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Graph Rewriting Systems

Z.M. Ariola and Arvind

2.1 Introduction

A modern trend in programming language theory has been to develop calculi to cap-
ture some specific aspects of functional language implementations. For example, sev-
eral calculi for explicit substitution have recently been developed by Curien and Lévy
[ACCL90, Cur86, Cur9l, HL89, Hin77]). An attempt to formalize “weak reduction”,
i.e., the kind of reduction that is actually done by most functional language imple-
mentations, is described by Maranget [Mar01]. Barendregt et al., have put forth a
calculus to capture sharing in graph reduction implementation of term rewriting sys-
tems (TRSs) [BBvE+87, BvEG*8T7, Ken90, BvEvLP87]. In the same vein, we want
to develop a caleulus to capture the sharing of subexpressions in a more general class
of languages.

Specification of sharing is desirable in the intermediate language used by a compiler
for a purely functional langunage. Consider the function definition F 2 = # + 2 and
the expression F{2 + 3). Any decent implementation, independently of the evaluation
strategy (normal-order or applicative-order) it employs, will evaluate the subexpres-
sion 2 + 3 only once. Dealing with sharing is important if the intermediate langunage
is to be used to express and reason about optimizations. However, sharing becomes
a necessity when a functional language is extended with side-effect operations, like
L-structures [ANP89]. In general side-effects destroy “referential transparency” in the
sense that the definition of an identifier carnot be substituted for each occurrence
of the identifier in an unrestricted manner. Thus, the semantics of such a language
requires a precise specification of sharing and substitution.

A way to capture sharing is to represent the expression as a graph instead of a
linear text string or tree. This allows sharing of identical terms through pointers,
and avoids repeated evaluation of identical terms as it is commonly done in normal-
order reduction. Graph reduction for the A-calenlus was proposed by Wadsworth in
order to bring together the advantages of both the applicative and the normal order
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evaluation [Wad71]. Wadsworth also formally proved the correctness of his graph
reduction technique. (As an aside - Wadsworth also showed that his graph reduction
did not capture enough of sharing of expressions to lead to an optimal interpreter. More
recently a new graph structure which allows sharing of “coniezts”, has been proposed
by Kathail [Kat30]. This latter technique leads to provably optimal interpreters for
the A-calculus {L78]).

Much of the past work on graph rewriting has been to prove its correctness with
respect to either the A-calculus or Term Rewriting Systems (TRSs). We see graph
rewriting as a system in its own right, and want to explore its syntactic and semantic
properties. We want to include graphs with cycles and rewriting rules that recognize or
create cycles. This is not the case in either [Wad71] or [BvEG*87] where only acyclic
graphs are considered and thus, some important implementation ideas are ruled out.

In the following we formally introduce Graph Rewriting Systems (GRSs), and prove
several syntactic properties of such systems. We also develop a term model for a re-
stricted class of GRSs along the lines of Lévy’s term model for A-calculus. The re-
stricted GRSs which we consider are adequate to describe sharing in combinatory sys-
tems but not the A-calculus or the I-structures. In the last section we briefly discuss the
applicability of our term model in showing the correctness of compiler optimizations.

This paper is based on the Ph.D. thesis of Zena M. Ariola [Ari92] where complete
proofs and more examples with explanations may be found.

2.2 Syntax of GRSs

Our formalism for graph rewriting is based on the observation that a natural way to
represent a graph textually is to associate an identifier to each node of the graph, and
then write down all the interconnections as a recursive let-block. Equivalently we can

say that we associate a name to each subexpression of a term. For example, the term
F(+(2,2)) will be expressed as:

{ 1 =+(2,2);
ity = F(h)
In t:}

In applying the rule F(z) — G(z,z), the name ¢;, and not the expression +(2,2),
will be substituted for each occurrence of z, leading to the term:

{11 =+(22);
tz = G(tl,t]_)
In t;}

We will allow the substitution of +(2,2) for each free occurrence of #; only when
+(2,2) becomes = value, t.e., 4. Thus, no duplication of work occurs during reduction.
Therefore, we think that an essential feature of a language for graph rewriting is the
block consiruct with a suitable notion of substitutable values.

The syntax of GRS terms is given in Figure 2.1. Superscript on a funetion symbol
indicates its “arity” i.e., the number of arguments it is supposed to have; constants
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Graph Rewriting Systems

SE € Simple Expression
E € Expression
Fl € J_-k
Constant € F°
SE t= Variable | Constant
E = SE
| F*(SE:,--+,SEx)
|  Block
Block := {[Binding;]" In SE}
Binding := Varigble=FE
Term = FE

Figure 2.1 Syntax of terms of a GRS with signature F

are assumed to be function symbols of arity 0. The variable names on the left hand
side of bindings in a block are required to be pairwise distinct. Furthermore the order
of bindings in a block does not matter.

In the following FV(M) and BY(M) will denote the free and bound variables of term
M, respectively. Moreover, if M = {2, = e;;-- 2, = e, In z} and 2 is a variable,
we will say that M is rooted at 2. The root of a term plays a special role during its
reduction. For example, consider the rule F(G(2)) — 0 and the term F(G(1)). During

the reduction only the pointers to F (i.e., the root) are redirected to 0, and the subterm
G(1) remains unaffected. We call the subterm G(z) the precondition of the above rule,
which will be written in the GRS notation as follows:

Ty = 6(3)
2y =F(z2) — 21 =0

DEFINITION 2.2.1 (GRS rule) A GRS rule v is a set of preconditions, z; =
€1,- "y %n = €n, and a left-hand-side, 1, and a right-hand-side, r, and is written as:

31=€1i"'|¢n=€n

z2=] — 2=17r

where

a. €;,1<i<n, and I are terms of the form F(yy,.--, 1), where each y; is either a
variable or a constant and k > 0;

b. v is a term such that FV(r) C FV({21 = e1;- 2 = €n; 2 = 1 In z}) U
{31:"',31%’3}'

The term {21 = ey - 2q = €y; 2 =1 1In z} is called the pattern of rule T, and is
denoted by P(7).

The metavariables of a rule correspond to the free variables of its pattern. Notice
that restriction (a) makes it impossible to give a GRS rule to rewrite a constant
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or a variable. However, we do not resirict the pattern of a rule to be a strongly
connected rooted graph. Such a rule, referred to as & multi-rooted rule, can be used to
describe side-effect operations by keeping the state of the store direcily in the term.
For example, we can express the operation of reading location I of array X as follows:

z; = Store(X, I, Z)
z = Select(X,I) — 2 =Z

which can be assigned a natural interpretation that if there is a Store in the “context”

of a Select then the Select can be rewritten to Z. It is for this reason that in our earlier
work we had called our system a Conteztual Rewriting System [AA89, AA9la, AA91D].
However, Jean-Jacques Lévy convinced us that our system basically described graph
rewriting, so we renamed it simply a GRS.

DEFINITION 2.2.2 (GRS) A GRS is a structure (A(F), R), where A(F) is the set of
GRS terms defined over signature F, and R is a set of GRS rules.

2.3 Basic Rules of GRSs

Analogous to the notion of a-equivalence in A-calculus, we want to identify GRS terms
whose differences may be regarded as merely syntactic noise. To that end we assume
that all GRSs come equipped with some basic set of “rules”. These rules fall ontside
the syntax prescribed in Definition 2.2.1.

Substitution rules:
X=V X=Y

X—V X—Y

X#Y

where V is a constant. These rules formalize the notion of a substitutable expression
and say that only constants and variables (provided X and V are distinct variables)
can be substituted freely, The corresponding binding can be deleted from the term
when all such substitutions have been performed.

Degenerate cycle rule:
X=X—X=0

This rule says that if we encounter a nonsensical binding like # = = then we bind z
to the special symbol o. The special symbol o behaves just like a constant value and
can be substituted freely.

Block Flattening rule:

{y = {88; 58, --- {y = 2
In =} — 88, 58,...
S1; +++ Sn S1; -+ Sa
In z} In 2}

where 2’ and S5} indicate renaming of all bound variables occurring in the internal
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Graph Rewriting Systems
block to avoid name clashes with the names in the surrounding scope.

Commutativity rule:

{-8; Sj -z} — {---55; Si---Inz}
This rule says that the order of bindings in a block does not affect a term.

A term is said to be in canonical form if all the substitutions, the detection of
degenerate cycles, and the flattening of blocks have been performed, and all bindings
of the form # = y and # = v have been deleted. Consequently, two terms M and N
are said to be a-equivalent if their canonical forms are the same up to renaming of
bound variables and commutativity of bindings.

2.4 Identifying Redexes and Reduction

There are subtle issues involved in identifying redexes in a term. Consider the following
two rules:

n: Z1=F(0)|2:=F(0) e z1 = F(0)
'Y 2 =G(z1,32) — z=0 " 2=G(z1,71) — z=0
and the following two terms:
M={t =F0); N={ t. =F(0)
tq = F(O); tz = G(t]_,t;)
t; = G(tl,ta) In tg}

In s}

Intuitively we can say that 7y matches M with the substitution “2 = 13,2, = t;,22 =
t3”, and 7 matches N with substitution “z = ¢, 2y = 11”. Does rule © apply to N7
Or does rule r; apply to M? Rule 7y does indeed a.pply to the term N by matching
both the preconditions by the same binding, that is, by considering the substitution
“p; = 1,23 = t1,2 = 13”. However, there will not be any variable substitution
that makes 73 applicable to M. Thus, the preconditions of a rule can be satisfied by
overlapping bindings. Moreover, the lhs of a rule can also overlap its precondition, as
shown in the following example. Consider the term M = {t = G(2) In t} and the rule:

— G(Y)
3=G($1) — 2=0

The substitution “x =1,2; = 1,Y =t” makes G(t) both a redex and its precondition!

We can capture the notion of a redex in terms of an ordering on terms. For this
purpose we extend the syntax of GRS terms with a new “constant”, called (2, which
matches any term and is less than or equnal to any term in our ordering. The constant
1, however, behaves differently than other constants because ) is not a substitutable
value. Thus, the term {#; = Q; 2 = 0; 3 = G(f1,%2) In 3} is not the same as
{iz = Q; tg = G(ti,h) In tz}.
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DEFINITION 2.4.1 (w-ordering: <,) Given GRS terms M and N in canonical form,

rooted at 2y and za, respectively, M <, N iff 3 a function o : (BV(M)UFV(M)UF®) —

(BV(N) UFV(M) U F°) such that:

a. Yee F°, olc) =¢;

b. Yz e FY( M), o(z) = 2;

¢. Vz € BY(M), if z is bound to F*(y1,--+, ) in M then 3z,z = o() such that z is
bound to F*(o(11),---, () in N;

d. o(z) = z;.

The funclion o is called the induced substitution.

Notice that if a variable is bound to an ), condition (c) is automatically satisfied.
Intuitively, M <, N if N can be obtained from M by replacing ! with any other
term or by increasing the sharing in M. Thus, M <, N, where M and N are the
terms in the example given at the beginning of this section.

We use w-ordering as follows in defining a redex. We substitute ) for all metavari-
ables in the pattern of a rule. Such a term is called the closure of a rule. If term p is
the closure of rule r then a term M is said to be a r-redexif p <, M.

DEFINITION 2.4.2 (Closure of a Rule) Given a GRS rule 7, the closure of T, wril-
ten as Cl{7), is the term {yy =} -+ ym = 5 t = P(7) In t}, where {31, -, ym} =
FV(P(7)) and t is a new varichle.

In the following, we will make use of the notation M@z;, where z; € BY(M), which
stands for the term M rooted at 2z;, that is, the term M@e; is the same as M except
that it is rooted at #;. For example, if M = {®1 = €1;++@n = e [n 2} then M@z,
will be the term {z; = e1;- -2, = €, In 2;}.

DEFINITION 2.4.3 (Redex) A redezin a GRS term M is a triple (7,2, 0) such that

a. T is a GRS rule;
b. z € BY(M);
e. Cl(t) <, M@z and o is the induced substitution.

DEFINITION 2.4.4 (Instance of a Term) Given o GRS term M and & substitution
o, an instance of M, writlen as M7, is the term obtained by substituling o(z) for each
free variable z of M and renaming each bound variable of M.

31:61]‘--|Zn=€n

Given & rule 7 : , and redex (7,2,4) occurting in M, the

2=l-wz=1p
reduction step consists of first allocating »7, that is, an instance of the ths of rule
using substitution o. Subsequently, the term bound to the root of the redex is replaced
by the newly instantiated term. The replacement operation is written as M[z « r7].

The term so obtained is then canonicalized.

DEFINITION 2.4.5 (Reduction, —) Given @ GRS term M in canonical form and

#1=e1| - |2n =€,

rule T : , M reduces to N by doing the r-redez at z in M

g=l=-z=2
(written as M —= N ), iff (r,z,0) is a redez in M and N =, M[z — +°].
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The instantiation of » in our system corresponds to the busld phase of Barendregt
system while our replacement operation corresponds to his redirection phase. How-
ever, there are subtle differences between the two systems. First of all, the gardage
collection phase of Barendregt (that is, the deletion of nodes that are not reachable
from the root), which in our system will correspond to the dead code elimination, is
not performed in our GRS. The rational being that we want to allow the so called
multi-rooted rules. The other difference arises in the presence of “projection” rules
and cyclic graphs. For example, given the rule z = {X) — =z = X, and the cyclic

term M = {t = I(z) In i}, following the Barendregt system, we will have, M — M.
According to our system, M — {t =1 In t}, which, as explained before, will become

o, a symbol to represent a “meaningless” term. This difference has a strong impact on
the confluence of GRSs, as we will see shortly.

2.5 Confluent GRSs

Not all GRSs are confluent, however, we can show that for a restricted class, namely
GRSs without interfering rules, confluence is guaranteed. We introduce the notion
of compatible terms which will be used, among other things, to define the notion of
interference among rules. The idea is that terms which are not ordered may still have
a common upper bound. As we will see such terms can potentially interfere with each
other.

DEFINITION 2.5.1 (Compatible terms, 1.) Given GRS ierms M, and M; in
canonical form, M, and M, are said to be w-compatible, wrilten as M, 1, M,, iff
My such that My <, M3 and M2 <., M;.

For example, the term {#; = §; t; = ; t = G(1,%2} In £} is compatible with the
term {t; = F(0); t, = F(0); ¢t = G(#1,%2) In t} but not with the term {t; = F(0); ¢z =
H(O); t= G(tl,tz) In t}.

DEFINITION 2.5.2 (Interference) Given GRS rules iy and 12, 71 is said to interfere

with r; iff J= € BY(P(n1)) such that

a. if i # 72 then Cl(n)@z 1, Cl{r2);

b. if 1y = 15 and 71 is a single-rooted rule then Cl(1,)@z2 1. Cl{T;), where 2 is not the
root of P(r).

z1 = L(Y)

will interfere with itself because
zg=L(z)—z=0

For example, the rule r :

Cl(t)@=z; 1, Ci(1). Notice that the following two rules are non-interfering,

i =G(Y) ] = G(Y)
z2=F(z,) — 2=0 zt=D(z:) —z=1

It can be seen from this example that the preconditions of non-interfering rules are
not affected by a reduction. We also note in passing that multi-rooted rules are always
self-interfering, because they may cause an overlapping at the root.
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In the following we will write a GRS with non-interfering rules as GRSy.

THEOREM 2.5.3 Given a GRSy term M, if M - M, and M - M, then 3 M,
1 2
such that Mz —F M3 and Ml T‘+ Mg.
zZ3 2

COROLLARY 2.5.4 A GRSy, is confluent up to a-equivalence.

Consider the projection rules, z = {X) — z = X and z = J(X) — z = X and
the term M = {z = l(y); y = J(z) In z}, then M — M, = {z = I(z} In =z} and
M — M; = {z = J(z) in =}. Notice that if both M, and M, are not reduced to o, the

confluence property will be lost, as was observed in [KKSdV91). Barendregt’s graph
reduction system is not confluent precisely because of the absence of such a reduction.

2.6 A Graph Model for GRSs

We are interested in defining an equality on the set of terms such that the equality
is useful in analyzing the correctness of compiler optimizations. Thus, we have to
guarantee that if two terms M and N are equsal, then the equality is preserved by
putting them in the same context, i.e., M = N == YC[0O], C[M] = C[N]. This means
that the equality has to be a congruence with respect to the formation rules of terms.
Only then equal terms will be substitutable for each other, and, an optimization will
be considered correct if it preserves equality.

An example of an equivalence relation on terms is convertibility. However, convert-
ibility is too restrictive from a compiler’s point of view, as shown by the following
example:

M ={ =z = Cons(y, z}; N ={ z = Cons(y, z);
v =F(0); v = F(0);
z = Cons(y, Nil) z = Cons(w, Nif);
In z} w = F(0)
Inz}

where M and N are in normal forms but not convertible to each other. However, if the
internal representation of lists is ignored by an observer then both the terms represent
the same unfolded list, F(0) : F(Q) : Nil. If the GRS containing these terms has a non
left-linear rule, it may be possible to distinguish between such terms. Thus, such terms
cannot be equated without disallowing non left-linear rules.

We should also notice that N <, M, i.e., N has “less sharing” than M in the
above example. Does it mean that N is “less defined” than M in the sense that one
can compute less with ¥ than with M7 We would like to answer this question without
delving into heavy duty model theory. We have carefully said “compute” to emphasize
that we are interested in studying what a term represents from an operational point
of view. In particular, we are interested in observing the gradual syntactic building up
of the final term.

We introduce a function w to compute the stable part of a term, that is, the part of
the term that will not change as more reductions are performed on it. The w function
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captures what Lévy has called the direct approzimation of a A-calculus term [L78], and
Welch has called the instanianeous semantics of a term [WelT5]. Notice that as more
teductions are performed the stable part should get larger, that is, if M — M; —

M; ... then w{M) <, w(M;) <, w(M3z)--.. We remind the reader that <, is the
syntactic ordering on terms that captures both the sharing, and the fact that {} is less
than any other term.

We collect all the stable or observable information gathered by reducing M in a
set, called W*{M), and say that it represents the information conient of M. We can
now formulate our original question regarding the impact of sharing on a program’s
behavior as follows: if N' has less sharing than M then is W*(N) contained in W*(M)?
As we shall gee shortly, this is indeed the case in the absence of interfering rules.

It is also interesting to analyze if N is “less defined” than M implies that for all
context C[0], C[N] is “less defined” than C[M]. That is, is the equality induced by
W* a congruence? We will see that in the absence of interfering rules, the equality
is also a congruence. Thus, we can conclude that the collection of stable information
contained in GRS terms is indeed 2 model for GRSs without interfering rules.

2.6.1 Instant Semanties

The instant semantics of a GRS term M consists of computing its staeble part, where
by stable part we mean the part of M which will not change by further reductions.
The first intuitive solution that comes to mind is to replace all redexes in a term
by Q (since & redex sub-expression can become any expression and 0 is less than all
expressions). This solution has a problem as shown by the following example. Consider
the rules:

niz=FY,Y})—z=¢ n:z=Y)—2z=Y
and the following reduction:

M={t=Fti,tz}; 2 M={1t=Ft,t);
t = A(0); ta t = A(0)
tz = I(’h) II'I ‘}
Int}

The only redex in M is rooted at #,. Suppose we replace it by {2 to obtain the stable
term M; = { t = F(i1,12); 11 = A(0); t2 = Q2 Int}. However, since the root of M; is
a redex the stable information in M; is less than the stable information in M. This
is contzary to our intuition that the information should increase with reduction. The
problem is due to the presence of rule 3 which can introduce sharing. If we want to
compute the instant semantics of a term without analyzing the rhs of rules then we
have to assume that the 2 in M; can be replaced by the node with label A, and thus,
can make the node with label F 2 7y -redex. Therefore we should not treat node F in
M, as stable information. This example shows clearly that the first solution does not
work. However, it does work for recursive program schema (RPS)!

The problem that the above example illustrates is that, even though M is not a
redex it can become a redex when some tedexes under it are performed. This phenom-
ena is usually called upward ereation of redezes. Reduction of a term in the A-calculus
or TRSs can also result in the upward creation of redexes. However, upward cre-
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ation of redexes is not possible in RPSs. To cope with this problem in the A-calculus,
Wadsworth [Wad71) and Lévy [L78] have introduced the notion of the w-rule, which
states:

OM — Q

This simple w-rule reduces any term that can become a redex (by upward creation) to
). However, the presence of non lefi-linear rules makes the generation of w-rules for
TRSs and GRSs difficult. Therefore, instead of introducing w-rules, we introduce the
notion of a compatible redez or an w-redez. A compatible redex captures our intuition
about why a term should be rewritten to (1. It consists of analyzing a term to see if it
can become a redex either by replacing £ with some other term or by increasing the
sharing in the term.

DerFINITION 2.8.1 (Compatible Redex) A compatible redez in a GRS term M is
a pair (7, 2) such that:

a. 7 is a rule;
b. z € BY(M) and z is not bound to §2;
¢. Cl(1) 1w M@z and Cl(1) £, M@z.

z is called the root of the compatible redez.

Notice that because of condition (c), a compatible redex cannot be an ordinary redex.
For the example given at the beginning of this section, we have that Cl(r) £.
M; and Cl(m)} f. M3, thus, M, is a compatible redex and as such should be reduced
to 1.

DEFINITION 2.8.2 (w-reduction, — ) Given GRS terms M and N, M w-reduces

to N by doing the T-compatible redez at z (written as M — N) iff (r,2) #s a
4 w

compalible redez in M, and N =, M[z — Q).
A GRS term M is said to be in w-normal form if it does not contain any compatible
redezes.

PROPOSITION 2.6.3 —» i# confluent and strongly normalizing.
w

The stable part of a term M, i.e., w(M), will then be computed by first replacing all
distinct redexes occurring in M by  and then computing the w-normal form of the
term so obtained.

DEFINITION 2.8.4 Given a GRS term M, Mg is the term Mluy « 1] ---[u, « Q]
where uy - - - u, are all the distinct redezes occurring in M.

DEFINITION 2.8.5 (w-function) Given a GRS term M, w(M) is the w-normal form
Of Mn .

2.8.2 Meaning of a GRS term
We collect all observable information about GRS terms in a set called w-graphs.
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DEFINITION 2.8.8 (w.graphs: Set of observations) Given a GRS, the set of all
observations, called w-graphs, is defined as:

w-graphs = U{w(M) | ¥ GRS terms M}.

DEFINITION 2.8.7T (W*: The information content of a GRS term) Givena GRS
term M, W' (M) ={a | a € w-graphs,a <, w(M'),M —» M'}.

We have chosen to represent W* by a set as opposed to the least upper bound of the
set for technical reasons,

DEFINITION 2.8.8 (Cg: Information ordering) Given GRS terms M and N,
M Cg N if W*(M) C W*(N).

If we want W* {o be our interpreiation function W* will have to satisfy some prop-
erties, that is, the meaning will have to be preserved by reduction, and it will have to
be compositional. In other words:

Soundness : M—N —= M =g N
Congruence: M =g N == C[M]=¢C[N]

In order to show soundness we need to show some additional properties of the w-
fanction. In particular, we want to guarantee that the w-function is monotonic with
respect to <. From this it will follow that the w-function is monotonic with respect
to reduction.

THEOREM 2.8.9 (Soundness of =g) Given a confluent GRS and terms M and N,
if M —» N then M =g N.

2.6.3 Impact of Sharing on a Program Behavior

Before dealing with the question of congruence, let us digress and analyze the impact
of sharing on a program behavior, that is, M <, N =—= M Cg N 7 It turns out that
in the presence of interfering rules the above will not hold. Consider the following GRS
which has confluent but interfering rules:

21 = B(0) | 22 = C(0)
z=A(z1,23) —2=0
n: z=C(0) — z =C(0)
T : #=B(0) — z =C(0)

T

and the following terms:

M={t =A(,t); N={t=At,ta);
t; = B(0); t; = B(0)
ts = B(0) In#}
In fl}
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It is easy to see that W*(M) = {0,0}, while WH(N) = {Q,{z1 = Q; 2, =
A(zy1,21) In 23}}. Therefore, M <, N and M Zg N.

THEOREM 2.6.10 (Monotonicity of Cg with respect to <,,) Given GRSy terms
Mand N, if M <, N then M Cg N.

2.6.4 Congruence

We want to show that =g is a congruence, that is, if M =g N then VC[O], C[M] =¢
C[N]. What can prevent =g from being a congruence? In the definition of observable
behavior we may have discarded something important, which may have an effect on
the context enclosing the term. Suppose we have chosen to observe booleans only, that
is, we will distinguish between True and False, but not between 5 and 7. Thus, the
two program M = 5 and N = 7 will trivially exhibit the same behavior. However, by
putting them in the context { 2 = 0; p=< (#,5); y = Cond(p, True, False) In y} we
will observe True when running C[M] and False when running C[N]. It seems that we
cannot discard any information that can be used to build terms.

A way of assuring that =g is a congruence is to show that for any context c[oj,
the behavior of C[M] can be inferred from the observations about M , that is,

ve[ol, wH(CIM)) = | {w*(C[P]) | P € W* (M)}

In other words the context operation must be a continuous operation with respect to
the observations. The proof that

W (ClP) | P e w*(an)} ¢ we(clp))

follows automatically from the monotonicity of Cg with respect to <,. The other
direction requires some more machinery.

We need to show that each observation of C[M] can be obtained by plugging some
observation of M, instead of M itself, in the context C[0]. There are two basic steps
in the proof:

(i) Suppose C[M] —» N. Let F; be the set of redexes in M that must be reduced to
get to NV, and let F; be the set of all other redexes in M. The first step of the proof

consists of showing that each reduction can be reordered such that we first reduce
all the redexes in #,, that is, I, C[M) - C[M']. Let F5 be the set of redexes
1

in M’ that are descendants of redexes in F2. We need to show that the rest of the
reduction can be performed without reducing any redex in Fs. Notationally we will
say C[M'] :i—: N.

(i) Next we need to show that the w-function does not lose too much information. Let
M3 be the term obtained from M by setting all the redexes in F; to 2. We first

prove that if C[M] % N, then the same reduction can be carried out on C[M;].
Since W* contains terms in w-normal form, we also need to show that w-reductions
do not destroy the meaning of a term.

THEOREM 2.8.11 (Congruence of =g) Given GRSy terms M and N, if M =g N
then YC[O], C[M] =¢ C[N].
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In the presence of interfering rules =g is not guaranteed to be a congruence. As an
example consider the following rules:

n: z=B(Y) — z=B(Y)
nn: z2=AlY)— z=A(Y)
L1 =A(Y)

z=Flz1) —z=1

TS :

then A(0) =g B(0), however, F(A(0)) #£g F(B(0)).

2.7 Conclusion

The motivation for this work came from a desire to formalize the compilation process
of Id as a series of translations into simpler and simpler languages. To that end we
have intzoduced the Kid (Kernel id) language [AA91a] and the P-TAC (Parallel Three
Address Code) language [AA89]. We also provided the translation of Id into Kid and
of Kid into P-TAC [AA91b]. P-TAC can be seen as an example of GRS, while Kid
is more general due to the presence of A-abstraction. This approach has lead to the
formalization of compiler optimizations in terms of source-to-source transformations
on these intermediate langnages. Moreover, using the notion of information content
of a term we have given a criteria for the (partial) correctness of these compiler opti-
mizations [AA91a].

The results presented in this Chapter (notably theorems 2.6.10 and 2.6.11) can be
applied in & straightforward manner to show the partial correctness of those opti-
mizations that simply increase the sharing in a term. Examples of such optimizations
include the common subexpression ¢limination, and the lifting of free expressions and
loop invariants. We can also show the partial correctness of the cyclic Y-rule. In order
to prove fotal correctness we need to discard sharing from our observations at the
expenses of introducing more restrictions on the rules, as discussed in [Ari02)].

We would like to extend GRSs with A-abstraction and to provide a term model that
cover multi-rooted rules to express side-effect operations. This will provide a sound
mathematical basis for the Id language. It will also be interesting to investigate the
suitability of GRSs as an intermediate language for other classes of languages, such
as logic languages and imperative languages.

This work was done at the Laboratory for Compater Science at MIT, and at INRIA. Funding
for this work has been provided in part by the Advanced Research Projects Agency of the U.S.
Department of Defense under the Office of Naval Research contracts N00014-834-K-0099 (MIT) and
N0038-88-C-0163 (Harvard), and in part by ESPRIT contract SEMAGRAPH/BRA 3074 (INRIA).
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