Future Treonds in Fime Sharing Svstfems®

Jack 3. Dopnis
Massachuscetts Lesitute of Technolovy

Project MAC

January 13, 1969

Computation Structurcs Cremp Memo No, 30

Ldited transcriotion of a talk premared for the Orevatiou Research/

Time Sharing Symposium, National Burean of Standards.

Ml., October 29-31, 1968.

Gt therahors,

FPuture ‘rends in Time Sharing Syskems

Jaclk B. Dennis

There are three difficulties with my task. In the first nlace 1 have
chosen to speculate on the future and thgﬁ is frqugntly hazar&nus. A secound
difficulty is following the great show provided by the previcus speakers. Finally
I am sure everyone here would jﬁst as soon discuss the issues already raised
over lunch,

What levels of capability can we expect in future Time Shariag svstems?
How long will it be before these levels of capability are generally available?
To discuss these questions I shall indulge in a classification of Time Sharing
systems. This brings us back to the queétion: what is Time Sharing? Two views
have been prevalent around Preject MAC at M.I.I. in our speculacions on the
ultimate objectives of time sharing. The first view is cowveyed by a phrase
Professor Licklider is fond of - man/computer gymbiosis, This is the idea that
when a person is working with a computer they are pursuilng together a common
intellectual goal: The computer is acting as an intelligence amplifier f[or the
person. In this conceopt there is no reference to the interaction ot a person wi Ll
fellow intellectuals that share a common interest with him. 1In recognition of
the dependence of creative pursults on the base of knowledge developed by
other individuals, a second view of Time Sharing has evolved. This is the
thought that a Time Sharing system is serving an intellectual communily of users
for which the computer is the medium through which they share their knowledye .
These wvisions of Time Sharing are still far from being realized. [hope o opive

you some indication of why this is so.

A more prosaic definition of Time Sharing undoubtably represents the
ariginal intent of the term. AcLording to this defintion Time Sharing is the
multiplexing of limited resources (e.g. the processor and memory uf a computer)
among many activities. This concept of Time Sharing has been cmpioyed in com-
putation a very long time - sc¢ long as computer memory and processing capacity
have been applied concurrently to several indenendent processing activities.

My classification of Time Sharimg Systems is according to the distance they
have logged along the road from the latter primitive meaiing of Time Sharing
towards the more general concept of a computer utility serving as the medium
for exchange of knowledge within a community.

Those acquainted with the history of computer systems often hold that the

First Time Sharing systems were what I call transaction systems. The Sage air

defense system and g sophisticated airlines reservation systems such as the
Sabre System originated by American Airlines, are well-known cxamples of trans-
action systems. These systems include a central computer that multinlexes its
processing capacity among a large number of agents interacting with it via remote
terminals. The operations performed by these systems are principally the accessir
and updating of common centralized data bases relating to the mission of the
gystem, One property of transaction systems is that all of the nrocessing
activity performed by the system is foreseen by the designers. The nsers
transaction system are not performing imdividual independent activities, but
are performing activities, entirely anticipated by the system desigmer, that
collectively accomplish the mission of the system.

The techniques developed for transaction systems are directly applicable to

what 1 call dedicated information systems. These systems provide widely dis-

tributed users remote access to data bases maintained at a central installation,
A good example is a retrieval system far bibliographic information in some

specialized field - medical diagnecsis, for example. The hardware and prougraming

-3-

technologies developed for transaction systems are well known and the im-

plementation of dedicated information systems is straightfoward.

The second level of Time Sharing system is the dedicated interactive
system. Such a system makes a particular programming language, uvsually onc of
limited capability, available to users at interactive terminals. Perhaps the
best known example is the Johniac Open Shop System(J0OS3) originally set up at
the Rand Corpuration. With a dedicated interactive system, users may write,
edit, test, revise and run small programs exoressed in “he single languange
implemented by the system.

The third classification Is the general purpose interactive system with

which users may develop and run from remoke consoleg programs expressed in any
one of several high level languages - for example, Fortran, Basic, Algol, cte.
Twe of the most popular commercial Time Sharing computers support software
systems that are répresentative of this class - the General Electric model 265
and the Scientific Data Systems model 940.

The fourth classification is the extensible systems. The dilferentiating

characteristic of an extensible system is that a user is not restricted to the
programming languages supplied as part of the system. The user mav prepare f£iles
of data and/or programs and make them available to other members of the communily
héving access to the system. Fﬁrthermore a user is able to construct from his
remote terminal programs that implement a new programming language, and he is

able to authorize their use by others. The best known extensible system is the
Compatible Time Sharing System (CTSS) developed at M,I.T. Systems that achieve
this level of capability are rare, but systems similar in many ways to CTSS

have been implemented at several institutions and commercial systems of comparable

compatibility are becoming available,

At present, the available system technology - hardware and saftware-
is not able to offer to the market a Time Sharing system of greater capabilifty
than the extensible variely. Furthermore, it is not forescecable when more
advanced conceptions of Time Sharing systems will be generally available., This
is unéortunate because there are important directioms in which the capabilities
of computer systems need to be extended. These essential directions of evolution
serve to define further c¢lassifications of Time Sharing systems.

For the fifth level T agaih use a term from Professcr Licklider: coherent
systems. These are characterized by the follewing property: Program modules
written by various authors may be used im the construction of new programs with-
out need of knowing the internal mechanism of the modules. The easiest way to
create a new program is to assemble it from already existing pieces. I like ta
call the ability to combine arbitrary programs into larger units orogramming
generality. later in this talk, T will explain in more detail the far-reaching
implications of programming geqerality regarding the design of computer systems.
while no existing systems qualify perfectly as coherent systems, 2 number of
programming languages and computer systems have achieved unusual degrees of
programming generality. An éaqu example is the CGenie system built on the
Rice University Computer, in wﬁich it is possible for program medules to acquire
and relcase stoerage as required in the course of A computation. Other examples
are certain programming subsystems implemented under CTSS at M.I.T. for anpli-
cations in civil engineering and industrial management. In these two cascs,

a specialized programming system was developed within which the coupling of
program modules is relatively easy. SOme programming languages have character-
istics important teo programming generality: These inelude the list processing

language Lisp, and languages such as Landin's Iswim based oo the Church lambda

calculus.

=5=

When multi-access computer systems are linked through communication
channels, further qualitative levels of performance muy be distinguished.

An information network is an interconnected setb of computer installations

in which data bases created at any installation are {vith the owner's permission)

avallable for use at any point in the network.

Finally, I reserve the tert information utility for the ultimate ev-
colutionary form of Time Sharing that T can presently envision. 4An information
utility is distinguished from an information network by the ability of a user to
program a transacticn system within the computer utility. The achievemant of
this objective still seems to be ten to fifteen vears in the Future. I cannot
give here all the arguments required to substantiate this opinion: however
there is one major_obstacle T wish to point out. The aoproach toward ensuring
the integrity of informacion iﬁ 4 transaction system and in a general purpose
Time Sharing system are rather different, In & general purpose system the
technique used is to provide b%ckup files which can be used to restore the
system information bage in the event of a failure. The backup files are up-
dated at the end of each user's comscle session. In a transacltion sysbkem Lhe
transaction routines are desigﬁed to complete a definite piece of processing on
each activation. Hence the only record that mav be inconsistent at an unschedule
shutdown is the one being processed at that instant, Obtaining this property in
a multiplexed computer system requires adherence to vrogramming conventions that
cffect the detailed coding of the transaction routines. This is in direct

i
conflict with a basic assumptién of general purpose Time Sharing - that che user
should not have to be concerned with the problems of data integrity in designing

his programs. The resolution of these two viewpeints on the integrity of the

information base of a computer system is perhaps the most serious unsolved

problem in computer system design.

-h-

In the future computer progfamming costs will increasingly dominate
hardware costs. Therefore the most important avenue of progress is to develon
means for reducing the human activity required to produce programs to a small
fraction of what it is today. Vligure 1 lists four means of reducing the cost of
programning. The first two are already in wide use, Thore is no longer any
serious argument that high level programming languages do not reduce the human
effort required to gspecify a program. Alsec it is generally appreciated that on-
line debugging and editing considerably lessen the work of putting a program into
useful operating form. \

One way Lo acquire a program (number 3) is to borrow it from someone elsc
who as already made the investment of designing and checking its operation., This
should be a very effective metﬁod, for presumably, it should require no vrogram-
ming at all. However, the problems of program compatibility between similar
systems and different systems rudely interfera with success. he elimingtion
of these difficulties is through the standardization of programming languages.

A most important potential means of creating a program is (number 4) to

|

construct it from existing programs. Very often the exact program for an
application does not exist but-m;jor components of it have been expressed as
programs, very likely in different languages. Programming generality 1is thg

property of a computer system that enables users to combine cxisting program

modules independently expressed iIn possibly different languages.

In current practice, a programmer expresses his program in terms of the
basic primitive operations implemented by the computer installation (Figure 2).
These primitives include the arithmetic and logical operarions, operaticns for
manipulating character strings, the use of subscripting to select an element of
an information structure, the basic algorithms implemented by routines in the

gsubrontine library, anu operations on files. The majority of proprams written

~-Hha-

1. High level programming language

2. On-line program development

3. Interchange of %rograms among users

&. Uge of existingfprograms as components

in buiiding new programs.

Figure 1. Means of reducing programming costs.

-7

today are expressed In terms of these primitive fumnections with the aid of a
high level programning language.

Rather, what should be commonplace is illustrated by Figure 3. Once sowe
program modules have been expressed in terms of the primitive operations at
an installation, further program modules that perform more complex functions
are created by combining modules at the first level., Still other programs are
constructed {rom these resulting inm a hierarchy cl arbiiravy depth.

What are the requirements for a computer system to offer orogramming
generality? It must be possible for two program modules to anerate togecher
although they are written by deferent programmers or in different languages.
Neither program author should Ee required to know the internal details ol e
other module, its memery requirements or what other program modules it uses to
perform its function, The concern of a programmer using & module should only he
that it performs the desired t%ansformation of input values into output values,
and operates with adequate efficiency. Four requirements are implied by these
objectives: Since the modules are independently specified, all information
exchanged between any pair of modules must be passed as parameters - there can
be me global information, Secbndly, any module must be able te create arbitrary
information structures during %ts operation. One module must net be required
to foresee the amount of storage a second module will need to carry out a re-
quested computation. A module used in the construcktion of a larger module may
dépend for its operation on yet othef program modules. The author of a new
program should not have to he aware of this dependence. Finally, it must be
pogaible to transmit an arbitrary information structure to another madule as
an argument.

These characteristics are not provided by conventinal computer systems.

One implication is that all storage allocation decisions made to fill a module s

need for memory must be made by the computer system: The computer hardware
and operating system must manage the assignment of information within the
hierarchy of memory media used in a modern computer insztallation. These de-
cizsions cannot be made by the program modules because each module is presumed
unaware of the storage requirements of the other modules operating with it.

In the majority of preesent day computer systems, a program can reference
information via two mechanisms. On one hand is informarion represented in
main (core) memory, made up of simple variableg, arrays and linked etructures.
These data arc accessed directly by programs through the addressing facilities
of the processing unit. The second mechanism is used for information represented
as files, and is implemented by the operating systemaxd a file directory or
catalog. The use of two separate addressing mechanisms creates a severe prohlem
in realizing programming generality because there is no rational general rule
for deciding which method of access should be used for the different components
of a éumputation. Also, in most contemporary systems it is not pessible for in-
formation represented as files to be passed as an argument of a procedure call,
since the mechanisms used tc communicate arguments assume their values rgsida in
main memory. These are basic arguments that programming generalitry rerquires that
a computer system implement a virtual memory or address space ol suflficient size
to contain all files pertinment to a user's application. The Multics system
under development at M.I.T. is unique iin abolishing the distinction between
"file" and "array" by implementing an unugually large virtual memory.

Returning to the subject of compatibility, it is important.to note that
the primitive operations of a computer system for file manipulation and cunsole
communication are largely determined by £he operating system, and not by
programming languages or their compilers. As Time Sharing becomes widely avail-

able, more and more programming systems will be implemented that depend intimntely

-g-

on the file processing and console communication primitive in use at a
particular imstallation. This is as if the job control cards became dispersed
throvghout a program instead of being something simply added as a prelude.
Fruitful exchange of programs within the future computer utility will only ke
possible if these aspects of operating systems become standardized. The small
effort being devoted te this question indicates we are destined to endure much
frustration arising from these sources of incompatibility.

I have explained several basic problems in c¢omputer system design which
must be attacked and solved along the path toward the computer utility, It is
difficult to see how Time Sharing systems beyand the power of the extensible

systems can come into general use within the next four or five years.

