MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Laboratory for Computer Sclence
(formerly Project MAC)

Computation Structures Group Note 33-1

An Anomaly in the Specifications

of Nondeterminate Packet Bystems

by

J. Dean Brock and William B. Ackerman

4 January 1978

-2 -

A problem relating to the specification of the semantics of nondeterminate
Packet communication systems has been dlscov_ered. It has generally been
assumed that the semantics of these computational ‘models car he specified by
history functions that map input history vectors into sets of .p‘osslbie output
histary vectors. Huwevér. two systems to be presented here demonstrate the
inadequacies of history functions for describing the behavior of al? packet

communication systems.

A history i-s a sequence of data wvalues received at an input port or
transmitted at an outpﬁt part. - A history wvector 1s a tuple consisting of a
history for each port of a system. History functions, with various
embellishments, have besn used by many Fesearchers (1, 2, 4, B, 8, 9, 10] to
specify the semantics of packet communication systems. While these semantic
theories @iffer in many ways, they usually have the following common aspects.
A system S 15 apecified by a function 38 which maps history wvectors into sets
of history vectors. A system § is said to realize 33 {that is, 33 completely
describes the behavior of 8) if:

1) Whenever history vector X of input symbols is. presented to the inputs of
S, some output history vector in the set FstX) will eventually appear as
the outputs of 5. If Jg(X) contains only éne vector for each X, S 1is satd
ta be determinate.

2) S exhidbits causality, or finfte~-delay, that is, tha cutputs do not appear
until after the presentation of the inputs, .

Further it is generally accepted that all history functions corresponding to

physically realizable systems are:

1) monotonic, that is, the more inputs a system receives the more outputs it
will produce, without changing previous outputs. This is eguivalent to
saying that a system never has 1o "erase” an output that {t has
transmitted. For determinate systems, <} is monotonic if
Xty = 3()() c 3(?’), where & is the prefix ordering omr history
vectors, .or its natural extenston to singleton sets of history vectors.

2) continuous, that is, a ‘system's response to an infinite input is the "Hmit"
of its response to finite prefixes of that input. For determinate systems,
fJ is continuous ir given an increasing chain X Xpo rom
Jw x,) = u Jix,).

Several definitions of monotonicity and continuity have been given for
nondeterminate computations [10, 11, 13). These definitions are discussed later

in this paper.

Such semantics are generally assumed to obey a criterion of modularity {or
substitgtibility} which states that _‘Js iz a complete specification of the behavior
of 8. When modules are interconnected, the ;esultant system i1 also a module,
whose input and output ports are the unconnected ports of the constituent
modules. The semantic specification of the r.eaultant system depends only om
the specifications of its components and the manner of their interconnection.
Hence any module can be treated as a "black box,” which can be understood by
use of the semantic characterization without examination of its internal

structure.

These properties have been proved, in various forms and under various
assumptions, for determinate systems [1, 8, 12], for determinate recursive
systems {4, Q], and for | acyclic systems [6]. However, they appear not to be
true for arbitrary cyclic interconnections of nos-determinate systems as shown

by the following exampltz;1

Consider the single input/single output systems S and T {llustrated in
figures 1 and 2. There are five types of modules common to both of these
systems. The 13! module passes its first input tokeﬁ as 1tz only output token,
Succeeding input tokens are absorbed and discarded, 'I'he 2™ module passes its
second input tokem as its only output token, dlscardin.g’l further tokens. The
cons module '(similar to that deacrll_:ed by Weng [14]) produces as fits first
ocutput token the first input on its left input port and then produces as its
remaining tokens the input tokems from iisl right input port. The small dots
represent modules which copy their i;lput tokens to eﬁﬁh of their output ports.
All of the preceding modules are determinats, Théir history functions may be
specified as:

31“(1\) = {(A) A = empty hi.-;tory.
Fystixa) = {x} X, Y = single tokens

a, § = arbitrary (possibly empty) streams of tokens

1. The "anomaly" discussed in Keller [9] does not demonstrate the inability of

history functions to characterize non-determinate operators, but rather the
inability of the "incremental approach to- semantics” to characterize cyclic
interconnections of non-determinate aperators.

Fond(d) = (A)
Sand(x) = (A}

Jand(xva) = {v}

Feonsths B = (A}
FeonstXa. 8) = (X8}

The merge module [2, 3, 5] is non-determinate. It merges (arbitrates) its two

_ input streams into one output stream,

Fmergel®. 8) = {all streams which constitute "shufflings® of a and B,
preserving the relative order of symbols within a and within ﬁ}

There are various nuances of definition of this module, relating to its response

. to infinite input histories, which are irrelevant to this paper.

| When the system S receives no input tokens, that i{s, has as its input the

empty stream A, the system produces no outputs. Hence:

Tsth) = (A)
When the system recelves a single token X as its input, the value X passes
through the lefi side of the cons operator io be the first element of the output
stream, Also, the value X passés through the merge module and the right port
of the cons module to be the second .élement of the output stream.
Consequently:

Fslx) = xx

Finally, when the module receives more than one iokem, or a stream XYo, again

»

the first input X becomes the first token of the outputl stream. (As before, X
and Y are any single tokens, a denotes an arbitrary stream.) However, now the
first and second tokens "race" at the merge operatorl to become the second
element of the output stream. The remaining elements of the input stream are
digcarded, Hence:

- Fgtxva). s (xx, xv)

System T is system S with the a&dition of the determinate wait rnpdule as
shown in figure 2. The wait module passes all tokens from the top (data)
input, but only after at least one token has been presented at the right (enable)
input. A

Fwanta, b) = (A)
Fwairla, 8Y = {a} 1 B w A

System T reslizes the same function as system ‘s, that .ls Fs = I
Observe that the only effect of the wait Operator is to delay the system's first
input token until the merg; operator has produced an oytput. However, the
System's first token will also be an inpu_f tt; the merge operator, thus

guaranteeing that the merge will eventually produce an output.

Now bonsider system S connected. to system L {a cons and a boolean not
operator) as in figure 3. If a true token i3 introduced, it passes all the way
through system S and is inverted to a false token by the not operator. The

false token then becoﬁes the Secund token to enter S, Both the true and false

-7 =

tokens will appear at thg .merge inputs. Since the original true' token might
not have passed through the marge-by 1the time the false token appears, the
merge can pass the tekens in elther order. Whichever is. passed first becomes
the second ocutput token of the system. The' final output history can therefore

be either (true true) or (true false).

Consider the saine interconnection using system I, as in figure 4. The wait
operator prevents the first true. token from being transmitted as output by
syste.m T_untl‘l ‘the m'erge'has already d.ec_ldeni to accept its left tnput ahead of
its right input. By.the time the false tokea appears at the merge input, it

must be the second. The final cutput.can therefore only be (true true),

We t_he?efore halve - two: intgrconn_ections which behave differently,
. although their respective ' components are. "identical " Thusl the complete
specification of a system _musi contaln more information than just the history
vector function. It must tell how the nondeterminacy is reduced or removed
when externgl'causa‘.lity ‘consiraints are placed on the inputs ami outputs. In
systems 8 and T, for example, the response to XYa 'ls {XX, XY} without external
restrictions. However, {f the second 1npﬁt symbo]l 1is known not to be
introduced untln the iflrst output has been transmitted, the response of system 7
to Xva'is only {XX)}, whereas the response -of. system S is still {XX, XY}. The
appendix of th-ts note describes a representation of semantics of non-determinate

packet communication systems,

Many semantic theories ére restricted t.ol the specification of monotonic and
continuous functions. Several o;'qerings have been proposed for the powerset of
history functions which would allow non-determinate computations to be
monotonic and continuous, " Since the merge module is not monotonic using the
ordering of either Plotkin [13] or Lehman [11), these theories cannot be used to
specify non-d.etérmin.ate Packet -comunicatiun systema. The "unfair" merge
module is continuous using the ordering of Kosinski [10]. The "unfair" merge
module jis allowed to ignuré tokens on one of its input ports if it is receiving
an infinite input history on its other port, Since merge modules are generally
considered to be "fair,* this theory canmnot be used to specify many “interesting"

pPacket communication systems.

Figure 1

cons

1 st

System 3

A — (A}

X = txx}
X¥a > (XX, XY}

=10 -

Figure 2

merge
/
wait N
18t

System 7

A = (A)

X (XX}
Xya > {XX, Xr}

Figure 3

- 13 -

Bibliography

(11

[2]

£3]

4]

€5}

(6]

£7]

(8]

[e]

Ackerman, W. B., "Interconnections of Determinate Systems,” Computation
Structures Group (Note 31), Laboratory for Computer Sclence, MIT,
Cambridge, Massachusetts, July 1977.

Ackérn:ian. W. B.,, A4 Structure, Memory for Date Flow Computers,
Laboratory for Computer Science (TR-186), MIT, Cambridge, Massachusetts,
August 1977.

Arvind, K. P. Gostélow, and W, Plouffe, "Indeterminacy, Monitors and
Dataflow," Proceedings of the Sixth ACM Symposium on Operating

' Systems Principles, Operatfng Systems Review 11, S(November 1977),

159-169, P

Brock, J. ., Formal Semantics of Deta Flow Language, S. M. Thesis in
preparation, Department of Electrical Engipneering and' Computer Science,
MIT, Cambridge, Massachusetts, expected January. 1978.

Dennis, J, B.,, D P, Misunas, and ©¢C. K. C. Leung, "A Highly Parallel
Processor Based on a Data Flow Machine Language,” Computation
Structures Group (Memo 134), Laboratory for Computer Science, MIT,
Cambridge, Massachusetis, January 1977.

Ellis, D. J, Formal Specifications for Packet Communication Systems,
Laboratory for Computer Science (TR-188), MIT, Cambridge, Massachusetts,

November 1977.

Hewiltt, C. E., and H. Baker, “"Actors and Continuous Functlonals,"
Proceedings of the IFIP Working Conference on the Formal Descrfpuons
of Programming Concepts, August 1977, 16,1-16.21.

Kahn, G., "The Semantics of a Simple. Language for Parallel Programming,”
Information Processing 74: Proceedings of the IFIP Congress 74,

August 1974, 471-478,

Keller, R. M., T"Denotational Models for Parallel Programs with
Indeterminate Operators,” Proceadings of the IFIP Working Conference
on Formal Description of Programming Concepts, August 18977,
15,1-15.27. ’

[10]

[11]

[12]

(13]

[14]

- 14 -

Kosinski, P. R., A Straigl}tforward Denotational Semantics - for
Non-Determinate Data Flow Programs,” to be presented at the Fifth ACM
Symposium on Principles of Programming Languages, January 1978,

Lehman, D. J., “Categories for Fixpoint Semantics." Seventeenth Annual
Sympoasium on Foundations of Computer' Sclence, October 1976, 122-126.

Patil, S, S,, "Closure Properties of Interconnected Systems,” Record of the
Project MAC- Conference on Concurrent Systems and Parallel
Computation, 1970, 107-1186,

Flotkin, G. D., "A Powerdomain Construction,” SIAM Journal of Computing
5, 3(September 1976), 452-487.

Weng, K.-5., Stream-Oriented Computation in Recursive Data Flow
Schemas, Laboratory for Computer Science (TM-58), MIT, Cambridge,
Massachusetts, October 1975, '

- 15 -
Appendix

One possible representation of the complete -heha.vior of a system is a
collection of partially ordered sets (posets). 'I'lhe elements of these posets
correspand to events, where an event is the receiving of an input token or the
pr;)rluclinn of an putput token. These posets correspond to the externally
distinguishable “"scenaries” of computations. History functions represent cach
Possl h.lr». camputation by a pair of input history and passible output history. 1In
a scenario the causality relation between the events of these histories is made
explicit, (Note that this representation of a computation is similar to that
found in actor semantics [6].} For example, the poset representing the response
of cither 8§ ar T te the single token 'input history (true) is characterized by the

{lasse diapgrams:

inputs outpuis
true ——> true
true

The poset descriptions of systems S and T differ, however, for the input stream

{true false), The characterization of S contains these posets:

inputs outputs Inputs ~ outputs
true ———-—) trus ' true ———-—-—-—}trya
| | J l
false — 5 false _ false ' true
[51] S | [s2]

while that for 7 contains:

inputs _ outputs inputs gutputs
true trus true —— ___ Strue
false ' ‘folse - false true
(T1] (T2]

The events on each port are totally ordered 'Mdiu to time, that is, there are
arrows going downward from each event to the next along each column (port
history) of the diagram. In a dlagram.mrrespondlng to a computation, an arrow
from an ionput symbol to. an output symbol implies tﬁat the receipt of the input
symbol must necessarily precede the production of the cutput symbol during
that computation., In diagram T1, thin‘mean's that the first output true will not
be transmitted until after the second input false has been recelved, fn the
scenarfo represented by tha! diagram. 1f the first uufput is transmitted before
the second inpﬁt, the first diagram could not apply. Only the second could

apply, and so the ultimate cutput must be {trus true).

- 17 -

The composition rule fo.r systems with this characterization is as follows:

(1) To interconnect two systems, enumerate all pairs of diagrams from the
characterizations for the systems, that la, generate the Carteslan product of
the characterizations.

(2) Discard all pairs whose port histories do no(agree on the ports that are
linked to each other,

(3) Combine each pair of diagrams into a single diagram, ldentifying the
columns of linked ports. Condition (2) guarantees that all such identified
columns are egual.

(4) Place the weakest partial order on the cﬁmblned diagram which contains
the component partial orders. If this is not possible (because the resultant
order would not be antisymmetric), discard the diagram,

(5) Remove the columns for poris that were identified in step (3), since
they are not -ports ﬁf the interconnection, FPreserve the partial order omn
the rest of the diagram, The resulting collection of diagrams characterizea!.

the interconnection.

The diagrams given previously for systems _.S and 7 can be derived by

application of these rules from the behavior of their elementary components.

Now consider the 1nterconnei:tion of system S or T with system [, as

11lustrated in figure &5:

- 18 -

Figrare b

- 19 -

The relevant scemarlos for L [that is, the scenarios with (true) on port A and

(true true} or (true false) on port Q] are:

;3 Q A P
f——’"‘"“_T —_
-
~ true true ——»truo* true
true ——,?truo fnl;e
false
{L1]
A Q FA P
N
true true —— true 3 true
fa_lu ———>false false
trus
fr2]

When system S or T is combined with i, the input port of 8§ or T is identified

with port P of £, and the output port with port Q.

When [is combined with §, graph L1 can only be combined with 52 in a

consistent manner. [The L1-51 combination disagrees on port Q.]

- 20 =
After merging columns, one has:

A Q Z)

tr_ue ttue —-—)truo lrtIl
tme s tﬂll falu
fala.

After removing ports F and Q, one has;

true — > true

|

frus

LZ can only be combined with Si. After merglng columns and removing ports P

and {), one has:

trug¢ ——>trua

|

false

Therefore, the response of the interconmection of S and L to the input true is

(true true) or (true false),

- 21 -

When systems 7 and . are combined, graph L1 can be gombined with T2
just as it was combined with S2, Therefore, one scenario for the

interconnection of T and L is:

true ——>trus
true

When L2 is combined with T1, one obtains:

'fll' ;-——)-fl \\f]L

There are now arrows in both directions between the first symbol of
column Q and the seéond of column P. This diagram must therefore be
discarded, so the only scenatjo given earlier is the only possible one, and the

_dnly Tesponse of the interconnection of T and L to the 'lnput true is (true true).

