MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Project MAC

Machine Structures Group Memo &4 Memorandum MAC-M-163
June 11, 1964
A PROCESSOR DESIGN: MAP-1
by

Earl C. Van Horn

I INTRODUCTION

This note proposes a logical structure and an order code for a typical
central processing unit of a multi-user computing system. The processor is
considered as a unit that is logically distinct from the i/o equipment and
the memory system. While this note discusses neither i/o activities mor
memory structure, it does rely on certain characteristics of the memory-

processor interface which have been outlined by the author and J. B. Dennis*,

II CRITERIA
The following three criteria have influenced the MAP-1 design.

Syllable-structured order code. For a given instruction set, the number

of instruction bits per instruction can be reduced by designating the more
frequently used instructions with a fewer number of bits. In fact, the maxi~
mum - possible reduction is obtained in am order code in which every instruc-

tion, i, is encoded using n; bits, where nj satisfies the following relation.
-10g2 Pr(i) < ni<:,-log2 Pr(i) + 1

Here Pr(i) is the probability that the instruction i will be issued by the
stored program.

In MAP-1, an attempt has been made to increase the efficiency of inmstruc-
tion encoding by making instructions and immediate data of variable length,
while still maintaining reasonable simplicity in the decoding hardware. Instruc-
tions and immediate data are made of eight bit syllables., The shortest imstruc-
tion is 1 syllable long, and the longest instruction consists of over 10
syllables.

Programmed addressing. It is anticipated that the vast majority of MAO-1

programs will be pure procedures. Moreover, MAP-1 programs will deal with a

*%Van Horn, E.C., "An Approach to Dynamic Storage Allocation', Project MAC
Memorandum MAC-M-115, Nov. 1, 1963,

*Dennis, J.B., "A Machine Structure for Dynamic Storage Allocation', Project MAC
Memorandum MAC-M-137, Jan. 31, 1964.

D

segmented memory structure. Very little experience has been accumulated in-
the coding of pure procedures in a segmented memory structure, and there is
reason to believe that conventional addressing schemes will only be partially
applicable to this new environment. For example, it is difficult to decide
whether indirect addressing should precede or follow indexing in these cir-
cumstances.

In MAP-1, the programmer issues instructions to build up the memory
address in the memory address register, and then issues a "fetch from memory
address register" instruction. This facility allows the programmers using
MAP-1 to develop their own techniques for address computation with a minimum
of bias from the hardware.

It is likely that after a few years of experience with MAP-1's programmed
addressing feature, designers will be able to recognize and make automatic, in
a suceeding generation of processors, a few of the more frequently used address-
ing sequences.

While programmed addressing tends to increase the number of instructioms
required to express a given algorithm, the use of a syllable-structured order
code reduces the average number of bits per instruction to such an extent that
the algorithm encoding efficiency of a MAP-1 program might compare favorably
with that of say a 7090 program.

Variable-size, general-purpose registers. MAP-1l is intended for use in

a multi-processor, multi-memory system with interlaced addressing. In such
a shared-memory system, each processor can expect to spend some fraction of
its time waiting in queues for memory service.

By designing the order code of each processor so as to reduce the number
of memory references per algorithm executed, one reduces not only the number
of opportunities for delay per algorithm but also the expected delay per oppor=-
tunity for delay. Both of these reductions serve to increase the rate at
which the system executes algorithms. Experience has shown that it is both
possible and convenient to code algorithms in such a way that certain inter-
mediate results are referenced much more frequently than others. It seems
reasonable therefore to provide in the processor a certain amount of storage
where temporary results can be deposited and read.

The "'state word" of a processor is the data that the processor stores

within itself from one instruction to the next. The above arguments persuade

-3-

us that MAP-1 should have a large state word. However, there are two reasons
why the MAP-1 state word should not be arbitrarily large. TFirst, whenever the
processor suspends a program sequence to take up a new program sequence in a
different sphere of protection, the old state word must be completely exchanged
with the new state word. This exchange operation takes an amount of time that

is proportional to the state word size. If idle state words are stored in the
main memory, the exchange also consumes the memory-processor communication
resource in proportion to the size of the state words. The second reason for
desiring a small state word is that if a processor has a large state word, then
the storage facilities within the processor that are necessary to hold this state
word are not allocatable at electronic speeds. Each program sequence has availa-
ble to it in its processor some ''state word storage', which is useful to it,

but to no other sequence. If the state word storage is too large, then some
sequences will not be able to use all of it, This idle storage cannot be used

by other sequences, and so constitutes a wasted system resource.

To summarize, small state words tax the memory-processor communication
resource, while large state words make sequence switching cumbersome and contra-
dict the basic rationale for an allocatable computing facility. Current tech-
nology indicates that a state word size of around 1000 bits is an appropriate
compromise among the above faetors,

We next consider the question of how the state word storage should be
organized into registers so that the programmer can deal with the state word
data in a convenient way. Some parts of the state word storage are so often
used to hold specialized data that they can be organized into fixed length
registers which have designated functions and are referenced in special ways.

The usage of the other parts of the state word storage varies from problem to
problem, and hence the organization of these parts ought to be as flexible as
possible.

In MAP-1, a portion of the state word storage is arranged into specially-
referenced registers. The remainder of the state word storage is organized into
a "byte pool”, consisting of a string of 64 8-bit bytes within which are designated
16 registers. Six of these registers are so frequently used for certain purposes,
such as subroutine linkage, that they are assigned fixed lengths and fixed posi-
tions in the byte pool, These 6 registers consume 16 bytes from the pool., The
remaining. L0 registers are designated by the stored program to have arbitrary

lengths and arbitrary positions within the 64 bytes of the pool.

Any register may be used as an accumulator, a temporary storage register, an
index register, a counter, a program flag register, or a memory address register,
The 6 fixed registers also have additional special properties, in that they are
automatically referred to by certain instructions.

It is possible that, after a few years of experience with the wvariavle-
size, general-purpose registers of MAP-1, designmers will be able to arrive at

a configuration of fixed-size, general-purpose registers which will satisfy

the majority of programmers.

11I. Detailed Description

This section describes in a diagramatic way the structure of the

MAP-1 processor, The following topics are covered in the following order.

O 0 O~ U W N e

=
o

State word storage organization

A few typical instructions

Natural data formats

Immediate operands

Syllable types

Concise instruction tabulation

Description of selected instructions

A suggested assembly language

A programming example - matrix multiplication

A comparison with a 7095 program to perform an equivalent

matrix multiplication.

The MAP-1 disign is incomplete in that consideration has not been

given to ifo operations, inter-sphere commnication, segment lock-out,

and other topics which are closely associated with an over-all system

design. Additional memoranda will be published to cover these topics

as various properties of the MACS-1 (Multiple Access Computing System)

become more definite.

The remainder of this memo is intended to be an introduction to

the MAP-1 design, as well as a reference manual for those familiar with

the design. Its primary purpose is to introduce the philosophy and general
flavor of the MAP-1 disign to MAC participants, and to stimulate discussion
on the topic of processor design. The author bopes that interested persons
will discuss MAP-1 with him, both to clarigy its details and to submit com-
ments, criticisms, and suggestiomns.

The construction of this order code has been influenced by the author's
personal opinions and habits. No doubt the design contains some shortcomings.
These shortcomings can best be located by individuals whose opinions and

habits are different from those of the auhtor.

1. State Word Storage Organization

Data that are exchanged during a sequence switch

RO | 24 | data relative (i.e., "memory address register'')
Rl [24 i current routine's temporary storage
base pointer, relative in C(T1)
R2 |____ 24 i calling instruction's temporary storage
base pointer, relative in C(T1)
3| 24] calling instruction's TO
7R4 | 24 | PR of the next instruction
after the calling instruction
R [8] calling instruction's ST
48 bytes, 8 bits each, which complete the
64 byte pool from which
R6-R15 are formed, as indicated by
' D6-D15
D6 | 12 { gives starting byte and byte count of R6
D7 | 12 | gives starting byte and byte count of R/
:ﬂ
D15 | 12 | gives starting byte and byte count of R15
PR | 24 1 program relative
TO | 24 | attached program segment
TL | 24 i attached temporary storage segment
T2 [24 | attached general segment
™ | 24 | attached general segment

SN} 16 | sphere number

sT | 8 | status byte

condition code

enable integer overflow break

enable real underflow and significance break
enable jump break

real arithmetic significance mode

~N oUW

inhibit block look aside update

Data that are not exchanged during a sequence switch

[2—_] [_Tl TO extension

Tl extension
T2 extension

T3 extension

type of reference allowed: v;‘“‘*-5555555“ inhibit reference because

of lockout

> [[
[=] [[

00: read only for instructions and
immediate data omly

01: read only
10: mnot used

11: all references permitted

L1l 6 entry

1} block
look-aside*
| 1 l

purge indicator

:
1 H ¢
18 H

A8 E

page bleck valid

£
w
1]
[

* Lee, F.F., "Look-Aside Memory Implementation," Project MAC Memorandum MAC-M-99,
August 19, 1963.

2. A Few Typical Instructions

The "read from memory" instruction, "mrtn' is one syllable in

length, and has the following structure
10yyxxx
IN

A memory name is formed by the juxtaposition of C(Tyy) and C(RO). The
data by this name is fetched from memory and placed in Rxxxx. The number
of bytes fetched is equal to the length of Rxxxx. The first byte is
placed in the left most cell, and bytes of consecutively higher names
are placed to its right. The condition is unchanged by the mrtn
instruction.

The "logical load register' instruction, "1lod", is 2 or more

syllables in length, and has the following format

00011111 XXXXYYYY
IN RD

If i=0, Rxxxx is cleared, and G(Ryyyy) are placed right - justified into
Rxxxx. Lf Ryyyy is longer than Rxxxx, the excess C(Ryyyy) are ignored.
Ryyyy is unchanged. Here C(Ryyyy) is called a "register operand," and yyyy
is called a "register number.’

If i=1, the operation is the same except that the operand to be
loaded into Rxxxx is formed from the syllables following the second syllable
of the instruction according the information contained in yyyy. The operand
so formed is called an "immediate operand," and yyyy is called an "immediate
control group'.

The second syllable of the llod instruction is called an "RD" syllable,
because it gives "register and data'.

The 1lod instruction sets the condition code as follows.

code condition
0 & 0, no non-zero bits ignored
1 =0, no non-zero bits ignored

2 7 0, no non-zero bits ignored

code condition

3

4 &0, non-zero bits ignored
5 =0, non-zerc bits ignored
6 70, non-zero bits ignored
7

The "quick add to register' instruction, "qadd", is two syllables long,

with the following format.

00010110 XXXXYYYY
IN RQ

yyyy is added to C(Rxxxx) at its low order (right hand)} end, The result is
placed in Rxxxx. Here yyyy is called a '"quick operand.” The second syllable
of this instruction is called an "RQ" syllable, because it gives ''register
and quick data.”

The condition code is set by the qadd instruction as follows

code condition
0 €0, no ov
=0, no ov
>0, no ov

~ ot B W
N
=
-
Q
<

3. Natural Data Formats

The left most bit of a word is numbered bit 0O, and successive bits
to its right are given successively higher numbers. The bytes of a word
are likewise numbered starting with zero at the leftmost byte, with suc-
cessive bytes to the right being given successively higher numbers.

A word is to a register as a byte is to a cell as a bit is to a
flip-flop. That is, words, bytes, and bits occupy regis ters, cells, and
flip-flops respectively.

The unit of data that is named in the memory is the eight-bit cell.
The programmer indicates a byge in the memory by specifying a segment name
and a relative name. These two quantities are juxtaposed to form a 'full

memory name. '

i 24 i L 24 {
segment name relative mname
e

full memory name to indicate one eight-bit cell

Integers consist of from one to 24 bytes, in two's-complement notatiom,

with the leftmost bit of the leftmost byte being the sign bit.

/!
L 7/
i, sign]/ J

integer datét’Z's comp. ,

length is 1 through 24 bytes

Real (floating point) numbers consist of from 3 to 24 bytes. The
fraction is expressed in sign-magnitude notation, with minus zero being
converted to plus zero before and after all real arithmetic operations,
The result of a real arithmetic operation is not necessarily in norma-
lized form. The exponent is a two's~complement number which gives

the power of two which multiplies the fractionm,

The leftmost (lower named) two bytes of real numbers give the exponent,
infinity flag, undefined flag, and sign of the fraction. These two bytes

have the same format regardless of the length of the real number,

/[L
1 J1]1]: 12 7
/

A N A A . / N

sign of|exponent

base 2 exponent, 2s' comp.,

12 bits plus sign.
undefined flag
infinity flag
— 1
sign of fraction fraction, length is 1
through 22 Fytes

|

|un-normalized sign-magnitude fraction)]

real number, length is
3 through 24 bytes

Significance is controlled in MAP-1 by entering a Y"significance
mode”, in which all real arithmetic is performed on pairs of numbers in
adjacent registers, the first register being specified by the instruction,
and the second register having a number one higher than the first. The real
number in the first register represents the algebraicly lowest value that
the quantity can have, while the real number in the second register repre-
sents the algebraicly highest value that the quantity can have. 1In the
significance mode, each real arithmetic operation is automatically done
twice, to develop the appropriate pair of numbers for the result.

In both modes of real arithmetic, right adjustment of the fractiom
is always followed by rounding., When left adjusting is performed, zeros
fill the low order part of the fraction in the non-significance mode, while
in the significance mode either zeros or omes fill the low order part of

the fraction, whichever will result in théJgreatest difference between the

two final results. Whenever a floating point result is to be placed in a
register which cannot hold the entire fraction of the result, the result is
left-adjusted by an amount that is just sufficient to allow the result to
occupy the register. If the result becomes normalized before it can be
left-adjusted a sufficient number of places, then the result is placed in
the register in normalized form and the fraction is rounded.

The "pack or unpack" instruction "poup", requires the programmer
to prepare a '"group control word.," This word specifies a contiguous group
of bits having arbitrary length and position within a register. The group

control word is 2 bytes long and has the following format.

i 8 | 8

bit n/Ember of the nu.lznbeg~ of bits

leftmost bit of in the group
the group

-10-

4, Immediate Data

Two types of immediate operand specifications are used in MAP-1: the
specification hereinafter called "immediate", and that called "quick". An
example of a quick operand specification in given in the previous description
of the gadd instruction. A quick operand is always given in one of the
instruction syllables and is usually a number from 0 through 15.

An immediate operand is specified in a string of syllables follow-
ing a syllable containing an "immediate control group.” The control group
specifies the number of syllables in this string. The operand is formed by
placing the string right-justified in an imaginary 64 cell register, shift-
ing the string left by a number of cells that is specified in the contol
group, making the bits to the left of the string either ones or zeros
according to the control group, and finally making the bits to the right of
the string either ones or zeros according to the control group. One value
of the control group bits calls for an additional syllable of controel
information to appear before the string of data syllables, The following

table specifies the manner in which immediate data is coded.

-11-

Immnediate Control Group (icg)

no. of syllables no. cells Bits Bits Picture of rightr

in data string by which to to most 5 bytes of
Code which follows data string left right | operand

immediately is to be

shifted left

0000 1 0 0 - «—0 |0 0 |—
0001 1 1 0 0 —0 |0 (0O |/ O
0010 1 2 0 0 —0 |0 |- 0
0011 1 3 0 0 |<—0 |0 0
0100 2 0 0 - |«0 |0 {0 | ——
0101 2 1 0 0 —0 |0 |—— 0
0110 2 2 0 0 |0 — 3010
0111 3 0 0 - «~—0 |0
1000 1 0 1 - —1 1 (1 1 |—
1001 1 1 1 1 —1 {1 (1 |—{ 1
1010 1 2 1 1 —1 |1 |—}1 1
1011 1 3 1 1 +—1 |—]|1 1 1
1100 2 0 1 - —1 |1 1] e
1101 2 1 1 1 |1 1 — 1
1110 2 2 1 1 —1 ——| 1 1

The code 1111 in an icg indicates that the next syllable is not part of the
data string, but gives additional control information. This additional

syllable has the following format.

1 —

4 no. of syllables in data string to follow,
which are not to be shifted left in the
formation of the operand

1 means put ones to left of data string
0 means put zeros to left of data string

-12-

In the following operations the data string is placed left justified

in the imaginary 64 cell register and shifted right.

wder
hlod
radd
rsub
rmul
rdvd

wnds

-13-

Syllable Types

IN (instruction)
8
opcode
RR (register - register)
4 4
R¥F R¥
RD (register - data)
4 4
REE R# or icg if a preceding i bit is one
RQ (register - quick data)
4 4
R¥# quick data
RS (register - shift data)
4 4
R¥ R# containing shift data or quick shift data if a

proceeding i bit is one

RN (register - not used)

4

R¥#*

TR (attachment register - register)
[2 4

T H# R¥#

-14-

TN (attachment register - not used)
2]
T #
QK {quick data)
8
quick data
QR (quickdata - register)
4 4
quick data R P

QD (quickdata - data)

4 4
quick data R# or icg if preceding i bit is ome
JM (jump)

There are two formats, depending on the leftmost bit

1 leftmost bit is zero

1 1 4

R¥ or icg fg; jump data

to replace PR

jump data is immediate
always zero for this format

2) leftmost bit is one

6

1
_1
10. L signed 2's complement

increment to PR
sign of increment
always one for this format

-15-

S1 (first special syllable - used in jcal)
3 1 4 |
R¥ of i;l; for jump data
to replace PR
jump data is immediate
code. Save TO Save R1 Specify TO
in next C(R).
000 vy y v
001 y y n
010 y y y
0l1 v y n
100 ¥ n ¥y
101 y n n
110 n v n
111 n n

Specify
increment to Rl
in next C(D)

An RD syllable follows for all codes except 011, 101, and 111.

52

(second special syllable - used in jbit)

3

4

R#

reset selected bit after test

bit number of bit to be tested in the

leftmost byte of R¥E.

-16-

S3 (third special syllable - used in jqad)

3 1 4

R#F or icg of comparison data

comparison data is immediate

type of comparison: jump if C{R): comparison data

000 never jump
001 >
010 =
011 2
100 <
101 #
110 &

111 always jump

54 (fourth special syllable - used in poup)

1 1 1 1 4
0 [
R# or icg of group control word
: increment group control word
pack
unpack
clear C(R)

6. Concise Imnstruction Tabulation

Syllables in parenthéses are optional. The asterisk indicates that the
instruction is described in detail in the next section entitled, "A description
of selected instructions." The double asterisk indicates that the instruction is
described in detail in the section entitled, "A few typical instructions." For
additional details on the behaviour of the instructions, refer to the section

entitled, "syllable types."

-17-

Tostructions With One INSyllable

code in nmem. of syl. to follow description
IN syl. first syl.
1iyyxxxx mntn - write to memory using RO and
attachment register-
10yyxxxx mrtn L Ek read from memory using RO and
attachment register
011lixxxx nlod . logical 1locad RO
010ixxxx nadd - logical add to RO
0011xxxx nqsh o quick subtract from RO
0010xxxx nqad quick add to RO
00011111 11o0d RD** logical load
i1110 ladd * RD logical add
i1101 1sub RD logical subtract
i1100 wder Qb write into one designator
i1011 jxlo RD,JM add one to C(R), jump if less
than C(D)
11010 jxhe RD,JM add one to C(R), jump if higher
than or equal to C(D)
i1001 jseg RD inter-segment jump, to segment
in C(R), and relative in C(D).
11000 jeal S1, (AD) = subroutine call
10111 gqlod RQ quick load register
10110 qadd RQ** quick add to register
10101 gqaub RQ quick subtract from register
10100 rder QR read from one designator
10011 jbit s2, JM jump on bit with option reset
10010 jqad RQ, S3, JM quick add and compare
10001 jeon QK, JM* jump on masked condition code
10000 jump JM jump
00111 nwtr RN, TR write to memory using C{right'R)
and attachment register
00110 nwrr RN, RR write to memory using segment
in C(mid.R) and relative in
C{right R).
00000101 mrer RN, TR read from memory using C(right R)

and attachment register

-18-

code in mnem. of
- 4 A
IN syl. first syl. syl. to follow escription
00000100 mrrr BN, RR read from memory using
segment in C{mid. R) and
relative in C(right R)
00011 qdvd RQ, RN quick divide
00010 qmul RQ quick multiply
00001 supd suppress block loadaside
updating
00000000 genl ? prefix to more instructions

-19-

Instructions with two IN syllables.

The first IN syllable is always 00000000.

1

code in

mnem. of

syl. to follow description

IN syl. second syl.

llyyssss wath write to attachment register

10yyxxxx rath read from attachment register

011i0000 lorl RS logical shift register left
0001 lorr RS logical shift register right
0010 locl RS logical shift combined left
0011 loer RS logical shift combined right
0100 rorl RS rotate register left
0101 rorr RS rotate register right
0110 rocl RS rotate combined left
0111 rorc R3S rotate combined right
1000 isrl RS integer shift register left
1001 isrr RS integer shift register right
1010 R not used
1011 rjlz RS, RN * real adjust left with zeros
1100 rjlw RS, RN real adjust left with omes
1101 rajr RS, RN read adjust right
1110 hilecd RD high order load

011i1111 ilod RD integer load

01010000 iadd RD integer add
0001 isub RD integer subtract
0010 fmul RD integer multiply
0011 idvd RD, RN * integer divide
0100 radd RD real add
0101 rsub RD real subtract
0110 rmul RD real multiply
0111 rdvd RD real divide
1000 exor RD exclusive or
1601 inor RD inclusive ot

-20-

code in mnem. of syl to follow description
IN syl. second syl.
010i1001 amdr RD and
1011 tums RD test under mask
1100 poup sS4, RR * pack or unpack with optional
increment
1101 motr RD, TR or to memory and load previous
1110 matyr RD, TR and to memory and load previous
010il1111 mitr Rb, TR * increment memory and load previous
001ixxxx wnds QD write n designators
000 1xxxx rods QR * read n designators
00001111 exch RR exchange eegisters
1110 exec RN execute from register
1101 wsta RN write status
1100 rsta RN read status
1011 qwst QK quick write status
1010 gost QK quick or to status
1001 qast QK quick and to status
1000 comp RN complement register
011l ineg RN integer negate register
0110 jret subroutine return, retore TO and Rl
0101 irit subroutine return, restore Rl,not TFO
0100 jrat subroutine return, restore TO0,not Rl
0011 mptr RN, TR read parameter from attached segment
0010 mprr RN, TR * read parameter from general segment
0001 mxtr TR execute from attached segment
00000000 rest ? prefix to more instructions
[

-21-

7. Description of Selected Instructions

This section describes in detail the following instructions in the

following order

jeal
jeon
rilz
hlod
ilod
imul
idwvd
poup
mitt
rnds

mprr

jcal - subroutine call

00011000 XXXJYYYy (zzzzwwww)
IN S1 (AD)

Refer to the description of the type S1 syllable. i is the immediate bit for yyyy.

If i =1, the yyyy immediate data string comes between the second and third syllables.
j is the immediate bit for wwww, if the third syllable is given. Otherwise j is not
used. PR a?d ST are saved in R4 a?d R5. The PR that is saved is the relative

name of the first byte of the instruction following the entire jcal instruction.

yyyy gives the R# or icg of data which is loaded into PR. The code xxx specifies
additional actions to be taken. TO can be saced in R3. Rl can be saved in R2.

zzzz gives the R of the data to replace TO. wwww gives the R# or icg of the data

to be added to Rl. All loads are logical loads. The condition code is not changed.
jecon - jump on condition

00010001 x0x1x2x3x4x5x6x7 YYYYYYyy

IN QK ™

_292-

Refer to the description of the type Jm syllable. If the condition code has
value n, and X is one, then PR is altered according to the JM syllable. Other-
wise, the next sequential instruction is executed. The condition code is not

changed.

rilz - real adjust left with zeros
00000000 01111100 RXXXYYYY ZZEZ - - - -

IN IN RS RN

Refer to the descriptio n of the type RS syllable. i is the quick-immediate bit
for yyyy. Vyyyy gives the R§ or the quick data of a shift count. The shift count
is taken modulo 256. C(Rxxxx) is assumed to be a real number. The fractiom of
C(Rxxxx) is shifted left until either the shift count is satisfied or the number
is normalized. Zeros fill the low order part of the fraction. Rzzzz is loaded
with the number of positions that were actually shifted. The exponent of C(Rxxxx)

is reduced by this amount. This instruction sets the condition code as follows.

code condition

0

1 count satisfied, number not normalized
2 count not satisfied, number normalized
3 count satisfied, number normalized

4 .

5 ———

6 ——

7

hlod - high order load register

00000000 01111110 XXXXYYYY

IN IN RD

-23-

i is the immediate bit for yyyy. yyyy is the R or icg of data to be loaded into Rxxxx.

For this instruction the immediate data string is left - justified and right sifted
in its imaginary 64 cell register. Rxxxx is cleared, and the data is placed left -
justified in Rxxxx. If the data is longer than Rxxxx, the excess is ignored. This
instruction is identical to 1llod, except that it places the data left - justified

in Rxxxx instead of right justified, hlod sets the condition code as follows.

code condition

0 < 0, no non-zero bits ignored
1 = (0, no non-zerc bits ignored
2 > 0, no non-zero bits ignored
3

4 < 0, non-zero bits ignored

5 = 0, non-zerc bits ignored

6 >0, non-zero bits ignored

7

To load a real number into a smaller register with rounding, first clear the
target register using qlod, then use radd.

ilod - integer load
00000000 01111111 XXXXYYYY

IN IN RD

i is the immediate bit for yyyy. yyyy gives the R or icg of data to be loaded into
Rxxxx. 1If the data is shorter than Rxxxx, it is lengthened by extending the leftmost
bit to the left. If the data is longer than Rxxxx, the data is shortened by an

integer left shoft. Ryyyy is not changed. The condition code is set as follows.

code condition
0 < 0, no ov
1 =0, no ov

2 >0, no ov

24—

3
4 <0, ov
5 =, ov
6 »0, ov
7

imul - integer multiply

00000000 010i0010 XXXXYYYVY

iN IN RD

i is the immediate bit for yyyy. yyyy is the Ré or icg of the multiplier.

C{Rxxxx)

is multiplied by the multiplier, and the result is placed in Rxxxx.

Ryyyy is unchanged. The condition code is set as for the ilod instruction.

idvd - integer divide

00000000 01010011 XXXXYYYY XXXX - - - -

IN IN RD | RN

i is the immediate bit for yyyy. yyyy gives the Rfor icg of the divisor. C(Rxxxx) is

divided by the divisor. The quotient is placed in Rxxxx, and the remainder is placed

in Rzzzz.

Ryyyy is unchanged. The condition code is set as for the ilod imstruction.

00000000 01011100 abcdxxxx VYYYZZZZ

IN IN 54 RR

Refer to the description of the type S4 syllable. i is the immediate bit for xxxx.

xxxx is the Rf or icg of a group control word. Ryyyy is the receiving register. Rzzzz

is the sending register. The bits abed give a microprogram which is executed from left

to right.

In these bits, a zero means do nothing, a one means perform the following actic

-25-

a: clear Ryyyy

b: unpack from Rzzzz into Ryyyy

c: pack from Rzzzz into Ryyyy

a" increment the group control word

The group control word specifies a group of contiguous bits of arbitrary length
at an arbitrary position within a register. The group control word consists of
2 bytes, and is assumed to be right-justified in its register or immediate data
string. Byte 0 specifies the bit number within a register of that bit which is
the leftmost bit of the group. Byte 1 gives the number of bits in the group. If
byte 1 is absent, it is assumed to be equal to 1. If both bytes are absent, then
the pack, unpack, and increment microsteps are no-operation steps.

In the unpack microstep, the group is specified within Rzzzz. The group is
fetched and replaces the group of the same size at the right hand end of Ryyyy.
Only the righthand end of Ryyyy is altered by the unpack microstep.

In the pack microstep, the group control word specifies a group within Ryyyy.
This group is replaced by the group of the same size at the right hand end of Rzzzz.
The group in Ryyyy is the only group that is altered by the pack microstep.

The increment microstep adds byte 1 of the group control word to byte 0 of
the group control word, changing only byte 0 of the group control word.

After the four microsteps are complete, the Boolean variable (limit) is computed.

(limit) « [(byte 0 of group control word)
+ (byte 1 of group control word)]
> (register length)

The register whose length is included in the above equation is Ryyyy, except
that when b =1 and ¢ = 0, the register is Rzzzz. (limit) is used to set the condition
code.

Notice that specifying both a pack and an unpack microstep in the same instruction
is not eguivalent to specifying neither a pack n or unpack microstep. For example,

poup may be used to exchange the left and right halves of a register.

-26-

The poup instruction sets the conditiomn code as follows.

cade condition
(limit) unpacked packed
group gegoup
=0 ={
0 F ¥ F
1 F F T
2 F T ¥
3 F T T
4 T F F
5 T F T
6 T T F
7 T T T
mitr - increment memory and load previous
0000000 010i1111 XXXXYYYY - - ZZWWWW
IN IN RD TR

i is the immediate bit for yvyy. yyyy gives the R# or icg of an addend to be added
to a quantity in memory. The memory quantity consists of the same number of bytes
as Rxxxx, starting with the byte named by the justaposition of C(Tzz) and C(Rwwww)
and bytes of consecutively higher names. The memory quantity is placed in Rxxxx.
The addend is then added to the memory quantity with the result replacing the
memory quantity. If the addend is shorter than the memory gquantity, the sign bit
of the addend is extended to the left. If the addend is lenger than the memory
quantity, the addend is shortened by an integer left shift. The addition is
performed in such a way that no intervening reference to the memory quantity can
be made by another processor between the time that previous value is read out

and the time that the mew value is stored. mitr sets the condition code as

follows.

-27-

code condition

0 Rxxxx 0, no ov in add
1 Rxxxx = 0, no ov in add
2 Rxxxx 0, no ov in add
3

4 Rxxxx 0, ov in add

5 Rxxxx = 0, ov in add

6 Rxxxx 0, ov in add

7

ronds - read n designators

00000000 000 Lxxxx yyyyzzzz
IN IN QR

xxxx designators are read into Rzzzz starting with the designator for register

yyyy. The designators are maximally packed and left-justified in Rzzzz. The remainder
of Rzzzz is cleared. If Rzzzz is not long enough to hold all of the designators,

the right hand end of the designator data string is ignored. The condition code

is unchanged.

mprr - read practice from general segment

00000000 00000010 XXXX - - - - yyyyzzzz
IN IN RN RR

Ryyyy is considered to contain a segment name. A memory name is formed by the
justaposition of C(Ryyyy) and C(Rzzzz). The rightmost four bits of the byte so
named are taken as an immediate control group. An immediate operand is formed
according to this control group from the bytes which follow it in the memory.
This operand is loaded into Rxxxx in the manner of the 1lod instruction. The
number of bytes that were read from the memory is logically added to Rzzzz. The
condition code remains unchanged. Note that the leftmost 4 bits of the named

bytes are ignored, but the named byte is included in the count that is added to

Ryyyy.

-28-

8. A Suggested Assembly Language.

This section describes the rudiments of an assembly language for writing
MAP-1 programs. This language is specified in order to allow individuals
evaluating MAP-1 to communicate more easily with each other. No attempt is
made to completely specify the language.

Blanks are ignored.

The characters / and <carriage return® indicate the end of an syllable
specification, and are identical from the assembler's point of view. It is
siggested that (carriage return> be used to signify the end of an instruction,
while / be used to delineate syllables within an instruction.

The character , means "inclusive or™.

Symbols must have a leading alphabetic character, followed by any number
of alphabetic or numeric characters. The IN syllable codes are permanently
defined as symbols, and the symbol i is premanently defined to be octal 20.

The character : indicates that the value of the precceding symbol is
to be defined as the relative name of the next syllable to be assembled.

The character - at the end of an expression means that the value of
the expression is to be shifted left four places.

In expressions, the characters + and - and * stand for additiom, subtraction,
and multiplication respectively. When the character * stands in a non-operator
position, it is a symbol whose value is the relative name of the syllable in whose
specification it appears.

When a syllable specification consists entirely of an expression enclosed within
the characters (and) the value of the expression is coded into immediate syllables
in the most economical way, and the appropriate immediate control group is placed
in the rightmost four bits of the preceeding syllable.

Expressions are delimited on the left by

{carriage return)

/

3

-29-

Expression aredelimited on the right by

carriage return

The following program, which continually adds one to register 10, illustrates

most of the features of the assembly language.
start: qled/12-, 0
qadd/12-, 1

jump/i/ (start 42)

9. A Programming Example - Matrix Multiplication

The program given below multiplies an n x m matrix a by an m x p matrix b to
yield an n x p matrix ¢. =n, m, and p are each less than 256. The elements of
a, b, and ¢ are real numbers that are 6 bytes long. a, b, and ¢ exist in the
segment whose name is in T2. This segment is assumed to be less than 2.P.16 bytes
in length. The relative names of the origins of a, b, and ¢ within seg (C(T2))
are contained in three 2-byte quantities that also exist in seg {(C(T2)). The
relative names of these quantities are aloc, blec, and cloc, respectively. Im
this example, n, m, p, aloc, bloc, and cloc are assembly parameters. The program
is coded to minimize the number of bits in the program code rather than the speed
of the program's execution.

The matrices are stored forward by rows, so that, if the subscripts start from
zero, relative name (a(i,j)) = C(aloc) + (i*m +j) %6.

The matrix product is evaluated using the formula
m-1

c(i,i) = = a(i, k)* b(k, j)
k=0

The general registers & through 15 are used as indicated below. It is assumed

that the designators for these registers have already been properly loaded, and that

the processor is in an appropriate state to trap on any exceptional

conditions that might occur

-30-

register (octal) use
6 i
7 j
10 k
11 relative name of current element in a
12 relative name of current element in b
13 relative name of current element in ¢
14 accumulator
15 multiplicand
16 multiplier
17 not used

in the course of the real arithmetic

number of bytes (decimal)

21

mampy:

colop:

rolop:

iplop:

endro:

endmp:

-31-

nlod, i/(aloc)
mrtn, 2-, 11
nlod, i/(bloc)
mrtn, 2-, 12
nlod, i/{cloc)
mrtn, 2-, 13
qled/6-, 0

qlod/7-, O

qlod/10-, O
qlod/t4-, 0

nlod, 11

mrtn, 2-, 15

nlod, 12

mrtn, 2-, 16
genl/rmul/15-, 16
genl/radd/14-, 15
qadd/11-, 6

ladd, i/12-/(p * 6)
jxlo, 1/10~/(m)/iplop-*-1
nlod, 13

mwtn, 2-, 14

qadd/13-, 6

jxhe, i/7-/(p)/endro-*-1
lsub, i/11-/(m*6)

lsub, i/12-/(m*p*6-6)
jump/rolop-*-1

jxhe, i/6-/(n)/end mp-*-1
lsub, i/12-/{m*p*6 + p*6-6)
jump/colop-*-1

-32-

The various parts of the program consume the following amounts of storage.

bytes bits
inner loop 20 160
middle loop (additiomal) 22 176
outer loop (additiomal) 12 96
initialization (additional 14 112
total 68 544

10. A Comparison With a 7094 Program to Perform an Equivalent Matrix Multiplication.

The nomenclature and specifications of this example are essentially the same
as those of the proceeding onme. A, B, and C are assumed to reside simultaneously
in the 7094 memory, which consists of 2.P.15 words. AL@C, BL#C, and CLHC are
the names of memory registers that contain the addresses of the matrices A, B,
and C, respectively. N, M, P, AL®C, BL@C, and CL¥C are assembly parameters. A, B,
and C are stored forward by rows, as in the preceding example.

The index registers of the 7094 are appropriated as follows.

register use
1 N-i
2 P-j
3 M-k
43 not used
5 complement of address of current element in A
6 complement of address of current element in B
7 complement of address of current element in C

MAMPY

CHLPGP
ROLGP

IPLGP

ENDR@

ENDMP

STZ
LDQ
FMP
FAD
ST@

-33-

AL@PC, 5
BLOC, 6
cLgc, 7

-
[

-

- -

o o o o o =2 1" =

-

R I e Y 2" R % By -

*+1, 5, -1

*+1, 6, -P

IPLYP, 3, 1

*+1, 7, -1

ENDR$, 2, 1

*+1, 5, M

ROLGP, 6, M*P-1
ENDMP, 1, 1
COLPP, 6, M*¥P+P-1

The storage requirements of these two matrix multiplication algorithms are

compared below.

7094 bits
inner loop 252
middlie loop {(additional) 216
outer loop (additional) 108
initialization (additional) 144
total 720

MAP-1 bits

160
176

96
112
544

The 7094 example was prepared with the assitance of A.L. Scherr. The above

program, which closely follows the MAP-1 coding, was the most efficient of several

programs which Mr. Scherr prepared.

