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Abstract

The slogan “Attack of the Killer Micros” expresses the broadly held consensus that
future supercomputers will consist of thousands of computing nodes in a fast, regular
interconnection network, where each node is built using commodity microprocessors
and memory parts. With this in mind, we examine the question: what should to-
morrow’s commodity microprocessors look like? After analyzing the complementary
strengths and weaknesses of today’s microprocessors and today’s dataflow processors,
we synthesize a new node architecture that employs the best of both designs. The
new node architecture is called *T (pronounced “start”). The new architecture is
fully compatible with existing sequential and parallel codes, but can also efficiently
support fine grain parallelism such as that found in dataflow codes.

1 Introduction

Many of us are interested in the goal of general purpose computing that achieves very
high speeds by exploiting parallelism in a scalable, cost-effective way. There seems to be
widespread consensus that the architecture of such machines will be composed of a number
of nodes interconnected with a high speed, regular network, where each node is built with an
off-the-shelf microprocessor. Because such machines are built out of commodity parts, and
because the topology is scalable, it is felt that such a machine with hundreds or thousands of
nodes will be cheaper and faster than classical supercomputers, which are built with exotic
technology and are thus very expensive. Classical supercomputers are thus viewed as a breed
whose time has passed. This view has been eloquently summarized in the slogan “attack of
the killer micros”, by Eugene Brooks of Lawrence Livermore Laboratories [9].

In this paper, we focus on the architecture of each processor of such a massively parallel
machine. To date, the prevailing opinion seems to be that microprocessors have their own
evolutionary momentum (from CISC to RISC and, now, to multiple instruction issue), and
that a massively parallel machine will simply track this wave, using whatever micros are
currently available to populate the cells of its hive.



However, a massively parallel machine is in fact a hostile environment for today’s mi-
cros, arising largely because certain properties of the memory system in a massively parallel
machine are fundamentally different from those assumed during the evolution of these mi-
cros. In particular, most micros today assume that all memory is equally distant, and that
memory access time can be made effectively small by cacheing. Both these assumptions are
questionable in a massively parallel machine.

On the other hand, dataflow processors have been designed from the start by keeping in
mind the properties of the memory system in a parallel machine. However, past datafiow
processor designs have neglected single-thread performance, and hence must be classified as
exotic, not the kind of processor to be found in commodity workstations.

How, then, can we evolve a micro that is more hardy and resilient, and is more suited to
the modern environment, where it must live and flourish both in massively parallel machines
and in uniprocessor workstations? In this paper, we propose such an evolutionary step—
the *T processor architecture’. Based on the best genes of its von Neumann and dataflow
parents, *T is engineered for the brave new world of massive parallelism.

The rest of this paper is organized as follows. In Section 2, we analyze the economic and
technical environment under which the new micros must exist, and the strengths and weak-
nesses of prior microprocessors and dataflow architectures with respect to this environment.
In Section 3, we present the abstract architecture for *T', our proposed new processor archi-
tecture. In Section 4, we discuss the coding of SAXPY on this machine, and briefly discuss
how it supports various popular parallel programming models. In Section 3, we describe a
realization of this abstract model, which may be loosely described as a conventional micro-
processor coupled with a “synchronization coprocessor”. Finally, in Section 6, we compare
it to other innovative contemporary processor designs, and outline our plans to build a *T
machine.

2 Lessons from the past

2.1 The brave new world
A killer micro must be an excellent single-thread processor

To be cost-effective, the micros used in massively parallel machines should be commodity
parts, i.e., they should be the same micros as those used in workstations and personal
computers. Market forces are such that a lot more design effort can be expended on a stock
microprocessor than on a processor that is sold only in small quantities. In addition, thereis a
question of software cost. Parallel programs are often evolved from sequential programs, and
will continue to use components that were developed for single-thread uniprocessors (such
as transcendental function libraries, Unix, efc.). This does not mean that we are restricted

1The name *T is pronounced “start”, after the principal “dataflow” instruction in the machine. The
name can also be read as an acronym for “multi- (*) Threaded”, a principal feature of the machine. One
can also imagine the star to be representative of the meteorite shower that ended the dinosaur age.



to using good, conventional microprocessors in any parallel machine that we build. All it
means is that any new processor that we design for multiprocessors must also stand on its
own as a cheap and viable uniprocessor.

A killer micro must exploit parallel slackness

Parallel programs contain synchronization events. It is well known that processor utilization
suffers if it busy-waits; to avoid this, some form of multiplexing amongst threads is necessary?.
This is true even in uniprocessors.

In order to build parallel machines that are scalable both physically and economically,
we must face the fact that inter-node latency in the machine will grow with machine size,
at least by a factor of log(N), where N is the number of nodes in the machine. Thus,
access to a non-local datum in a parallel machine may take tens to hundreds of cycles, or
more. If we are to maintain effective utilization of the machine, a processor must perform
some other useful work instead of idling during such a remote access. This requires that the
processor be multiplexed amongst many threads, and that remote accesses must be performed
as split transactions, i.e., a request and its response should be treated as two separate
communication events across the machine. If we follow this argument a step further, we see
that a communication entering a node will arrive at some relatively unpredictable time, and
that we need some means of identifying the thread that is waiting for this communication.
This is, in fact, a synchronization event,

Thus, the following picture emerges. In a parallel machine, the way to deal with long
inter-node latencies is exactly the way to deal with synchronization. A program must be
compiled with sufficient parallel slackness® (or “excess parallelism”) so that every processor
has a pool of threads instead of a single thread, and some threads are always likely to be
ready to run. Each processor must be able to multiplex itself efficiently amongst these
threads. All communications should be split transactions, in which (a) an issuing processor
does not block to await a response, and (b) a receiving processor can efficiently identify and
enable the thread that awaits an incoming communication. For a more thorough explication
of this argument, please refer to [6].

2.2 von Neumann microprocessors

Modern microprocessors are excellent single-thread processors, but they are not designed to
exploit parallel slackness efficiently.

First, the cost of multiplexing amongst threads is high because of the enormous processor
state that is associated with the currently executing thread. This state manifests itself in
the register set, instruction and data caches, all of which may have to be reloaded with the
new thread’s context.

?We will use the term thread uniformly; other authors also use the terms task and process.
3The term is apparently due to Valiant [29].



Second, for a parallel environment, there is no efficient mechanism for naming, commu-
nicating and invoking continuations for split transactions to access remote locations. These
can of course be simulated in soffware, but the frequency of these events suggests that
architectural support can help significantly.

Third, many first-generation parallel machines, such as the Cosmic Cube [26], the Inmos
Transputer and the Warp [2], had very poor interfaces to the interconnection network. There
was a large software cost in handling incoming messages. This was further aggravated by
the fact that messages trying to cross a node had to go through the node. Happily, many
of the successors of these machines have solved this problem somewhat by devoting separate
resources to message handling.

The net result is a high communication and synchronization cost. Programs can be
written to use these machines effectively provided they minimize the occurrence of commu-
nication and synchronization events, and there are many success stories that do so. However,
there is a high software cost associated with trying to structure programs to fit this model,
and it is still a far cry from our goal of truly general purpose computing.

2.3 Dataflow architectures

Dataflow architectures have evolved substantially over the years (see {5, 4, 3, 13, 16, 18]).
We will focus our comments on Monsoon [22, 23, 10] as the most recent representative of
that evolution.

Dataflow architectures are excellent at exploiting parallel slackness. Indeed, this has
always been a major underlying rationale for dataflow architectures. Parallel slackness is
achieved by partitioning a program into extremely fine grain threads; in the pure dataflow
model, each instruction is a separate thread. A thread descriptor is implemented as a token,
which consists of three parts (Fp,1p,v), where:

® FP is a frame pointer, which points at a frame relative to which the instruction will be
executed;

e IP is an instruction pointer, which points at code, and

® Vis a a data value.

The pool of threads in a processor is manifest as a foken queue. On each cycle, a token
is extracted from the token queue, and the instruction that it refers to is executed by the
processor relative to the frame that it points to. Every instruction explicitly names its
successor instruction(s) (upto two successors). As a result of this execution, zero, one, or
two successor tokens are produced, which are placed back in the token queue. Thus, a
dataflow processor like Monsoon can multiplex between threads on every cycle.

Split transactions are performed thus: when a processor wishes to read a remote location
4, it executes a feotch instruction. This causes a “read” token to be constructed and injected
into the network. Suppose the fetch instruction names label L as its successor instruction.
The corresponding read token contains the following information:

(READ, &, FP, L)



Once the read token is sent out, the processor continues to execute other tokens in its token
queue, When the read token reaches the remote memory, the following token is sent back:

(Fp, L, v)

This token is placed in the token queue to be executed just like any other token.

In addition, Monsoon also has an efficient mechanism to synchronize two threads. Two
threads that must join will arrive at a common instruction that names a frame location which
contains “presence bits”, which can be regarded as a synchronization counter. On arrival,
each thread causes the counter to decrement. When the first thread arrives, the counter
does not reach its terminal value; the instruction is aborted and the processor move on to
execute another token from the token queue. When the second thread arrives, the counter
reaches its terminal value and the instruction is executed.

Thus, dataflow architectures (and Monsoon in particular) provide good support for ex-
ploiting parallel slackness— fine grain threads, efficient multiplexing, cheap synchronization,
and support for split transactions to mask inter-node latency.

However, present dataflow archilectures do not have good single-thread performance (for
a more thorough discussion of this point, see [24]). The fundamental problem is that present
dataflow architectures do not provide adequate control over the scheduling of threads. In the
pure dataflow model, successive tokens executed by the processor may refer to arbitrarily
different frames and instructions. The consequence is that an instruction can transmit
values to its successors only through (slow) memory— it cannot exploit any special high
speed storage such as registers and caches. In conventional uniprocessors, caches allow
fast transmission of values because the successor instruction is executed immediately, while
a previously stored value is still in the cache. This locality through successor-scheduling
is absent in pure dataflow models. Pure dataflow models allow exactly one value to be
transmitted without going to memory— the value on the token.

Monsoon improves on this situation. In Monsoon, an instruction can annotate one of its
successors so that it is executed direcily, i.e., instead of placing the token back into the token
queue, it is recirculated directly into the processor pipeline. Thus, in a chain of such direct
successors, instructions can communicate values down the thread via high speed registers—
no other thread can intervene to disturb the registers. However, Monsoon still has some
engineering limitations that limit single-thread performance, namely, (a) very few registers
(only three) and (b) the processor pipeline is eight cycles long, so that each instruction in a
chain takes eight cycles.*

In Monsoon, control over scheduling stops at this point. A chain of direct successors is
broken when it reaches an instruction that is a split transaction instruction (like a 1load),
or when it reaches an instruction that executes a join that fails. At this point, there is no
further control on the next thread to be executed. If we had such control, we might, for

*This is not to say that a single processor Monsoon will perform poorly. The eight-deep pipeline is also
eight-way interleaved (like the HEP), so that code that is compiled to use all eight interleaves will utilize
the machine well. The point here is that a single-threaded program will not perform competitively. Again,
please refer to [24] for more discussion of this point.



example, choose another thread from the same frame, to maintain locality with respect to
the current frame.

A final architectural point: in Monsoon, synchronization memory is disjoint from data
memory, but they have to be allocated in tandem (every frame location has a data cell
and presence bits, so a single offset names both data and synchronization bits). Thus,
the compiler does not have complete flexibility in partitioning the space in a frame into
synchronization and data areas.

2.3.1 Lessons from the past: the bottom line

In *T, we aim to provide the best of both worlds, and go further. We will provide the fast
single-thread execution of conventional micros, coupled with the facilities to exploit parallel
slackness from dataflow architectures. In addition, we will provide tight control over the
scheduling of threads.

3 *T: the abstract model

In this section, we describe the *T abstract machine, i.e., the model of *T used by compil-
ers (or assembly-level programmers).® The *T abstract processor architecture is a proper
superset of a conventional RISC processor, with a few extra instructions that are precisely
the “dataflow” instructions that address the requirements of a parallel machine. We begin,
in Section 3.1, by describing our view of frames as the basis for locality and synchronization.
In Section 3.2 we describe the architecture of the nodes of the parallel machine. In the
next section (Section 4), we describe the code for SAXPY, and briefly describe how various
parallel programming models (shared memory, SPMD/SIMD, etc.) can be easily expressed
in our model.

3.1 Frames as the basis for locality

In most languages, when a procedure is invoked,

e a frame (also known as an activation record) must be allocated for it;
e arguments (if any) must be deposited in its frame, and
o execution of its code must be initiated.

When it terminates, it passes results to the frame of its continuation, and initiates compu-
tation there (usually, this is its caller).

In a parallel system, a procedure may invoke several other code blocks in parallel. Further,
iterations of a loop may also be invoked in parallel and be distributed across the nodes of
the machine. Where previously a loop ran in a single frame, we may now have to allocate
separate frames for each iteration or group of iterations. In general, instead of a stack of
frames, we now have a tree of frames.

SPrevious versions of this abstract machine were presented in {21] and [20].
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Figure 1 depicts the runtime structures of a typical parallel program. On the left, we
have the tree of frames. On the right, we have a heap containing global data structures,
which we call objects. Of course, frames may refer to global data structures. In addition,
for object-based languages (such as Lisp, Id and other functional languages), objects and
frames may also refer to each other.

Frames Heap (glebal objects)

111 L L]

[Tl

Figure 1: Runtime structures in a parallel program.

Because frames may now correspond both to procedure invocations and to loop iterations,
we prefer to use the term code block for the segment of code that is the unrit of invocation.

We are going to use frames as the basis for locality. Frames may be distributed among
the nodes of the parallel machine, but each frame must reside entirely within a single node.
There is no such restriction on global data structures— a single object may span several
nodes of the machine. For each frame in a node, the corresponding code block must also be
present in that node. This means that if a code block is invoked in several nodes, copies of
that code block must exist in all those nodes. A simple way to achieve this is to copy all code
into all nodes, but code blocks could also be loaded dynamically on demand. The key point
is that a particular invocation of a code block can always access its frame locations using
local memory operations. Accessing locations in other frames or in global objects, however,
may involve communication. This will be reflected in the instruction set of the processor in
each node.

3.2 The *T node architecture

The *T abstract model for a node in a parallel machine is shown in Figure 2. Although the
memory of the machine is physically distributed amongst all the nodes, we assume a single
global address space, i.e., the local memory in a node implements a piece of a single address
space.

The Data Processor is a superset of a conventional RISC processor, with a conventional
repertoire of register-to-register instructions, and ability to manipulate local memory using
conventional load and store instructions. Its program counter is called DIP (“Data processor
Instruction Pointer”). One of its registers, called DFP, is assumed to contain a pointer to the
“current frame” (which is always in its local memory). Being a conventional RISC processor,
the Data Processor is optimized to run long, sequential threads efficiently. It obtains the
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Figure 2: A node in the *T abstract machine

starting points of these threads from the Start Processor. Each thread that it obtains is
run to completion, i.e., there is no concept of a thread “suspending” in the Data Processor.
On completion of a thread, if there is no new thread available from the Start Processor, the
Data Processor simply waits until a thread becomes available. Clearly, for good utilization,
this situation should be avoided.

In addition to its conventional RISC instructions, the Data Processor can execute a few
additional “dataflow instructions” whose effect is to send messages into the network. These
are non-blocking sends, i.e., the Data Processor continues executing after sending a message.
The message can cause threads to be scheduled on the other nodes or on the same node, and
a later response may deposit values in the sender’s frame.

We will look at messages in more detail shortly, but for the moment it is enough to know
that each message has the form:

msg_op argl, arg?2, ...

irgi is always a global address that identifies a unique destination node in the parallel
machine. The message is automatically routed there. Of course, messages to the current
node are short-circuited back directly. Broadly speaking, msg_ops fall into two categories:
“start” messages and “remote memory” messages. When a message arrives at a node, it is
passed either to the Start Processor or to the RMem Processor based on the category of its
masg-op.



The Start Processor has a program counter called SIP (“Start processor Instruction
Pointer”), two special registers SFP and sV and, perhaps, other general purpose registers.
The Start Processor is triggered by the arrival of a start message (it simply waits, if there is
no start message available). When it picks up a start message, its sIp, SFP and sV registers
are loaded with values from the message, after which it begins executing instructions from
the address in sIP. It can read and write local memory, and it can post new (Fp,Lp) pairs to
be picked up by the Data Processor.

The RMem Processor processes requests to read and write this node’s memory, and
responds with start messages.

Because both the Start Processor and the Data Processor may execute instructions, we
will distinguish labels for the two processors by the subscripts § and D, respectively (e.g.,

Ls, Lp, Ms, )

We refer to the components within the dashed lines in Figure 2 collectively as a “Synchro-

nization Processor”. This is precisely our dataflow complement to a conventional uniproces-
sor (outside the dashed lines).

3.2.1 Threads

The instruction set of the Data Processor is a proper superset of a conventional RISC in-
struction set, so we will assume the reader is familiar with conventional arithmetic-logic and
comparison instructions, unconditional and conditional jumps, etc. We will focus here only
on the novel, dataflow instructions that have to do with threads and synchronization. While
reading the descriptions below, please refer to Figure 3 for an overview of the thread-related
instructions and messages.

Data Processor

Start Processor
RMem Proc¢essor

Local Memory

LI}

msg_start

=W wn g

]

start

R s ]
R s D join

store]< next
post )

next_msg

start

I M ]

msqg_start [47 M ]

Figure 3: Overview of instructions and messages related to threads in three nodes.




Forking a new thread

A common situation where we wish to start a new thread is when one code block F calls
another code block G. For example, we may wish to transport an argument from F’s frame
to G’s frame and to initiate a thread in G that will compute with it. Similarly, we may
wish to transport a result back from G’s frame to F’s frame and to initiate a thread in F to
compute with it. In general, these frames may be on different nodes, so we need an explicit
communication to perform these actions. For this, we use a start instruction, which has
three register arguments:

Data Processor Instruction: start zF,rI,rv
Semantics: Let PP = Register[r¥]
Let Ls = Register[rI]
Let v = Register[xV]
Send message: msg_start FP,Lg,V

Note that start is effectively a fork, since the Data Processor continues to execute at the
next instruction after it has initiated the message send. Note also that this is only the first
half of a one-way communication, i.e., the start instruction only emits a msg_staxt message.
In other words, start is a non-blocking send. The instruction pointer Lg on the start message
is a label for a Start Processor, not Data Processor.

Readers familiar with dataflow literature will recognize that the contents of a msg_start
message correspond exactly to a classical dataflow “token”— Fp is the “context”, Ly is the
“statement” and, of course, v is the value.

(Please see Appendix A for a description of the fork instruction, which is a special case
of the start instruction in which the destination frame is the same as the current frame and
no data value is transmitted.)

At this point, it is worth making some observations that contrast the start instruction
with other models of forking threads.

¢ The start instruction does not involve any resource allocation. In many other fork
models, a fork involves the dynamic allocation of a new stack. In our model, dynamic
resource allocation is separated out into a completely orthogonal issue, and the start
instruction is very cheap— it just sends a simple message.

® In many fork models, each fork is a sequential thread associated with a stack with
possibly multiple frames. In our model, every frame can have muitiple threads active
in it. In fact, there is no limit to the number of threads active within a frame.

Ending a Thread

The Data Processor can terminate a thread and begin executing a new one by executing a
next instruction:
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Data Processor Instruction: next

Semantics: A new frame pointer FP and a new instruction
pointer Lp are loaded from the Start Processor
into the Data Processor into its DFP and
DIP registers.

The Data Processor thus continues fetching and executing instructions from Lp.

The Start Processor, and Synchronization

The Start Processor may be thought of as a transaction processor: it dequeues a start mes-
sage, does some processing, and is then ready to dequeue the next start message. Incoming
messages have the form:

msg start FP,Ls,V

In response to such a message, FP, Lg, and ¥ are loaded into the Start Processor’s srp, s1p
and sv registers, respectively, after which it begins executing instructions at Lg. The Start
Processor may, of course, have a general instruction set, but we focus here on the instructions
that it needs to interact harmoniously with the Data Processor.

The following instruction allows the Start Processor to store the value on the incoming
start message into the destination frame at offset x:

Start Processor Instruction: store SFP[X],SV
Semantics: Let 4 = Register[SFP] + X
Memoxry[A] := Regiater[sSV]

The following instruction allows the Start Processor to cause the Data Processor to begin
executing at Lp with respect to frame Fp:

Start Processor Instruction: post xF,rI
Semantics: Let FP = Register[zF]
Let Lp = Register[rI]
Post (FP,Lp) to be picked up by the Data Processor

The following instruction allows the Start Processor to start processing the next message:

Start Processor Instruction: next msg
Semantics: Reload s¥P, s1P and sv from the next
incoming msg.start message

Here is a typical code sequence that executes as a result of a start message that loads label
Ls into SIP:

Lg:
store SFP[X],sV -~ store incoming value inio frame offset X
post SFP, Lp -— enable thread Lp with this frame in Data Processor
next_msg —— done; handle next message

Synchronization is performed in the Start Processor using synchronization counters in
the frames. For example, suppose node N1 sends two arguments to a frame in node N2,
using the following two messages:

11



msg _start FPx,Ls,V1

mag _start FPx,Mg,V2
On arrival of each message, the corresponding values are stored in the frame at offsets 11 and
12, respectively. Then, a counter at offset ¢ in the frame is incremented and compared with
the constant 2 (we assume the counter was previously initialized to 0). The two messages
may be processed in any order; the first message will find the counter equal to 1, and will go
to process the next message. The second message will find the counter equal {0 2 and will
post (SFP,Lp) to the Data Processor. Here is the code:

Lg:
store SFP{X1],5Y¥ —-— slore incoming value into frame offset 11
load RO,SFPLC] —-- load counter from frame offset C
incr RO ~- increment it
store RO,SFP[C] —— siore it back
cmp RO,2,RB —-= compare counter value to 2
jeq RB,Ng —— if equal, goto Ng
next. msg -~ else die; handle nezt message
Mg:
store SFP{X2],V —-— store incoming value into frame offset X2
load RO,SFP[C] -
incr RO -
store RO,SFPIC] -- ... same as above ...
cmp RO,2,RB -
jeq RB,Ng -—
next msg -
Ng:
post SFP,Lp —-— When both messages handled, enable Lp in Data Processor
nexst msg --  with this frame

Since we want to allow this kind of synchronization to happen very frequently, we abbreviate
the load-increment-store-compare-and-conditionally-post sequence into a single instruction:

Start Processor Insgtruction: join zC,ic,rI
Semantics: Let x¢ = Register[xCl
Let Lp = Register[rI]
Memoxy [XC] := Memory[Xcl] + 1
If Memoxry[xc] = tc then post (SFP,Lp)

Readers familiar with dataflow literature will recognize that the input queue of start
messages for the Start Processor is precisely the “token queue” of dataflow architectures.

3.2.2 Global data accesses

A Data Processor in one node can access data in a remote node using using remote load and
store instructions which move the data to and from the current frame. Such instructions are
implemented using split transactions. Once data has been brought into the current frame, it
can be manipulated by the Data Processor using conventional instructions. While reading
the descriptions below, please refer to Figure 4 for an overview of instructions and messages
related to global data accesses.

12



D = Data Processor
3 = Start Processor
msg start R = RMem Processor
- M = Local Memory
R S D rY/ s D
store rload/
1 rstore msg rload
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Figure 4: Overview of instructions and messages when one node accesses a global memory
location situated in another node.

A remote load instruction sends a message:

Data Processor Instruction: rload ra, rI
Semantics: Let A = Register[zi]
Let Ly = Register[rI}
Let FP = Registex [DFP]
Send message: msg rload 4,FP,Lg

The destination node is implicit in the global address a, which is used to route the message.
When the message arrives at the remote node, it is handled by the RMem Processor of that
node:

RMem Message: msg.rload A,FP,Lg
Semantics: Let v = Memory[al
Send message: msg_start FP,Lg,V

We have already seen that the msgstart message is routed to the node specified by the
address FP, and thus it returns to the node that issued the rload. There, the code at Lg will
store the value v into the frame Fp, and typically a thread (Fp,Lp) in the Data Processor will
be enabled to compute with it.

Note that the rload instruction is also a fork— it simply initiates the load and continues
executing at the next instruction. Thus, it is possible to initiate many remote loads before
receiving any reply. Further, the msg start messages may return in any order— they carry
enough information on them to know how to process them as they arrive.

Remote stores are similar. The remote store instruction initiates a store message:

Data Processor Instruction: rstore rd,rV,rI
Semantics: Let & = Register[ri]
Let v = Registex[rV]
Let Ls = Register[rI]
Let FP = Register [DFP]
Send message: rstore 1,V,FP,Lg

The message is routed to the node identified by the global address 4. There, it is handled by
the RMem Processor:

13



RMem Message: rstore A,V ,FP,Lgs
Semantics: Memory[al := V
Send message: msg_start FP,Lg,foo

Again, note that the rstore instruction is also a fork— it simply initiates the rstore and
continues executing at the next instruction. Later, an acknowledgement comes back to
(FP,Ls) (foo is an arbitrary value). The acknowledgement may be used to ensure serial
consistency— the code at (¥P,Ls) executes under a guarantee that the store has completed.

Global data accesses with data level synchronization

Rload’s and rstore’s are just the basic two remote memory operations. It is desirable to
extend the repertoire beyond this in order to implement data level synchronization. The
extensions are described in more detail in Appendix A, but we give a brief description here.

With each global location that is used with data level synchronization, we associate some
extra bits called “presence bits”. Two of the states encoded in these bits are called “full”

and “empty”.

The rIload and rIstore instructions in the Data Processor have the same instruction
formats as rload and rstore, respectively, and they generate similar remote memory messages
with msg.rIload and msgrIstore opcodes. A msg rIload arriving at a full location behaves just
like a msg_rload. Arriving at an empty location, it is deferred (d.e., queued) at that location.
The response is sent later, when a corresponding msg Istore arrives, which also deposits
a value in the location and marks it full. These operations allow implementation of “I-
structure” operations (see [8]) which are useful to implement producer-consumer parallelism.

The rtake and rput instructions in the Data Processor have the same instruction formats
as rload and rstore, respectively, and they generate similar remote memory messages with
msg rtake and msg.rput opcodes. A mag rtake arriving at a full location returns the value just
like an msg.rload, but it also marks the location empty. Arriving at an empty location, it is
deferred just like a msg_iload. A msg rput arriving at a location with no deferred msg_rtake’s
behaves just like a msg rIstore, marking the location full. If there are deferred readers, one
reader is dequeued and the value is sent to it. These operations allow implementation of
atomic updates on remote locations (such as shared counters, shared queues, etc.).

Readers familiar with dataflow literature will recognize that if we omit the Start Processor
and Data Processor in a node, leaving only the RMem Processor, the local memory and the
interface to the network, the remaining node is precisely an “I-structure Memory” module.

3.2.3 Inter-thread and inter-frame scheduling control for better cacheing

So far, we have taken a simplistic view of the post instruction in the Start Processor, which
posts a new (FP,Lp) pair to be picked up by the Data Processor when it executes a next
instruction. Figure 2 suggests that the interface is simply a FIFO queue. By being more
sophisticated about this queue, we can improve locality in the Data Processor, thereby
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improving the behavior of any cache that resides between the Data Processor and the local
memory.

The Start Processor can sort the (¥P,Lp) pairs according to Fp. In other words, for each
frame in the current node, it maintains the collection of IPs for that frame. There are
various ways to implement this— as a separate table mapping FPs to collections of IPs;
as a list of IPs hanging off each frame, or directly as an array within each frame. The
exact representation is unimportant, provided the Start Processor can access it. In fact, the
responsibility for managing these structures may be shared between the Start and the Data
Processors.

Now, the Start Processor can post (FP,Lp) threads to the Data Processor according to
a priority scheduling policy. For example, it can give priority to threads that belong to the
Data Processor’s current frame. This is, in fact, exactly the scheduling policy advocated by
Nikhil in his P-RISC compiler [20] and by Culler in his Threaded Abstract Machine [11].
The current frame is thus treated as a “hot frame” where activity is currently focused. To
implement this, the Start Processor needs to know what is the current contents of DFP in the
Data Processor. This is quite easy to implement.

A generalization of this principle of hot frames is to maintain a sef of hot frames rather
than a single hot frame. One can imagine a small “registry” of hot frames (with, say, 16
entries), with threads from this set given priority. Registry of frames into this hot set can be
performed either automatically or under explicit software control. In Section 5, we describe
one proposal for such a frame registry.

4 An example: SAXPY

In this section, we demonstrate programming of *T by presenting hand-compiled code for
SAXPY. We will address a number of issues, such as the use of split transactions to mask
long latencies, the use of registers, etc. Finally, in Section 4.2, we show how *T can easily
support various popular parallel programming models such as shared memory, SPMD/SIMD,
object-oriented programming, ete.

4.1 *T code for SAXPY

SAXPY is the inner loop of the Linpack benchmark. Here is the SAXPY inner loop:

for i = 1 to ¥ do
TLil = a * X[i] + Y([i]

We assume that the current frame contains the following data, with symbolic names for the
frame slots shown at left:

IP | poinier to X[1]
YP | pointer lo Y[1]

A | loop constant &
YLim | pointer to Y[N]
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Uniprocessor code

*T uniprocessor code for the SAXPY loop is shown below. We use names beginning with
“r” as symbolic names for general purpose registers.

load DFP[XP], rXP ~— load ptrto X

load DFP[YP], xYP —— loadpirto Y

load DFP[A], rk —— load loop constant: a

load DFP[YLim], rYLim —- load loop constant: Y pointer limit
LOOP:

cmp rYLim,rYP,rB -- compare pir lo Y with limit

jgt B, OUT -- jump oul of loop if grealer

load =xXP, rII -- load X[i] into rXI (L1)

load rYP, rYI —— load Y[i]l into rYI (L2)

add 1,vXP,2XP -— increment pir to X

mult xi,rXI,xi -— a*X[i]

add r1,rYI,r2 — a%X[i] + Y[i]

store rYP, r2 -- store into Y[il {$1)

add 1,rYP,rYP -- tncrement pir to Y

jump LOOP

0UT:
... loop sequel ...

This code runs entirely in the Data Processor; in a uniprocessor, the Start Processor and
the RMem processor are ignored completely. (If N > 1 we could improve it by moving
the conditional jump to the bottom of the loop so that there would only be one jump per
iteration.)

Let us consider what happens when memory latency increases dramatically, as in a mul-
tiprocessor. Each of the two loads L1 and L2 would be directly affected® Normally, the
processor would stall at each of these instructions and performance would degrade. We
might think of alleviating this problem using some kind of cacheing to decrease memory
latency; however, the construction of coherent caches across the distributed memory of a
large parallel machine is still an open problem.

Using rload’s to mask latency

Some modern processors use “delayed loads” to accommodate memory latency. Executing
a delayed load can be viewed as forking off a memory request and continuing at the next
instruction, followed by a join a few instructions downstream. Thus, memory latency is
masked by some local parallelism.

The rload mechanism in *T can be viewed as a generalization of this idea. We will issue
rload’s to initiate the movement of x[i] and Y[il into the local frame, and we will free up the
processor to do other work. Each response arrives at the Start Processor, deposits the value
into the frame, and tries to join with the other response at frame location c¢1. When the

8The store Sf would also be affected, but we focus on the loads because we assume that we do not have
to wait until the store has completed before proceeding to the next instruction.
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join succeeds, the Start Processor enables the thread in the Data Processor that computes
with these data, executes an rstore and continues to the next iteration.

When the loop completes, it gives up the Data Processor. Meanwhile, the rstore acknowl-
edgments all arrive at the Start Processor and join at frame location ¢2. The continuation
of this join is the loop sequel. Here is the augmented frame layout:

XP | pointer to X[1]
YP | pointer to Y[1]
A [ loop constent A
TLim | pointer to Y[N]
XI | copy of XLI]
YI | copy of Y[I]
c1 | join counter for rloads
c2 | join counier for rstores

The code for this new version is shown in Figure 5. The Data Processor code is shown
at left, and the Start Processor code is shown at right. We have drawn boxes to assist
the reader in recognizing the structure of the code, and shown arrows corresponding to
interactions between the Data Processor and Start Processor. For brevity, we have not
shown arrows for jumps and conditional jumps in either processor. Note that join counters
c1 and <2 are initialized by the Data Processor before the loop, and that o1 is reset to zero
by the Data Processor at ra.

An unpleasant consequence of our new organization is that the Data Processor performs
more loads and stores on the current frame than in the uniprocessor case. The reason is that
since we relinquish the Data Processor at the next instruction after the rioad’s, the registers
may have changed by the time we get the Data Processor back at label La. Thus, we have to
repeatedly reload the the x and Y pointers and the loop constants & and YLim, and repeatedly
store the incremented X and ¥ pointers back. Further, where previously data moved directly
from x[i] and Y[i] into registers rXI and r¥1, they now move first to xI and Y1 in the frame,
from where they have to be explicitly loaded into registers.

Avoilding the extra load’s and store’s

The above code assumed the worst— that the rload latency is so long that the Data Processor
must be relinquished to another thread. Instead, the Data Processor can peek at the join
counter c1 and choose to continue if both the rload responses have arrived. If successful,
registers do not have to be saved and restored from the frame. The modified code is shown
in Figure 6, with the register save and restore code shown in dashed boxes.

Here, as in our uniprocessor version, we preload the I pointer, ¥ pointer, 4 and YLinm into
registers before the loop. As in the second version, we also initialize the join counters ¢1 and
o2 before the loop. Inside the loop, after issuing the two rload’s, we peek at the join counter
1. If it is equal to 2, we jump directly to L2d. If not, we save the x and ¥ pointers in their
frame locations, and start L3s in the Start Processor.
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store 0, DFP[cl]

store O, DFP[c2]

load DFP{YP], rYP
LOQP ;

load DFP[YLim], rY¥Lim

cmp  rYLim, rYP, rB

jgt rB, DONE

locad DFP[XP], rXP

Lls;
store SFP[XI], 5V
Jjump L3s

rload rXP, Lls
rload r¥YpP, L2s

add 1, r¥P, rXp
store DFP[XP], rXP
next

L2s:

jump L3s

Ld:
store 0, DFP[cl]
load DFPI[A], rA
load DFP[XI], rXI
load DFP[YI], rYI
load DFP[YP], rYP
mult rA, rXI, rl
add rl, rYI, r2
rstore rYP, r2, Lés _]
add 1, rYpP, rYPp
store DFP[YP], rY¥YP

- jump LOOP

L3s:
join ¢1,2,1Ld

next_msyg \

Lis:
join c2,N,0UT
next msg ‘\\

_I DONE &
next

QUT:
.. loop sequel

Figure 5: *T code for SAXPY, using rload’s to mask latency
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store 0, DFP[cl]
store 0, DFP[c2]
locad DFP{X¥P], rXp
load DFP{YP], rYp

load DFP[A], ra

load DFP[YLim], r¥Lim Lls: —
LOOP : store SFP[XI], sV

cmp rYLim, rYP, rB jump L3s

jgt rB, DONE
rload rXP, L1S mu— o™
rioad rYP, L2s

load DFP[YLim], rYLim:

au-------u-----: PEISEARZAsyeUNE AN AN
.

add 1, rXP, rXp [ L2s: __
store SFP{YI], SV
load DFP[cl], rcl jump L3s
cmp rl,2,rB
jeq rB, L2d
HEH . 3
B R T T — s
: store DFP[YP], rYP 3 1,3,L1d
; store DFP[XP], rxe /% 32}1(2 A
: start SFP,L3s,0 : = T
L. ; “/
puw [ELITTTY]
§L1d: -
H load DFP[XP], rXp E
E lcad DFP[YP], rYP H
H lcad DFP[A], rh H
:
1

L2d:

store DFP[cl], O
load DFP[XI], rXI
lead DFP[YT], rYI
mult rdA, rXl, rl
add rl, r¥I, r2
rstore r¥YP, r2, Lis J
add 1, rYP, rYP
jump LOOP Lis:

join ¢2,N,00T
next msg

... loop sequel ... -

Figure 6: *T code for SAXPY, using rload’s to mask latency, but improved to avoid
relinquishing the Data Processor when possible.
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The two rload responses return to Lis and L2s, respectively, in the Start Processor. There
they are saved in frame locations XI and 71, respectively, and execution continues at Lss. If
the two responses arrive quickly, they both die at the join, and the Data Processor will
successfully see a value of 2 for c1. Qtherwise, the join is executed thrice, and this enables
Lid in the Data Processor.

In the Data Processor, the code at Lid is executed only if the Data Processor had been
relinquished. Thus, it reloads the x and Y pointers, and the loop constants 4 and XLim into
registers, and falls through to L2d. The code at L2d is assured that its registers are ok. Thus,
it does not have to reload the pointers or loop constants. Similarly, after incrementing the
I pointer zXP, it does not have to save it to the frame.

Note that if control of the Data Processor has to be relinquished (because the rloads took
too long), this version of the program will do worse than our original version. In practice,
it may be necessary to fill the post-ricad slots with more instructions to give them time to
complete.

Further optimization

So far, we have concentrated on trying to improve a single iteration of the loop. However,
there are still moments when the processor to memory pipeline lies idle, e.g., after the two
loads have completed. If this is a problem, one can play a variety of other tricks to alleviate
it.

The loop may be unrolled so that we perform the i’th and the ¢ + 1’th computation in a
single iteration, and increment i by two on each iteration. In this case, we could issue four
rload’s in parallel instead of two, and two rstore’s in parallel instead of one. Of course, the
loop may be unrolled by a larger factor than 2.

The loop may be split into two parallel loops, with each loop computing on half of the
arrays, using the following outline:

start DFP,Lis Lsl: post SFP,L2d
next _mag
Lid:
... loop 1 ...
next
Lad:
... loop 2 ...
hext
0oUT:

+++ loop sequel ..

The start instruction has the ultimate effect of forking Lid and L2d in parallel. In this way,
it is possible to compute in loop 1 while loop 2 is waiting for its rload’s to complete, and
vice versa, thus improving overall processor utilization.
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4.2 Compiling for *T

The *T abstract machine model is suitable as a target for several programming models. We
discuss this briefly here, with a more detailed treatment to follow in a subsequent paper.

First, we repeat some salient points about locality. It is assumed that only accesses to the
current frame are local. An instruction can only manipulate the current frame directly— all
other accesses are performed using instructions that initiate split transactions. In a parallel
machine with distributed memory:

¢ Fach frame must reside entirely within a single node’s memory.
¢ Frames may be distributed among the nodes of a machine.

¢ A frame for code block A can only be allocated in a node that contains the code block
A.If code block A is replicated on all nodes, frames for that code block can be allocated
on any node,

* Global objects may be allocated on any node, and a single object may straddle many
nodes.

o If the compiler can predict that other frames and objects are local (e.g., through static
allocation or through directives to the runtime allocator), it can replace rload’s and

ratore’s with ordinary loads and stores, and replace rstart’s with ordinary procedure
calls.

* Registers are assumed to contain only thread-local data. If an instruction defines a
particular register, a later instruction in the same invocation of the same thread may
use it. However, nothing may be assumed about the contents of the registers at the
start of a thread, since it is unpredictable as to which thread ran prior to the current
one. Any data that must be communicated from one thread to another must be passed
through the frame. We also say that registers are “volatile” or “ephemeral” across
threads and that frame locations are “persistent” across threads.

Id and functional languages

Implementing Id and functional languages on *T is no more difficult than implementing it
on existing architectures. The *T abstract machine model is, in fact, the latest step in a long

line of development of compilers and architectures for functional languages. The interested
reader is referred to 7], [28] and [20] for details.

This does not mean imply that all problems in compiling non-strict functional languages
have been solved. For example, detecting long threads, storage reuse, load balancing, etc.
remain challenging problems.
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Shared memory models

If we ignore the locality model that we have carefully built up in *T abstract machine, it
is no more than a conventional, shared memory parallel machine. The tree of frames by
which we describe our runtime structures properly subsumes the “cactus stack” model that
is popular in implementations of paralledl FORTRAN, C, and similar languages. The rtake
and rput instructions may be used to implement semaphores for traditional synchronization
mechanisms.

SPMD models

To date, the SPMD (Single Program Multiple Data) model and the less general SIMD model
are the only successful model used to program large parallel machines. SPMD programs are
usually run on so-called “multicomputers”. Mapping an SPMD program to the *T abstract
machine is quite easy.

The tree of frames has an especially trivial structure: the root frame has N children
frames, where N is the number of nodes in the SPMD program. Each of these children then
has a linear chain of descendants, i.e., each chain acts as a stack. The 7’th stack is allocated
on the j’th node. In other words, the root frame is simply used to fork off N invocations
of the same subprogram, with the j’th subprogram running entirely on the j’th node. Each
subprogram is an ordinary sequential program.

The Global Data area is partitioned into exactly N equal-sized areas, and global data is
statically mapped into these areas. The j’th global data area is considered to be local to
the j'th node. This mapping is static, so that the compiler uses ordinary load and store
instructions to access local data.

In the SPMD model, there is no direct access from the i’th node to data in the j’th node,
where 7 # j. Instead, the program in the i’th node communicates with program in the j7’th
node using send and receive primitives. This is modelled easily in the *T abstract machine
as follows: A part of the global data area in each node is reserved for a message queue,
representing messages entering that node. A source-level send command from any node to
node j is compiled by appending a reference to the message data structure into the j’th
message queue. Implementing such shared message queues is easily done, using the rput and
rget instructions. A source-level receive command in the 7’th node is compiled by dequeing
a reference to a message data structure its local message queue, and then using rlcad’s to
fetch the contents of the message.

5 An Implementation of *T

The *T abstract model creates a clean separation between the execution of instructions
within a thread (the data processor) and the processing of network messages and the schedul-
ing of threads (the synchronization processor). Not surprisingly, this permits a realization
wherein the data processor is a conventional RISC and the synchronization processor is a
specialized function which behaves much like a memory-mapped coprocessor to the RISC.

22



5.1

A *T node based on M88110

We now present a concrete *T realization centered around the Motorola M88110, a highly
integrated superscalar RISC microprocessor.” As illustrated in Figure 7, a *T node com-
prises an unmodified M88110, a memory-mapped synchronization coprocessor/network in-
terface, second level cache, and Local DRAM. The node is fully backward compatible such
that the synchronization coprocesser is completely transparent to normal M88110 programs
(e.g. UNIX). In terms of hardware protocol, the synchronization processor will act just like
another M88110 sharing the local bus.

Synchronization Processor

88110

out remote
- I | | I ~ < Message r’:gl’
Formatter .
egmend [
Network local T8 .
- {FP, IF)
iz = ]
msy_rload/ 4

msg_ rstore

I-Cache

msg_start

RMem Start
Processor [ Processor
e STF
SFP
5V
* | Frame
: Registry

Local Memory Controller

D-Cache

Data Path

Registers

Local DRAM

Figure 7: An M88110-based *T node implementation

"The synchronization coprocessor documented here is easily

cache coherence.
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The synchronization processor comprises four distinct subfunctions:

¢ Message Formatter. The message formatter maintains a set of of memory-mapped
registers that, when written to by an executing M88110 thread, causes the creation
and transmission of msg rload, msg _retore, and msg_start messages. For remote loads and
stores, the message formatter also includes segment translation hardware for translating
64-bit global virtual addresses into a destination node number and 32-bit local virtual
address on the destination node.

® RMem Processor. The RMem processor services msg_rload and msg rstore requests for
global memory locations which map onto the current node. The RMem processor
supports imperative and many styles of synchronizing data accesses (e.g., I-structures,
M-Structures).

o Start Processor. The start processor services all msg start messages directed to the
current node. The start processor also implements the hardware layer of the thread
scheduler: queues of posted threads corresponding to a subset of “hot” frames as
directed by a frame registry.

o Local Memory Controller. The local memory controller supports access to locations in
local virtual address space. The controller performs page translation to map the local
virtual addresses into physical addresses®, and also provides for block transfers between
DRAM and the second level cache.

The synchronization and data processors intercommunicate in two ways. First, regis-
ters and queues implemented by the synchronization processor are memory mapped in the
M88110 physical address space. For example, the M88110 will execute a next instruction
by reading the head of the thread queue that is filled by the start processor. Second, the
processors share the same virtual address space and may read and write shared variables.
For example, the start processor will write the value portion of start messages in activation
frame locations which are subsequently read by a posted thread. All of this communication
takes place over the 64-bit local data bus. Synchronization processor registers and queues
are directly read and written over this bus, while shared variables are, in general, found in

the second level cache or DRAM.

In the remainder of this section we will first describe a scheme for global addressing
which is essential to understand the functioning of the Message-Formatter. It is followed by
a description of executing dataflow instructions on a stock M88110. In Subsection 5.4 we
present some other implementation issues in the design of the Synchronization processor.

5.2 Global Addresses and Virtual Memory

The message formatter maintains a set of of memory-mapped registers that, when written to
by an executing M88110 thread, causes the creation and transmission of msg._rload, msg rstore,

8 All caches are keyed to physical addresses.
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and msg_start messages. For remote loads and stores, the message formatter also includes
segment translation hardware for translating 64-bit global virtual addresses into a destination
node number and 32-bit local virtual address on the destination node.

The M88110 supports 32-bit byte-addresses, yielding a four gigabyte address space.
Consider, however, a possible machine configuration comprising 4K nodes (2'%?) with eight
megabytes (22*) of local memory per node. This is 128 gigabytes (2*7) in physical mem-
ory alone. Clearly, we require global addresses which are considerably larger than 32 bits.
Our proposal for supporting a 64-bit global address space while still retaining efficient, and
compatible, local addressing is based upon segmentation. Consider the following:

o A Local Virtual Address (LVA) is a 48-bit quantity,
LVA = TM1g:V3z

where the v is a virtual address on node number n. All local memory references made
by a processor (e.g., 2 normal M88110 load or store instruction) implicitly refer to its
own node, so the node part is omitted and only v is supplied.

¢ A Local Physical Address (LPA)is a 48-bit quantity,
LPA = nyg:p3;

where the p is a physical address on node number n. As with LVAs, the node part is
usually implicit (the current node).

¢ A Global Virtual Address (GVA)is a 64-bit quantity,
GVA = 832 :032

where the o is a byte offset within segment s,

An executing program manipulates local and global virtual addresses. Local references
always use local virtual addresses, while remote references always use global virtual addresses.
Native M88110 page translation maps local virtual addresses into local physical addresses,
That is, node n decomposes v into a virtual page frame number and an offset within the
page,

v = vpny, : offset,,
where vpn is the virtual page number. The page translation (PT) on node » maps the vpn
into a physical page number, ppn,

Page Xlate
vpn —5

ppn
So, the local physical address p is computed as,

U = ppny, : offsety,

25



where offset is copied from v. In contrast, segment translation, supported by the synchro-
nization coprocessor, maps a global virtual address into a local virtual address. A segment
descriptor encodes a set of attributes (e.g., valid, writable), how a segment is interleaved
across nodes, and the base local virtual address for the segment,

segment-descriptor{s| = (attributes, interleave-map, LVA base)

For example, suppose that a thread issues an rload of the GVA A= s3; : 035, where s
is the segment and o is the offset within the segment. Before formatting an rload msg, the
message formatter fetches the descriptor for s in its segment translation buffer®. The mapping
information is used to translate A into the LVA nyg: V32, Where n is a node number and v
is a local virtual address on node n. The rlcadmsg is routed to node n, where the virtual
address is translated, by page translation hardware, into a local physical address nyg : psg.
The segment translation takes place on the requesting node, while the page translation is
performed by the destination node. Figure 8 summarizes.

pranensesnes e Source Node  -----rerernnannesy -~ Destination Node 7.
Global Virtual Addrass gg Local Virtual Address : 12 Physicall Address '
H A =g g—re——ml Intoricave [ o .y —p
: 32 Mappmg 20 Page 20
; 32
H ' Network I—» Translation
; Segment ! : ks Buffer pen
: Eﬁp:rlamn segment descriptor i i s\
i s; < attributes, map, bas4e E{,VA> i translation fault
! translation fault i H
etee e temnnnnan e onnana e seon e an s n et an ram e o e s e meemeomem e b et eemeremeseseaseea s s s sarbansmmnennneseereneaes]
Figure 8: Global address translation
Continuations

A continuation is the pair { ¥, Ly ) comprising a pointer to an activation frame, FP, and a
start processor code label, Lg. It is particularly useful to pack a continuation into a single
64-bit word.

Recall, a given activation frame is mapped entirely onto a single node, and that all address
arithmetic on frames are performed locally on local virtual addresses. It js thus possible to
refer to frames only by their local virtual base addresses, which are 48-bit quantities. Now,
assume a convention whereby the first word in a frame holds a pointer (a local virtual

®If the descriptor is not found in the segment translation buffer then a trap is elicited on the M88110,
which can then, under software control, load the segment descriptor it finds in a global hash table, for
example,
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address) to the base of the start processor program text, s1p base- Lhis lets us encode Lg as
a displacement from the sTPy, ..,
Lg = SIPp ..+ 6

where § is the unsigned displacement. A continuation is encoded into 64-bits as follows,
0 = ('ﬂqs :‘032, 616).

It is possible to further compress the encoding by enforcing modulo-alignment constraints
on v (e.g.,cache-line boundaries or larger) and §. It might be desirable to reduce it to less
than 52 bits, so as to fit within an IEEE double precision NaN.

5.3 Executing Dataflow Instructions on M88110

We now show how the M88110 implements rload, rstore, and start instructions. These
instructions cause the (nonblocking) formation and transmission of msgrload, msg rstore,
and msg_start messages, respectively. We will also show how the M88110 implements the
next instruction.

The message formatter within the synchronization processor implements a number of
memory-mapped registers. The main ones are shown below:

mOP Message operation

mA Destination address

mI Continuation start code displacement
mV Message value

mDFP Cached copy of DFP

Some Message Formatter Registers

The nDFP register is a cached copy of the M88110’s prp register (the current activation
frame). This register is automatically updated when the M88110 performs a next operation
(see below).

To send a message, the M88110 first stores a global address (for rlcad or rstore) or an
activation frame pointer (for start) in the ma register. Then, the start code displacement,
6, is written into the I register. The displacement is used to form the return continuation
(together with the contents of mDFP) in the case of msg r1load and msg rstore. If the message
has a value-part (i.e., a msg-start or msg_rstore, then the M88110 stores the value into the mv
register. Finally, the desired operation is written into the mop register. Writing to this register
automatically causes the appropriate type of message to be formatted and transmitted.

5.3.1 Implementing rlocad

For example, the following M88110 code sequence implements the rload of 64-bit (double)
value. Assume that the M88110 register =¥F contains a pointer to the message formatter
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register set, register ra contains the 64-bit global virtual address of the word to read, and
register xrI contains the start code displacement, é:
Ldorload.d:
st.d rid, TMF, miA i address to load into formalter reg mi
8t rI, xMF, _nmI i slart code disp. into formatter reg mI
?

or rmsg, _rload.d, r0 Jormulate rload command to fetch 6{ bits
Bt mmsg, rMF, .mOP tell formatter to launch rload message

Note that the M88110 instruction st.d rA, zMF, mA causes the contents of the double (64
bit) register xa to be stored at the address determined by adding the contents of register rur
to the immediate constant ma (which we assume adjusts the address to point to the message
formatter’s ma register).

An Address-Encoding Optimization

While the above rload sequence is straight-forward, it is rather inefficient as compared with
the native M88110 load instruction (1d.d). As an optimization, we will use the least sig-
nificant bits of the addresses from the M88110 to pass information from the M88110 to
the message formatter. Suppose that the message formatter decodes a range of 32-bit local
addresses during an M88110 st.4 as follows:

SELECT § MEZ_op 000
8 16 5 3

Optimized Message Formatter Address Decoding

The message formatter is selected whenever the M88110 performs a st.d operation to
any address where the upper eight bits are set to required SELECT bit pattern.’® Here is
what happens when the st.d executes:

mk « double value written
ml — §

m0P +— msg_op

This also causes the message encoded by msg-op to formatted and transmitted.

Now, the M88110 can issue a single instruction to initiate the rload. Assume that the
M88110 register rSEL is all zeros, except for the upper eight bits, which are set to the message
formatter SELECT code. Also assume that & a small constant (< 255) called _de1ta:

L.do_rload.d:

#t.d rAd, rSEL, (_delta << 8) || (_rload.d << 3) ; initiate rload

'®That is, this feature consumes 1/256 of the local virtual address space.
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Note that the expression (.delta << 8) || (rload.d << 3) is evaluated by the assembler,
and is reduced to a 16-bit instruction immediate. The M88110 rst.q instruction stores the
contents of the 64-bit register ra, which is assumed to contain the GVA of the location to
read, to an address encoded in the fashion of the table above.

Finally, this is how the message formatter generates the meg r1oad message:

A = Register[ma]
FP = Register[mDFP]
§ = Register[mI]
n.d = SegmentXlate(s)
C = (thia.node.l'-‘l’,ﬁ)

Send message: msg_rload 7.9, C

5.3.2 Implementing rstore

The implementation for rstore is similar to rload, except that we must also supply the
value to store. This is accomplished by writing the value to the message formatter mv register,
and then supplying the address:

L_do_rstore.d:

st.d IV, xMF, _mV ;  value to store
st.d r4, rSEL, (.delta << 8) || (.rstore.d << 3) ; inttiate rstore

The code assumes that the value to store is in register rv. The first rst.a writes the value
to store into message formatter register av. The second rst.d actually causes the network
message to be initiated by supplying the address to write and the return continuation for the
write acknowledgment. This is how the message formatter generates the msg_ratore message:

¥ = RegistermV]
4 = Register[mi]
FP = Register[mDFpP]
§ = Register[mI]
.0 = SegmentXlate(s)
C {this node .FP, )

Send message: msg_rstors ﬁ.'ﬁ, v, c

5.3.3 Implementing start
The implementation for start is just like rstore, only instead of writing the address to

store, we supply a continuation for the remote frame. Assume that M88110 register ric
contains the continuation of the remote frame:
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L_do_start.d:
st.d rV, xMF, .V ; value-part of start mag
st.d rRC, rSEL, (_adj << 8) || (_start.d << 3) ; initiate start

Here, .adj is considered an adjustment to the §-part of the supplied remote continuation.
Although the M88110-side looks like an rstore, the response of the message formatter quite
different:

¥ = Register[mV]
adj = Register[nY]
(n.v,ﬁ) = Register[mi]
§ = 6§+ adj
C = (nwv,d)
Send message: nsg_start O,V

Encoding Operand Size and Memory Semantics

The operand size for rload, rstore, and start can vary from one to thirty-two bytes, in powers
of two. The operand size is encoded as part of the message operation stored into register
mOP, and is carried on the message. E.g., rstore.b stores a byte, rload.s fetches four bytes
and start.q sends sixteen bytes.

H

Similarly, memory semantics are also encoded into rstore and rload messages. FE.g.,
rIload.d fetches eight bytes according to I-structure semantics. I-structure and M-structure
operations are only defined for eight-byte operands, or bigger. In the case of larger operands,
i.e., sixteen and thirty-two bytes, I-structure semantics apply to the entire aggregate. The
table below summarizes.

Size rload/rstore

Operand (Bytes) Extension || start | Imperative I-Structure M-Structure
null 0 n v v

byte 1 b Vv v

halfword 2 .h Vv Vv

word /single 4 -w/.8 v v

double 8 d Vv v v v
quadword 16 q Vv Vv Vv v
octword 32 o v Vv Vv Vv

Implementing next
When the M88110 wants to begin executing a new thread it executes a next imstruction

which, from its perspective, is simply the popping of an FP,IP pair from the synchronization
processor’s thread queue, and then a transfer of control to the new 1p. The synchronization
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processor presents the head of the thread queue as a memory-mapped 64-bit register sq,
which contains the next FP and 1p:

sQ | FP | IP | Head of thread queue

Note that FP and IP are both 32-bit local virtual addresses. Assume that the M88110
register xq points to the synchronization processor register sgq, and that M88110 register rDFP
contains a pointer to the current activation frame. It is also assumed that M88110 register
=dIP is allocated adjacent to rDFP, such that when rDFP is loaded with a double (64-bit)
value, xDFP recieves the most significant thirty-two bits and rDIP receives the least significant
thrity-two bits. Here is the sequence that M88110 executes to implement next:

ld.d xDFP, xQ, 0 ; pop FP,IP pair from head of queue
jmp xDIP ; jump lo the new thread

The act of popping the FP, IP pair from the queue also has the side-effect of setting the
message formatter’s cached version of the current data processor activation frame (mDFP) to
the new Fp.

5.4 The Synchronization Processor
5.4.1 The RMem Processor

The RMem processor is a finite-state machine that consumes msg.rload and msg rstore mes-
sages destined for the current node, and either responds with an nsg_start back to the
requesting processor, or elicits a trap on the M88110 for handling conditions beyond its
capability. Other than normal imperative operations, the processor will implement at least
the basic layer of I-structure and M-structure protocol. There are a number of open issues:

¢ How should presence bits be maintained? Options are: additional bits tagged to each
word (or a cache line’s worth of words), bits packed into 64-bit words in the local
virtual address space.

¢ How should multiple-deferred readers of an I-structure or M-structure be handled? Op-
tions are: Monsoon-style request threading, trap the local M88110, and local deferred
list management.

o How should errors, like multiple writes, be handled? Options are: respond with a
msg.error, trap the local M88110.

Note that the RMem processor never need perform segment translation, because the
frame pointers of the return continuations are always represented as local virtual addresses.
It simply consults the node-part of the frame address when formulating an msg_start response.
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5.4.2 The Start Processor

The start processor handles all msg_start messages destined for the current node. The start
processor implements the first “layer” of message handling and synchronization;

1. Writes the value-part of the start message into an offset in the activation frame also
specified by the start message.

2. Performs a join operation on counter values in the the activation frame specified by
the start message.

3. Posts ready threads to a queue that can be popped by the M88110 when executing a
next operation.

There are three primary ways in which an M88110 and its local Start Processor interact;
(1) the M88110 can execute a rload, rstore, or start which either directly or indirectly
results in a msg_start message destinated to the local Start Processor; (2) in the course of
processing a msg_start message, the Start Processor writes activation frame locations which
are subsequently read by an M88110 thread; (3) the M88110 executes a next instruction
which pops the continuation for the next thread to execute from a queue managed by the
Start Processor.

Of the three modes of M88110-Start Processor interaction, communication through
shared activation frame locations is the most unstructured. We can rationalize the com-
munication by establishing a set of conventions for the usage of storage within a frame.
Logically, we divide an activation frame into four areas:

Activation Frame Area Start Proc. MS88110
Linkage Read-Only R/W
Join Counters R/W Read-Only
Message Values Write Read
Inter-Thread Values R/W

Recall, a nsg_start message comprises a continuation and a value,
mag_start — (FP, 5), v

where FP is a pointer to the base of an activation frame, and v is variable-sized value, from
zero to thirty-two bytes. The code pointer for the message handler is computed as,

SIP = SIPp ..o + é
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where SIPp .. is, by convention, stored in the first word in the current activation frame, i.e.,
Fe[0].

Here are the Start Processor registers which are automatically loaded upon dispatching
to the handler of a new message:

SIP Message handler instruction pointer
SFP Current activation frame base

SV Message value (MSW)

SVi Message value

SV2 Message value

SV3 Message value (LSW)

Some Start Processor Registers

One of the first actions of most every message handler is to write Message Value registers
to offsets in the activation frame pointed to by sFp.

The Scheduling Hierarchy

An important new dimension of *T is an explicit hierarchy of scheduling data processor
threads. In Monsoon, the only control over scheduling is the ability to force a recirculation
of a token; this is key concept behind a Monsoon thread. The principle motivation to extend
the control over scheduling beyond the thread level is to induce temporal locality:

¢ Biasing scheduling across a small subset of frames can enhance processor data and
instruction cache hit rates.

o Biasing scheduling towards threads within a frame permits the speculative allocation
of temporary registers. That is, if threads related to the same frame are scheduled
one after the other, then the threads can (potentially) communicate values through
temporary registers which might otherwise be indeterminate.

The Frame Registry

Our implementation implements the scheduling hierarchy through a very simple mechanism
called a frame registry, a small associative table of activation frame base pointers. When
the start processor attempts to post an FP,IP pair, the frame registry is queried. If the Fp
is found in the registry, then the pair is enqueued into a hardware-managed thread queue.
There is (logically) one such thread queue for each registered frame. If the PP is not found
in the registry, then a trap is elicited (probably on the M88110) and the 1P is enqueued onto
a software-managed list of ready, but presently-inactive, frames.

When the M88110 executes a next instruction, it pops an Fp,IP pair from one the regis-
tered frames. The hardware biases scheduling within the frame by always giving an Fp,1p
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pairs from the same frame until that frame’s queue is depleted. Only then does the popping
focus on another registered frame. As an option, “cleanup” and “startup” threads can be
executed whenever the scheduling crosses a frame boundary.

Execution continues in this fashion until all the queues of the registered frames are empty.
When the M88110 executes a next instruction under this condition, it is given an “out of
work” thread which, presumably, deregisters the least recently used frame

and registers a frame from the software managed queue of ready frames.

5.4.3 The Local Memory Controller

The local memory controller services local memory read and write requests from the start
and RMem processors. These requests are always in terms of local virtual addresses, so
the memory controller must also support page translation to local physical addresses. We
envision a simple translation lookaside buffer that traps the M88110 upon a miss.

The local memory controller also acts as a DRAM controller, and is invoked whenever
cache lines are moved to and from DRAM.

6 Discussion

6.1 Comparison with other Dataflow Processors

All dataflow machines that have been designed or built since 1988 (e.g., Monsoon, EM-
4, Sandia Epsilon, IBM Empire, P-RISC, McGill’s argument-fetching machine) are frame
based and, thus, have avoided an associative store for tokens. Since many researchers had
considered the associative store to be totally unacceptable for high performance machines,
its elimination has caused a new surge of interest in dataflow architectures. Now all the
attention seems to be focused on gaining sequential-thread performance.

Ideally one would like to design a processor which can compete with the best commercial
microprocessors without sacrificing the efficiency of dataflow architectures for synchroniza-
tion and latency tolerance. This goal seemed out of reach even two years ago. Hopefully, this
paper shows that the goal is achievable. The best proof would be if any machine buiit out of
P*T-type processors, that is, a P-type processor with its *T co-processor, can outperform
any machine built out of P-type processors alone. In the following we briefly compare the
*T approach to other dataflow machines.

P-RISC

*T is the first proposal for a dataflow machine that can keep total compatibitily with an
exisiting microprocessor. In this respect it goes beyond P-RISC [21] because P-RISC only
tried to maintain instruction set compatibility, while the *T approach uses an existing mi-
croprocessor as is. P-RISC also suggested interleaved pipelining of threads, as in Monsoon
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and the HEP, which required a number of active threads to keep a processor completely uti-
lized. This could show poor performance on existing single-thread codes. The *T approach
also takes the preparation to run a thread out of the data processor pipeline. Thus, the
data processor pipeline is not disturbed by short threads which need be executed only to
determine if another thread is ready to execute.

It is worth noting that maintaining compatibility with an exisiting processor does have
some costs. For example, direct frame-based addressing, as described in the P-RISC paper,
may be more desirable for implementing Id-like languages. It may be also be useful for
parallel implementation of C or Fortran.

Monsoon, Sandia’s Epsilon I and IBM Empire

Monsoon, as discussed earlier, has poor single thread performance as compared to a modern
RISC processor [23]. This can be attributed to a lack of ways to address local state, i.e.,
registers. The notion of efficient threads and registers were not the primary motivations
behind Monsoon, so it is interesting that threads can be done at all. Monsoon has proven
to be excellent in exploiting fine-grain parallelism. It is our goal to make the *T processor
as eflicient as Monsoon in executing synchronization code. *T may not quite compete
with Monsoon on threads that are one or two instructions long. However, we hope that
the crossover point for thread size will be small enough so that compiling Id, a non-strict
language, remains relatively easy. It is certain that *T would do much better than Monsoon
on existing Fortran or C codes.

The thread model in Sandia’s Epsilon IT machine is also quite weak as compared to a
general RISC processor [15]. We do not know enough about IBM’s Empire architecture to
compare it properly with our approach. Neither of these machines has paid much attention
to running exisiting codes.

ETL’s EM4

The pipeline of the EM-4 [25] can be viewed as a two stage pipeline where the first stage takes
tokens from the network and essentially prepares threads for execution, while the second
stage executes the thread. These correspond roughly to our Start and Data Processors,
respectively, but unlike our system, they do not operate independently and asynchronously.
The EM-4 does not have any analog to our RMem Processor. In the design of EM-4, not
much consideration has been given to executing existing codes efficiently. The software
strategy for EM-4 has not been clearly articulated.

McGill argument-fetching machine

In the McGill argument-fetching architecture [14], the processor is partitioned into a Pipeli-
ned Instruction Processing Unit (PIPU) and a Dataflow Instruction Scheduling Unit (DISU),
similar to our Data and Start Processors, respectively. The McGill partitioning appears
primarily motivated by a desire to reduce data movement (and, consequently, the complexity
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of data paths); the signal flow graph that is executed by the DISU still retains the full
structure of the original dataflow graph, so that every instruction is still enabled with the
general synchronization mechanism. Thus, single-thread performance is not likely to be very
good, and it is difficult to utilize registers or caches. Their approach to non-local memory
accesses is quite different from our approach (it is very similar to the approach in the HEP,
where remote accesses are taken aside into a “parking” area during the access).

6.2 Comparison with other innovative von Neumann Processors

The developement of commercial RISC processors have been primarily in the direction of
superscaler pipelines where mutiple instructions are dispatched from a sequential instruction
stream. No attention has been paid to parallel processing except for some hooks for main-
taining cache coherence. However, there are some developments in the research community
where close attention is being paid to memory latency and synchonization issues.

Machines with Cheap Context Switching

A popular approach to tackling memory latency in parallel machines is to replicate the
processor state a small number of times (say, 4 or 8) so that, when the processor has to
perform a non-local access, it can switch to another thread without having to save the
current processor state [1, 17, 30]. In order to to reduce the number of non-local accesses,
it is sometimes proposed that non-local data be cached locally, using some mechanism (e.g.,
directories) to keep such caches globally coherent. Hopefully, by the time the processor tries
to switch back to the original thread, the non-local data will be available. If the access has
not completed, a trap is taken and it is handled explicitly in software.

Effective, coherent caches for large parallel machines have yet to be demonstrated. In *T
instead of replicating processor state, we have chosen to utilize those resources by organizing
them into three specialized processors for intra-thread, inter-thread and remote memory
functions.

Denelcor HEP and Tera machines

The Denelcor HEP, designed by Burton Smith, used multithreaded processors to mask the
latency of memory access. The processor maintained upto 8 sets of registers, switching
between 8 threads on each clock on a round-robin basis (so, single-thread performance was
not a priority). All memory was global— there was no local memory. A thread that accessed
global memory was taken out of the main pipeline and kept aside till the response arrived.
The processor had a pool of upto 64 threads to keep it busy. Each memory location had
presence bits for data level synchronization.

Unlike *T, which has no architectural limit on the number of threads, the HEP permitted
too few threads to be able to compile effectively for it. Also, even though memory-referencing
threads were taken out of the main pipeline, there was still some degree of busy-waiting on
long-latency accesses. The limitations of the HEP are also discussed in [6]-
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Burton Smith’s new machine at Tera Computer fixes many shortcomings of the HEP
and provides much more control over the scheduling of memory references than any other
machine we are familiar with [19, 27]. Tera is complex enough that a feature-by-feature
comparison will take too long to describe here. It is likely that it has a superset of the
features of *T.

The J-Machine

The J-Machine is a massively parallel machine whose processors are Message-Driven Pro-
cessors [12]. It is an attempt to improve on Hypercube-like designs by providing very fast
vectoring to message handlers, fast access to the contents of incoming messages, and min-
imal processor state, in order to reduce the latency of message handling. While vectoring
to a message handler may be fast, the handler has to execute code to move data from the
message into registers, whereas our Start Processor has its sSFP and sv registers automatically
loaded. Where we use three specialized processors in a node for three classes of activities
(intra-thread, inter-thread, and remote memory accesses), the MDP is a single processor
that does all the work. Where we can have a small register file in the Start Processor and a
large one in the Data Processor, the MDP uniformly has a small register file, which is likely
to penalize single thread performance.

6.3 Conclusion

Conventional microprocessors are excellent at executing single threads, but do not handle
long latency operations or synchronization operations well. Consequently, unless we carefully
craft our programs to minimize communication, a massively parallel machine built with these
components is likely to have poor utilization at each node!l.

Dataflow processors have complementary strengths and weaknesses— they are very good
at handling long latencies and providing cheap synchronization, but have poor single-thread
performance. Consequently, a workstation built out of such components is not likely to be
competitive; therefore, such processors are not likely to become commodity parts.

We believe that *T is the first proposed architecture that can execute single threaded
programs as efficiently as conventional microprocessors, fine-grain parallel programs as effi-
ciently as dataflow processors, and provide a smooth spectrum of operating points in between.
Our preliminary explorations on its implementation indicate that it is eminently buildable.

A Additional Instructions for the Data Processor

A.1 The fork instruction

The fork instruction is a special case of the start instruction in which the destination frame
is the same as the current frame, and no data value is transmitted. Of course, in this case,

114 MIMD is a terrible thing to waste!
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no message need be sent into the network— it will be short-circuited back directly:

Data Processor Instruction: fork rl
Semantics: Let Ls = Register[rI]
Let FP = Registex [DFFP]
Send message: msg_startv FP,Lg,foo

where foo is an arbitrary value.

A.2 Instructions for global data access with data level synchro-
nization

One may also associate extra state bits with a global data location that mark it empty or
full. These can be exploited with instructions that perform global data access with data
level synchronization. When a synchronized data location is empty, it contains a list of
pairs, where each pair consists of a frame pointer and an instruction pointer. All freshly
allocated synchronized heap locations are marked empty, and contain an empty list of pairs.

The rIload and rIstore instructions have the same instruction formats and behavior as the
rload and rstore instructions, except that the messages that they generate have msg rIload
and msg_rIstore message opcodes:

Data Processor Instruction: =rIload ri, rI
Semantics: Let 4 = Register[ri]
Let Ls = Register[rI]
Let FP = Register[DFP]
Send_ message: msg rIload A4,FP,Ls

Data Processor Insiruction: rIstore ri,rV,rI
Semantics: Let o = Register[rA]
Let v = Register[rV]
Let Ls = Register([rI]
Let FP = Registex [DFP]
Send message: msg rIstore 4,V,FP,Lg

The interesting difference between these instructions and rload/ rstore is in the treatment
of the messages at the remote node:

RMem Message: msg.rIload A,FP,Lg
Semantics: if full?(Memory [a1)
Let v = Memory[al
Send message: msg_start, FP,Lg,V
else
enqueue (FP,Ls) at Memory[A)

Note that if the location is full, an msg rI10ad message behaves just like an msg rload message.

Otherwise, the message information is queued there to be handled later, in response to an
msg ristore message:

38



RMem Message: msgxIstore A,V,FP,Lg
Semantics: if empty?(Memory[4])
Let quens = Memory[al
Memoryld] := V¥
Set presence bit of Memory[1] to “full”
For each (FP’,M5) in queune
Send message: msg_start FP? Mg,V
Send message: meg.start, FP,Lg,foo
else
error "Multiple writes not allowed"

If the location is empty and no readers are queued there, it behaves just like an rstore,
just storing the value there. If there are any queued readers, the value is also sent to them.
Finally, if the location is full, it is a run time error. As in rstore, an acknowledgement
message is also sent.

Remote loads and stores with data-level synchronization may be used to implement “I-
structure” operations'®, which permit overlapped operation of the producer and consumer
of a data structure (see [8]).

Two more remote load and store operations with data-level synchronization are available
which make it easy to implement atomic updates on remote locations. This is useful for
shared queue management, among other things. The instructions have the same format as
rload and rstore:

Data Processor Instruction: xrtake rd,rT
Semantics: Let 2 = Register[ri]
Let Ls = Register[x1]
Let FP = Register [DFP)
Send message: msg rtake A,FP,Lg

Data Processor Instruction: rput ri,rV,rI
Semantics: Let 4 = Register[ral
Let v = Register[xV]
Let Ls = Register[rI]
Let FP = Register [DFP]
Send message: msg_rput A,V,FP,Lg

Again, the interesting difference between these instructions and rload/rstore is in the
treatment of the messages at the remote node:

EMem Message: msgxtake 4,FP,Lg
Semantics: if full?(Memory[4])
Let v = Memory[a]
Send message: msg_start FP,Lg,V
Set presence bit of Memory[4] to “empty”
else
enqueue (FP,Ls) at Memory[i]

12Indeed, this is the reason for the “I” in the operation names.
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Note that if the location is full, an msg_rtake message returns the value just like an msg rload
message, but it also resets the location to the empty state. Otherwise, the message informa-
tion is queued there to be handled later, just like an mag rIload message.

RMem Message: msgxput 4,V,FP,Lg

Semantics: if empty?(Memory[al)

Let queue = Memory[Al
if queue is empty
Memoxy[4l := V¥
Set presence bit of Heapla] to “full”
else
Let (FP’,M5) = head(queues)
Send message: msg_start FP’,Ms,V
Memory[4] := tail(queus)
Send message: msg_start FP,Lg,foo
else
error "Multiple writes not allowed"

As in msg_xIstore, if the location is not empty, it is a run time error. QOtherwise, if no readers

are

queued there, it behaves just like a nsg_rstore or msg rIstore— the value is simply stored

there and the location is set to the full state. If there are queued readers, the first reader is
taken off the queue and the value is sent there; the location remains empty.
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