MASSACHUSETTS
INSTITUTE OF
TECHNOLOGY

LABORATORY FOR
COMPUTER SCIENCE

Overview of the Monsoon Project

Computation Structures Group Memo 338
January 1991

Kenneth R. Traub
Motorola Cambridge Research Center

Gregory M. Papadopoulos
Massachusetts Institute of Technology

Michael J. Beckerle
Motorola Cambridge Research Center

Jamey E. Hicks
Massachusetts Institute of Technology

Jonathan Young
ICAD, Inc.

To appear in Proceedings of the 1991 IEEE International Conference on Computer Design,
Cambridge, MA, October 1091.
Also published as Motorola Technical Report MCRC-TR. 15

This report describes research done at the Laboratory for Computer Science of
the Massachusetts Institute of Technology. Funding for the Laboratory is provided
in part by the Advanced Research Projects Agency of the Department of Defense

under the Office of Naval Research contract N00014-89-J-1988.
\ Subcontractor: Motorola, Inc, /
T T

545 TECHNOLOGY SQUARE, CAMBRIDGE, MASSACHUSETTS 02139

Overview of the Monsoon Project

Kenneth R. Traub
Motorola Cambridge Research Center

Michael J. Beckerle
Motorola Cambridge Research Center

Gregory M. Papadopoulos
Massachusetts Institute of Technology

James E. Hicks
Massachusetts Institute of Technology

Jonathan Young
ICAD, Inc.

Abstract

Monsoon is an experimental multi-threaded multi-
processor targeted to large-scale, general purpose sci-
entific and symbolic computations. In particular,
Monsoon is designed for the efficient execution of
code compiled from Id, a high level, implicitly par-
allel declarative language [6]. Monsoon is a prod-
uct of a multiyear cooperative research and develop-
ment program between the Massachusetts Institute of
Technology and Motorola, Inc., which, in turn, is an
outgrowth of over ten years of research in dynamic
dataflow architectures and languages conducted at
MIT. The intent of this paper, and of its sequels [5, 4],
is to provide an overall view of the Monsoon hardware
and software system architecture.

1 Hardware Architecture

As shown in Figure 1, a Monsoon machine includes
a collection of pipelined processing elements (PE’s),
connected via a multistage packet switch network to
each other and to a set of interleaved I-structure mem-
ory modules (IS’s). The PE nodes implement hard-
ware primitives for direct support of efficient multi-
threading, including zero-cycle context switching, sin-
gle cycle fork and join, and split-phase memory refer-
ences with arbitrary reordering. The IS nodes imple-
ment event-driven synchronization through the atomic
manipulation of presence bits which augment each lo-
cation of memory. Each PE references the set of nodes
as a uniform global address space.

The basic run-time execution state of a Monsoon
program comprises a tree of activation records, or
frames, which correspond to the invocation state of
many sitnultaneous procedures. Unlike the traditional
von Neumann stack model where only the top-most
frame is active, any subset of Monsoon program frames
may be executing at the same time. Moreover, there
may be many active threads of computation within

CH2040-3/91/0000/0150501.00 & 1991 IEEE

150

each frame. By using split-phase transactions, threads
may freely reference shared objects on a global heap.
The heap may be distributed across both PE and
IS nodes, but a given activation frame is mapped at
invocation-time entirely onto a single node. Please
refer to Figure 2.

The state of a thread is contained in a computa-
tion descriptor, or CI). A CD, also called a token, has
a value register V, and a continuation register C' that
defines the context in which the CD’s thread executes.
The C register contains a pair of pointers: the insirue-
tion poinier, IP, that indicates the next instruction to
be executed, and a frame pointer, FP, indicating its
associated frame in data memory. Each register is
72 bits: 64 bits of value and eight bits of (optional)
run-time type information.

1.1 Processing Elements

A Monscon PE is a 64-bit, highly pipelined pro-
cessor. A PE interleaves execution of up to eight
threads, drawn from a potentially very large set of
ready threads whose CD’s are kept in a pair of hard-
ware queues local to each PE, The ready threads, in
effect, represent available parallelism that the proces-
sor can draw upon to fill its pipeline and to mask the
latency of remote memory references.

Each trip through the pipeline, a thread fetches an
instruction in the first stage, performs a read or write
to its activation frame in the next three stages, per-
forms an ALU/FPU operation in the following three
stages, and in the last stage produces zero, one, or
two CD’s which emerge at the bottom. Normally, one
of these CD's is immediately recirculated to the top of
the pipeline; typically this CD has the same FP and
an incremented IP compared to its parent, and so a
chain of CD’s like this may be conveniently viewed
as a sequential thread {7]. A CD produced at the
bottom of the pipeline may also enter one of the two
thread queues, for later execution when no thread is

VME . .,o. ‘o.’.
LAY 10 “-'.. *
(68030}
*, k3
/’ ", Monsoon Processing Element
* SESEBEPEAR
Host & 110 H ’ 3
: NT7] :
s [Y :
i Instruction Instruction
] - = : Fetch Memory
IS = : .
%'_a‘ : <Opcode, 1, 8>
o H i
q - 88§ ; 1 :
10 PE o :
-t Eﬁ H Effactive
Q i Address
| PE
ot : FP +¢ |Opcode, s
: AR N
- - : FP+r |
s 1" i B Y Prosence | :
- : Presance “ : :
-t : b Bits
: Bits _.ﬂ.n_\;_x‘ \ Memory
s ™ : N\
/./ gt . FP +¢ | Opcode, s
i Yy ¥ |]
I-Structure - - : FPer /——
Memory Module et — =: Frame Store [>V Frame
: Operation [FP+r] Store
100 Miytesiseciport o i \ :
{4-bit serial 200Mhz ECL) ' . H
PE{FFIP) v I_"T'[FP4r] :
o I 5 72
.,o‘. 1
- - o I - :
‘_.-" """"""" < Ppeode, g frommmece T Y Temp { &
Rt | Noxt IP Logie | Y = Regs | i
o 3 (3 Stages) (3 Sigges) | :
4 »
H System User] :
i a read ('ghread n§.. Peo fpet 77, v, IY :
: ueus ueue -3 ‘ 72 :
: f F H
: (FIFO) rfg;% ;r g PEFP - } LR y i
: 4] 3 Form Thread -
: = Multiplexer H
: 144 g H
H 5 H
: Interprocessor J From Q b H
H Newv%rk “‘ 144 H
H - [N E
: / Nz :
H To H
CARIEL I PR PR RRETRRTETL) Illllllll."I"llllll'llll-llllI.IlII.llIIIIIIIIII.I..'I.IIIIIIII'IIIIlll'lll.'l!l"lllIIII'II'II.I‘I.II'IIf

Figure 1: Monsoon Hardware Architecture

151

£: A frame per invaked
procediire

Tree of
Activation Frames

g % h: k %

Loop

Interations = P! %

13 {1
e h

e — Y
P | _ PETP
: V r
, Computation Descriptor ¢
Mvemucacssmrrrsmnanicmn s e rraananmy 3

Split-phase
references

Shared
Global Heap

Shared Array

Figure 2: Monsoon Program Execution State

recirculated. In particular, when two GD’s are emit-
ted from the pipe one is often enqueued: this is a
single-cycle fork. The other possibility for a new CD
is that it enters the interprocessor network where it is
automatically routed to another PE or IS. The most
common case here is a split-phase transaction, where
the CD sent to the network is a memory request, and
the response will arrive sometime later in the form of
a new CI) that enters the System Thread Queue.

Two independent CD’s may synchronize with each
other by using the presence bits found on every word
of frame memory in the following manner. The first
thread, finding the presence bits of a frame location
set to empty, sets them to full, records its V regis-
ter in the location, and produces zero tokens at the
bottom of the pipe (i.e., the thread dies). The second
thread finds the presence bits full, and so continues
execution, with both its own V register and the V of
the other thread, recorded earlier in the frame slot, as
operands.

A PE is implemented on a single 9Ux400mm
surface-mounted printed circuit card which supports a
VME port for diagnostics and input/output, and two
unidirectional 100 Mbytes/sec network links (see [5]).
The processor core is byte sliced into eight 10,000 gate
1.5 micron CMOS arrays. The floating point unit
is fully pipelined, yielding up to 10 million double
precision floating point operations per second for a
100 ns. processor cycle time. "The current generation
implements a 256 KWord (32 bit) instruction memory,

152

256 Kword (72 bit) frame store, and two 64 KWord
(144 bit) thread queues.

1.2 I-Structure Modules

An I-Structure module (8] has a two stage pipeline,
a memory stage and an output stage. In the memory
stage, an incoming request is decoded into an oper-
ation code, memory address on the IS, and a value
or return continuation. A memory operation (read,
write, or exchange) is performed on the location, and,
for some operations, a response generated in the form
of a new CD to be sent to the requesting PE. A
typical store request stores the incoming value and
generates no response, while a typical fetch request
forms a new CD from the fetched value and the re-
turn continuation from the request. If a response is
generated, it is injected into the interprocessor net-
work in the output stage. Like the PE, each word of
IS memory is equipped with presence bits. These are
used to implement a variety of synchronizing memory
operations, including I-structure operations for pro-
ducer/consumer synchronization {2], and M-structure
operations for mutual exclusion [3].

Like the PE, and IS is implemented on a sin-
gle 9Ux400mm surface-mounted printed circuit card
which supports a VME port for diagnostics and in-
put/output, and two unidirectional network links. In
the current configurations, each IS supports four mil-
lion words (72 bits) and processes four million requests
per second.

1.3 Two Node and Sixteen Node Config-
urations

We have constructed Monsoon configurations com-
prising sixteen nodes (eight PE’s and eight I1S’s) and a
two-stage packel switching network. Associated with
each group of four nodes (two PE’s and two IS’s) is a
08030-based UNIX front end (the “host”) for boot-
strap, code loading, and 1/O. We have also con-
structed a number of two node configurations com-
prising a single PE, an IS, and 68030 front end. The
sixicen node systems are intended for scalability stud-
ies, while the two node systems should be useful for
code development.

2 Software Architecture

The software system for Monsoon has two goals.
The first goal is to provide a powerful environment for
developing programs for Monsoon, principally in the
Id programming language. Rapid program develop-
ment is supported by a tightly integrated edit-compile-
tun cycle, including the facility for separate compila-
tion and dynamic linking of procedures directly into
the execution vehicle. The second goal is to provide
a flexible, instrumented environment for experimenta-
tion with the Monsoon architecture. This is supported
through the integration of statistics gathering and dis-
play tools into the programming environment; these
tools provide access both to hardware statistics regis-
ters and to the more detailed statistics available from
the software emulator, Of course, these goals overlap
to a large extent: for example, statistics may be used
to help tune the performance of an application. It
should be noted that Monsoon hardware provides no
facilities for multi-tasking or address space protection,
and so the soft ware system takes the view that at any
given time, the whole machine (or static subdivision
thereof) is devoted to a single program.

The architecture of the soft ware system is depicted
in Figure 3. At the top of the figure are compilers for
the languages supported on Monsoon, currently as-
sembly language and Id [6]. The Id compiler supports
separate compilation of user procedures, but is still
able to do interprocedural optimization via a database
of separate compilation information. A trio of pro-
grams running on the host interact with Monsoon it-
sell. The Loader dynamically links and loads sepa-
rately compiled procedures directly into the machine,
and records inter-module dependences so that consis-
tency may be checked prior to execution. A Debugger
provides the ability to examine and change the con-
tents of memory, for debugging of programs or post-
mortem analysis. The Execution Manager is the pro-
gram running on the host when Monsoon is actually
executing a user program. Normally, its only role is

153

to start the program and await its termination, but it
can also collect run-time statistics during execution, If
the user has not requested run-time statistics collec-
tion, the Execution Manager does not interfere with
or slow down Monsoon at all. An off-line Statistics
Viewer analyzes and presents statistics collected dur-
ing execution, with & variety of features for interactive
display via X-windows or hardcopy via PostScript. Fi-
nally, the large box labeled “Id World” in the figure
integrates the software components into a seamless in-
teractive program development environment.

3 Emulator

The Loader, Debugger, and Execution Manager
interact with Monsoon through the Monsoon Ma-
chine Interface, or MMI, which provides access to the
machine via a client/server network communications
model. The Monsoon hardware provides a server, and
the Loader, Debugger, and Execution Manager are
clients of that server,

The Monsoon features visible via the MMI are
carefully chosen to avoid revealing too many imple-
mentation details of Monsoon. In particular, details
about the scan rings and decode memories are sup-
pressed, leaving only the instruction set architecture,
or macro-architecture, of the machine visible. As a
consequence client programs such as the loader or
program debugger cannot tell whether the server to
which they are connected is really Monsoon hardware,
or an instruction-level emulator, In fact, the soft-
ware system includes such an emulator, called MINT
(“Monsoon INTerpreter”), which avoids the overhead
of modeling internal operational details of the hard-
ware. To the software system, the emulator and Mon-
soon hardware are indistinguishable, and for that rea-
son we refer to the emulator as plug compatible with
the hardware. Of course, hardware-specific debugging
tools, such as the interactive scan-path debugger, do
not interface via the MMI, but rather at a lower level
(not pictured in Figure 3).

The MINT emulator serves a number of purposes
within the software system. First, MINT has provided
a vehicle for carly debugging of the software system
before hardware was available. This aspect of MINT
is discussed further in another paper in this proceed-
ings. Second, MINT provides an execution vehicle
when Monsoon hardware is in use or otherwise un-
available. Third, MINT is a useful experimental vehi-
cle, as it can be easily instrumented to allow gathering
of execution statistics beyond those that the hardware
can gather. For example, MINT has been modified
to gather address traces for studying the effect that
caches might have on the machine architecture.

One of MINT’s most powerful features for exper-

MONASM Source Code
Id Source Code
Separate Compilation Info
r ¥y
Id User Interaction
MONASM .
Compiler
Separate Compilation Info _
Monsoon Object Code Formar)
Id
User Interaction
World
User Interaction
User Interaction _
“ < Execution [*
Loader D ebugger Mana ger | Statistics Format
Monsoon Machine Interface T 1 !g!
Stalistics User -
Monsoon Viewer Interaction!
Interface Display
SOfI (ware Postsript »
t’j, 9
Monsoon
MINT
Hardware

Figure 3: Monsoon Software Architecture

imentation is the ability to select among different
queueing systems [9]. Queueing systems exploit the
property of compiled Id code which allows CD’s to
be processed in any order without changing the an-
swer computed by a program. By altering the order in
which CD’s are processed and the grouping of CD ex-
ecutions into artificial “4imesteps,” a wide variety of
Mmeasurements about program behavior may be taken.
For example, one queueing system employs one queue
from which CD’s are dequeued for execution and a
sccond into which new CD’s are enqueued. When
the first queue is emply, the timestep is declared fin-
ished and the queues are exchanged to begin the next
timestep. This models an ideal machine in which there

are an unbounded number of processors, zero commu-
nication latency, and perfect load distribution {(i.e., all
CD’s available in one timestep are processed in that
timestep by separate processors—such a distribution
is not actually realizable because all threads within a
given activation frame are constrained to execute on
a single PE). A graph of the instructions executed in
each timestep under ideal execution is called a par-
allelism profile, and is quite valuable in studying ap-
plications to see where the parallelism lies and how
algorithms might be improved [1].

The interchangability of MINT and the hardware
permits the same code for which idealized statistics
were gathered to be run on the hardware, to see

whether the system is able to exploit parallelism as
predicted by idealized execution.

4 Run Time System

The Id Run Time System (RTS) is a collection of
software procedures linked into every Id program, and
which execute on Monscon as part of the user’s pro-
gram. The Run Time System provides four basic ser-
vices: frame management for procedure activations,
heap management for aggregale data, error and excep-
tion handling, and I/0. The first two of these services
are critical to multi-processor performance, as they are
responsible for balancing of computation and distri-
bution of data, respectively, among the nodes of the
machine. Because these procedures are dynamically
linked into compiled code, it is possible to experiment
with different policies for balancing and distribution
without recompiling user applications.

Activation frame management consists of the rou-
tines get-context and return-context, which allo-
cale and deallocate the temporary storage needed to
call a procedure. When an activation frame for a pro-
cedure is allocated on a different PE than that of the
caller, work migrates from one PE to the other as part
of the calling convention. Thus, the Run Time Sys-
lem’s choice of where to allocate a new frame controls
how load is distributed. Notice that work distribu-
tion is confined to procedure boundaries, but the com-
piler is free to use the procedure calling mechanism at
places other than source code procedure boundaries.
In particular, different iterations of large loops are rou-
tinely distributed across the machine. _

The heap manager consists of the routines
get-aggregate and return-aggregate, which allo-
cate and deallocate storage on the I-structure mod-
ules. The heap manager must balance storage us-
age actoss I-structure inodules so that individual I-
structure modules do not become contention points,
Hardware support for interleaving adjacent words
across nodes is provided to assist in this.

Error and exception handling by the RTS is fairly
straightforward. The RTS simply records the error in
a vector of error descriptors and optionally requests
thal the host bring the whole program to a halt. If
the user defers errors, parts of the program continue
in parallel even though some of the threads have been
stopped by exceptions or errors.

Finally, the RTS provides input/output services to

the program. I/O routines in the RIS pass requests
via a DMA interface to the Monsoon Interface Soft- .

ware tunning on the host {as Monsoon has no direct
hardware interface to peripherals), whereupon the re-
quests are handled and any data returned to the RTS
for further processing by the user program.

155

[8] K. M. Stecle.

The dynamic linking of RTS procedures into the
user program is through software trap instructions.
This provides a much more efficient transfer of con-
trol than conventional procedure linkage. More im-
portantly, it provides an interesting level of flexibil-
ity to the instruction-level emulator, MINT. While
MINT is fully capable of emulating the execution of
RTS procedures, just as they would execute on the
hardware, it is also possible for MINT to recognize
the software trap instructions and branch to special
code within MINT to simulate the RTS. This has the
effect of compressing the execution of an RTS proce-
dure, for statistical purposes, into a single instruction
time. Typically this is used in conjunction with the
idealized queueing system; because each RTS call is
counted as a single instruction, the parallelism profile
is not skewed by serialization and other implementa-
tion details of a particular RTS.

(1] Arvind, D. E. Culler, and G. K. Maa. Assessing
the benefits of fine-grained parallelism in dataflow
programs. Ini. J. of Supercomputer Applications,
2(3):10-36, 1988.

[2] Arvind, R. S. Nikhil, and K. K. Pingali. I-
structures: Data structures for parallel computing.
In Graph Reduction, volume 279 of LNCS, pages
336-369. Springer-Verlag, Oct 1986.

[3] P. S. Barth, R. S. Nikhil, and Arvind. M-
structures: Extending a parallel, non-strict, func-
tional language with state. In FPCA ‘91, 1991.
(To Appear),

[4] M. J. Beckerle and G. M. Papadopoulos. Test and
validation for Monsoon processing elements. In
ICCD91. IEEE, Oct 1991. (To Appear).

[5] C. F. Joerg and G. A. Boughton. The Monsoon
interconnection network. In JCCD’91. IEEE, Oct
1991. (To Appear).

[6] R.S.Nikhil. Id version 90.0 reference manual. CSG
Memo 284-1, MIT Lab. for Comp. Sci., Cambridge
MA, Sep 1990.

[7] G. M. Papadopoulos and K. R. Traub. Multi-
threading: A revisionist view of dataflow archi-
tectures. In Proc. I18th Ann. Int. Symp. on Comp.
Arch., pages 342-351. IEEE, May 1991.

Implementation of an I-structure
memory controller. Master’s thesis, MIT, Cam-
bridge M A, 1990,

[9) K. R. Traub. MINT white paper. Technical
Report MCRC-TR-2, Motorola CRC, Cambridge
MA, Oct 1989.

