MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Project MAC

Computation Structures Group Memo No. 36-1

June 23, 196%

' w
Future Trends in Time-Sharing Systems

Jack B. Deﬁnis
Project MAC, M.I.T.
Cambridge, Massachusetts

Presented at the Operations Research/Time-Sharing Symposium
National Bureau of Standards, Gaithersburg, Md., October 29, 1568

" Future Trends in Time-Sharing Systems

Jack B. Dennis
Project MAC, M.I.T.
Cambridge, MassachusetLs

What levels of capability can be expected in future Time-Sharing
systems? ~How long will it be before these levels of capability are
generally available? To discuss these cuestions we shall indulge in
a classification of T:me-Sharing systems. This brings us back to
the question: What is Time-Sharing? Two views have been prevalent
around Project MAC at M, I,T. in speculation on the ultimate
obhjectives of Time-Sharing, The first view is conveyed by a phrase
Professor Licklider is fond of '"man/computer symbiosis". This is
the ides that when a person is working with a computer they are
pursuing together a common intellectual goal: The computer is
acting as an intelligence amplifier for the person, In this concept
there is no reference to the interaction of a person with fellow
intellectuals that share a common interest with him. In recognition

of the dependence of creative pursuits on the base of knowledge

developed by other individuals, a second view of Time-Sharing has
evolved, This is the thought that a Time-Sharing system is serving
an intellectual community of wusers far which the computer is the
medium through which they share their knowledge. These visions of
Time=Sharing are still far from being realized. 1 hope to give you
some indication of why this is so,

A more prosaic definition of Time-Sharing undoubtedly represents
the original intent of the term. According to this definitien,
Time~Sharing is the multiplexing of limited resources--that is, the
processor and wmemory of a computer--among many activities. This
concept of Time-Sharing has been employed in computation a very long

t Presented at the Operations Research/Time-Sharing Symposium,

National Bureau of Standards, Gaithersburg, Md., October 29, 1968,

time--so leng as computer memory and processing capacity have leen
applied concurrently teo several independent processing activities.
A classification of Timec-Sharing systems is according to the
distance they have logged along the road, from the latter primitive
meaning of Time-Sharing, toward the more general concept of a
computer utility serving as the medium for exchange of knowledge
within a community. ' o

Those acquainted with the history of computer systems often hold
that the first Time-Sharing systems were what is called "transaction
systems', The SAGE air defemse system and a sophisticated airlines
Teservation systems, such as the Sabre System originated by American
Airlines, are well known examples of transaction systems. These
systems include a central computer that multiplexes its »processing
capacity among a large number of agents interacting with it via
remote terminals, The operations performed by these systems are
principally the accessing and updating of common centralized data
bases relating to the mission of the system. One property of
transaction systems is that all of the processing activity perforued
by the system is forescen by the designers. The users transaction
system are not performing individual independent activitics, but are
performing activities, entirely anticipated by the system designer,
that collectively accomplish the mission of the system,

The techniques developed for transaction systems are directly
applicable to what is called "dedicated information systems'. These
systems provide widely distributed users remote access to data bases
maintained at a central installation. A good example is a retriceval
system for bibliographic information in some specialized field~-

medical diagnosis--for example. The hardware and programming

technologies developed for transaction systems are well known and
the implementation of dedicated information systems 1is
straightfoward.

The second level of Time-Sharing system is the dedicated
interactive system. Such a system makes a particular programming
Tanguage, usually one of limited capability, available to users at
interactive terminals. Perhaps the best known example is the
Jonniac Open Shop System (JOSS), originally sct up at the Rand Corp.
with a dedicated interactive system, users may write, edit, test,
revise, and -run small programs cxpressed in the single language
implemented by the system.

The third classification is the general purpose interactive syster
with which users may develop and run from remote consoles, programs
expressed in any one of several high level languages--tfor cxample;
Fortran, Basic, Algol. Two of the most popular commercial Time-
Sharing computers support software systems that arc renresentative

of this class==~the General Electric Model 265 and the Scientific
Lata Systems Model 240, _ '

"The fourth <classification is the extensible systems. The
differentiating characteristic of an extensible system 1is that a
user is not restricted to the programming languages supnlied as part
of the system. The user may prepare files of data and/er prograns
and make them availablc to other members of the community having
access to the system, Furthermore a user is ahle to construct from
his remote terminal, programs that implement a new programming
language, and he is able to authorize their use by others. The best
known extensible syster is the Compatible Time-Sharing System (CTSS)
developed at M.I.T. OSystems that achieve this level of capability
are rare, but systems similar in many ways to CTS5S have bleen
implemented at several institutions and commercial systems of
comparable compatibility are becoming available.

At present, .the available system technology--hardware and
software--is not able to offer to the warket a Time-Sharing system
of greater capability than the extensible variety, TIurthermore, it
is not foreseeable when more advanced conceptions of Time-~Sharing
systems will be generally available. This is unfortunate because
there are important directions in which the capabilities of computer
systems nead to be extended, These essential directions of
evolution serve to define further classifications of Time-Sharing
systems. :

" The fifth level 1is a term from Professor Licklider: ‘"Coherent
systems'. These are characterized by the following property:
Program modules’ written by various authors may be used in the
construction of new programs without need of knowing the internal
mechanism of the modules. The easiest way to create a new progranm
is to assemble it from already existing npieces, The ability to
combine arbitrary programs into larger units is called programming

enerality, The far~-reaching implications of programming generality
regarding the design of computer systems will be explained in more
detail later in this paper. While no existing systems qualify
perfectly as coherent systems, a number cf programming languages and
computer systems have achieved wunusual degrees of programming
generality. An early example is the Genic system built on the Rice
University computer, in which it is possible for preogram medules to
acquire and release storage as required 1in the course of a
computation. Other examples are certain programming subsystems
implemented under CTSS at M,I1.T. for applications in civil
engineering and industrial management, In these two cases, 2
specialized programming system was developed within which the
coupling of »rogram modules is relatively easy. Some programming

languages have characteristics important to programming generality;
these include the list processing language Lisp, and languages such
as Landin's Iswim based on the Church lambda calculus,

When multi access computer systems are linked through
communiication chammels, further qualitative levels of performance
gy~ be distinpuished. An information neilwork is an intcrconnected
set of computer installations in which data bases created at any
installation are=-with the owner's permission--available for use 2
any point in the network.

%inally, the term informetion utility is reserved for the ultimate
evelutionary form of Time=Sharing that can presently he cenvisioned.
An information utility is distinguished from an information network
by the ability of a user to program & transaction system within the
computer utility, The achievement of this objective still seems to
be 10 to 15 years in the <future., The arguments reouired to
substantiate this opinion cannot be given here; however, there is
one major obstacle that can be pointed out. The approach toward
ensuring the integrity of information in a transaction system and in
a general vurpose Time-Sharing system are rather different., In a
seneral purpose system the technique used is to provide backup files
which can be used to restore the system information base in the
gvent of a failure, The backup files are updated at the end of each
user's console session. In a transaction system the transaction
routines are designed to complete a definite picce of processing on
pach activation. Ilense the only record that may be inconsistent at
an unscheduled shutdown is the one being processed at that instant,
(btaining this property in a multiplexed computer system requires
adherence to preogramming conventions that cffect the detailed coding
of the transaction routines. This is im direct conflict with a
basic assumption of general purpose Time-Sharing--that the user
should not have to be concerncd with the problems of data integrity
in designing his programs. The resclution of these two viewpoints
on the integrity of the information base of a computer system is
perhaps the most serious unsolved problem in computer system design.

In the future computer programming costs will increasingly
dominate hardware costs. Therefore the most important avenue of
progress is to develop means for reducing the human activity
required to produce programs to a small fraction of what it is
today, Figure 1 lists four means of reducing the cost of
programming; the first two are already in wide use, There 1is 1o
longer any serious argument that high level programming languages do
not reduce the human effort required to specify a pregram. Also, it
is generally appreciated that on-line debugging and editing con-
siderably lessen the work of putting a program into useful operating

ffigh level programming language.
On-~line program development.
Interchange of programs among users.

Use of existing programs as compoments in building new proprams.

Figure 1. Means of reducing programming costs.

form.

(ne way to acquire a program (number 3) is to bhorrow it from
somecne else who- has already made the investment of designing .and
checking its operation, This should be a very cffective method, for
presumably, it should require no programming at all, ilowever, the
problems of program compatibility between similar systems and
different systems rudely interfere with success. The elimination of
these difficultics is through the standarization of programming
languages.

A most important potential means of creating a program is [number
4) to construct it from existing programs. Very often the exact
~rogram for an application does not exist, but major components of
it have been expressed as programs, very likely in different
languages. Propramming generality 1is the property of a computer
system that cnables users to combine existing program modules
indcpendently expressed in possibly different languages.

In current practice, a programmer expresses his program in terms
of the basic primitive - operations implemented by the computer.
installation - (Fig. 2}, These primitives include the arithmetic and
logical operations, operations for manipulating character strings,
the use of subscripting to select an element of an information
structurs, the basic - algorithms implemented by routines in the
subroutine library, and operations on files, The majority of
programs writtem today are cxpressed in terms of these primitive
functions with the aid of a high level programming language.

Rather, what should be commonplace is illustrated by Figure 3.
Once some program modules have been expressed in terms of the
primitive operations at an installation, further program modules
that perform more complex functions are created by combining modules
at the first level. 5Still other programs are constructed from these
resulting in a hierarchy of arbitrary denth.

What are the requirements for a computer system to offer
.programming generality? It must be possible for two program modules
to operate together although they are written by different
" programmers or in different languages. Neither program author
should be required to know the internal details of the other module,
its memory rTequirements or what other program modules it uses to
perform its functicn. The concern of a programmer using a wmodule
should only be that it performs the desired transformation of input
values into output values, and operates with adequate efficiency.
Four vrequirements are implied by these objectives: Since the
modules are independently specified, all information exchanged
between any pair of modules must be passes as parameters--there can
be no global information. Secondly, any module must be able to

Figure 2.

Program modules represented in terms of basic
primitive operation of a computer installation

Figure 3, Program modules created through cembination
of existing modules.

create arbitrary informution structures during its operation. One
module must not be requirad to foresee the amount of storage a
second module will need to carry out a requested computation. A
module used in the construction of a larger module may depend for
its operation oan yet other program modules, The author of a new
program should not have to be awarc of this dependencc. Finally, it
must be possible to transmit an arbitrary information structure to
another module as an arguaent.

These characteristics are not provided by conventinal computer
systems, Oné implication is that all storage allocation decisions
made to fill a module's need for memory must be made by tlic computer
system. ‘The computer hardware and operating system must manage the
assignment of information within the hierarchy of memory media used
ir a modern computer installation. These decisions cannot be made
by the program modules because each module is presumed unaware of
the storage requirements of the other modules operating with it.

In the majority of present day computer systeoms, a program can
reference information via two mechanisms, On one hand is
information representod in main--core--memery, made up of simrle
variables, arrays and linked structures. Tiese data are accessed
directly by vrograms through the addressing facilities of the
processing unit. The second mechanism is wused for information
represented as files, and is implemented by the operating system and
a file directory. or catalog. The use of two scparate addressing
mechanisms creates a severe problem in realizing programming
generality because there is no rational general rulce for deciding
wvhich method of access should be used for the different components
of a computation, Also, in most contemporary systems it is not
possible for information represented as files te be passed =as an
argument of a procedure call, since the mechanisms used to
commrunicate arguments assume their values reside in main memory.
These are basic arguments that programming generality requires that
a computer system implement a virtual memory or address space of
sufficient size to centain all files pertinent to a user's
application, The Multics system under development at RM.T1.T. 1is
unique in abolishing the distinction between "file' and "array" by
implementing an unusually large virtual memory.

Returning to the subject of compatibility, it is important to note
that the primitive opcrations of a computer system for file
manipulation and console communication are largely determined by the
operating system, and not by programming languages or their
compilers. As Time-Sharing becomes widely available, more and more
programming systems will Dbec implemented that depend intimately on
the file processing and console communication primitive in usc at a

-10-

particulay installat’on., This is as if the job control cards heceme
dispersed throughout a program instcad of being something simply
added as a prelude. Fruitful exchange of programs within the future
computer utility will only be possible 1f these aspects of operating
systems pecomc standardized. The small effort being devoted to this
guestion indicates we are destined to cendure much frustration
arising from thesc sources of incompatibility,

Several basic problems have been explained in computer system
design which must be attacked and solved along the path toward the
cemputer utility. It is difficult tec see how Time-Sharing systems
beyond the power of the extensible systems can come into gencral use
within the next 4 or 5 years,

