(tdp); tdp «— tdp + 1
¢tz — PLT(TIP); TIP + TIP + 1
SEND(cont,ctz)
end while
TIP — TIB
RETURN-BLOCK( the-empty-pool, tdb)
else
— Nobody on global deferred list
RETURN-BLOCK( the-full-pool, TIB)
if b «— GET-BLOCK({the-empty-pool) then
TIB, TIP, TIE « b,b,b+ len
else
PANIC{“Multiple Defers — Out of storage”)
end if
end if
end if

Figure 13: Deferring Two-Level Return-Context
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— We have a full block, but this thread is deferred!
— swap I (full) and O (empty) blocks
b« TIB
TIB, TIP, TIE «— TOB, TOB, TOB + len
TORB, TOP, TOE « b,b,b+ len
— Satisfy all prev deferred readers
while TDB < TDP do
cont « PLT(TDP); TDP — TDP — 1
ctz' — PLT(TOP); TOP «— TOP +1
SEN D(cont,ctz')
end while
TD? « False
— Restore invariant: not deferred when TDB = TDP

Figure 14: Deferring Two-Level Return-Context (when deferred)
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