MASSACHUSETTS INSTITUTE OF TECGHNOLOGY

Project MAC

Computation Structures Group Memo No. 46

Some Structural Propertiea of Demand Graphs

Prakash G. Hebalkar

April 1970



=~la-

—_—— ]

Y1

i -
8 g
~ -
ha -
> SO S
ol
e oo B e Ly e
il
3 ‘el
* |
[ ¥ - s i ——— — — — — Se—— 1 ——ya
™~
3 :
~ ~
> > &
[
iakif
I*ll.lwusllllf - w..l||| EV V
=
s
1|Vll'11l_m.|..|ill.1t||..||llvl|..ll|1llr.|:.ill.!iaw-
% %
i) L
f -
» e g



This memo describes what may best be described as structural properties,

as they relate to safenesa, of the model introduced in [1]. The properties

are expressed in the form of bounds on g general class of safeness tests.

One conclusion iz a feeling that the safeness algarithm of [1] {s optimsl.
Two lemmas and a theorem which will prove useful later will be

proved first.

Lemma 1. Let Yy and Y, be two arbitrary feasible slices of a demand graph

such that ¥ a path n from Y1 to Y, consisting only of feasible slices

{Lt.e. a fgaslble sequence exists from Yy to Yz) and let “k qk Xy

be arcs such that Vi Yy N Xy 2 uk £ Yp N Xq and v, 4 en arc

i
o 3
81

i i i i
0, € 0, < Y, N A dlr, ) <« dy )
Xy 8, 21X "st ey
where "g " means "occurs before or le the same as" and is defined on

two arcs of a chain or two slices and d(x) 18 the demand associated

with the arc 4. Then there exists g feasible path «' from Yy to
Yi=al oal .. "
qk1 2 ukm

Proof: Consider the path ¢. Let Ye be the first slfce in che seguence

m

that uses an are lying between vy’ and Yy and v‘ be the last alice

ln ¢ to use an arc belonging to v'; thae ié’Yf-l < y', Ye £ v

and y' ¢ Y, ¥ < LAY Figure 1 shows these slices. Consider
any siice y on 4 3 Ye = ¥ 2 Y‘ and let yt be the tranaformed
sli;e obtained from y by replacing thoge components of y that 1ie

between y' and y by the corresponding
2 "k

IL\,(.YII means 'W(Yaﬂdﬂja‘(nxj'?*ﬂxj"
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Then yt Ls feasible as the g's have the property that

d(c:,ﬂ)sd(vnxj) if .31-1 < ‘rﬂxjs Yquj and as v
] 3

1s feasible, since ir fs an element of the feasible sequence 1.
Thus by systematically transforming the slices in n from
Yeo1 to yz (inclusive) as above (and removing duplicate slices)
one gets a sequence of feasible slices leading to y' (since Y,
when transformed becomes y'), From anather point of view the
“moves" from Yg to Y, are used to go from Yg to y' by ignoring

all those moves which involve going across y' on g chain. Q.E.D.

The remaining theorem and lemma have to do with a somewhat different
concept, viz that of conaistency. Can any pattern of feasibility and
infeasibility over a lattice be actually obtained? That is, for a demand
graph of fixed structure (number of chaing and number of ares per chain)
can mumbers be found for the ares such that an arbitrary pre~specified
pattern of feasibility and infeasibility of slices results? The tool
for answering this question 1s the theory of linear inequalities. Pach
statement regarding the feastbility of g slice is a linear constraint

of the form

n~ B
]
(12}
o]

where ai ia the concise notation for
1 { Ty

dﬁI: ) and C 1a the capacity of the system.
i

=



'Similarly infeasibility imposes a constraint of the form

m m
> ai = C ot - 7 a1 « =C
1=1 ©1 1=1 Tt .
m m
As there are " slices and only ¥ n, arcs, where n, is the number
i=1 i=1

of arcs on the ith chain there are likely to be more constraints than variables
and this iz why consistency becomes important. The following result from

Cernikov [2} will be used in proving the two lemmas to follow:

"Theorem [3.4] Let fj(x) - aj <0 j=1, 2, *** m be an arbitrary

comparible system of linear inequalities over the linear space L{P),

where P is an arbitrary ordered field, then the system

f£.(x) - aj s 0 j=1,2,'*m'; m' <m

3

f - 0 t = t LR ]
j(x) a, < j=m' 4+ 1, m

is compatible 1ff the equation

m
T u, £.(x) =0 with the unknowms Upaess,sll
R

has no positive solutions satisfying the condition

n

— (3 .aa "
ajuy kees ta u S 0; uy + u> 0
An intuitive understanding of the theorem can be obtained by rewriting
the inequalities as

fj(x) < a,

1, 2, <> m' o' <m

L")
i

m'"+1, m +2, - m

fj(x) < 8y 3



Here each fj(x) 1z of the form BI x, + 52 Xy Foees Bn x, where n i3 the
dimension of the linear apace L(P). Since multiplying an inequality by

a positive constant does not alter ft, it 15 clear that 1f posftive multipliers
uj are found which (afcer multiplication) make the sum of the left hand

sidea {dentically zero, then in a compatible system the corresponding

sum of the right hand sides must be grester than zero (unleas no non-zero)
multiplier multiplies the jth inequality for ] < | < m') or one gets

the absurd'conclusiun 0 < 0! what 1s less obvious, and therefore interesting,

is that this condition {s also sufficient for compatibility,

Since (vi, r, a: = ﬁ-} 1s clearly a solution of the system of
i
inequalities:
m
T ai < C
i=1 Ty
nog
and T o8, =C
mno 1=l i
L 8.2 C in particular
=1 *i
or : ai"=C
mo, 1=1 Tt
-5 ar, < =
i=1 "1
the syatem is compatible and the theorem above is applicable to the system

resulting when the 2 inequalities therein are changed to -,

Definition: The hull of a set A of slices is the set of all slices g in the
lattice which satisfy g¢b(A) < g < gub(A), Figure 2 shows the hull of a

Bet of alices. By definition the hull of a set of slices in a lattice {s a



Ca ] é&ﬁ eﬂ-c
[~ 8.
the hull.
Figure 2
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sub-lattice since the hull is closed with redpect to the operationa of
taking the greatest lower bound and leasat upper bound of two glicesa.

All slices in the hull of A thus lie on a path from gub(A) to ggb(A).

Theoreﬁ 1. Conaider a demand graph of m chains with n, arcs on the ith
chain., Let Yyr Yps 000 Yp be slices required to be infeasible and
Yp+1s s Yq be slices required to be feasible. Then a set of numhers
(demands) for the arcs of the demand graph such that these conditions
are met exist 1f nome of the slices YP+1’ e ?q lies in the hull

of Yyater yp (or swmmétrically, none of the zlices Yoot yp lies in

the hull of yp+1,-“ yq). In other words it is necessary that at least

one of yp+1,--- yq lie in the hull of Ylf"'vp for inconafstency,

Froof: The system of Inequalities whose consistency is being examined is:

(.

corresponding to the infeasible slices

o o
£ a )Yj < =C l<igp =--——emcccocc—ana- smmcttmac—na (1)
1 i

-

m i .
and ( T a ) < C Pl s k < @ memo-mmmccmmmece L ===== (2)
1=1  F1'%

corresponding to the feasible slices

where the a: are rational numbers,
i
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Step 1: Let positive multipliers )«.j and My for the two groups

exist such that

m
e (121 aii)Yl ) ( )Y

- "p( )Y

2 p

+ ol

n 3

a: ) + --'---+|J.q ( )Y =0

p+l ( 1/ ¥p+1 q

i=1

Loeo =M () = 2y() =eee A ()

1]

”p+1( )+ up+2( )+ ocaet “q( ) e=e-u(3)

q

. P
Then for consistency - C ¥ kj +C T be > 0.
' j=1 k=p+1

P q
unless ¥j (kj = 0). It v kj A T then clearly the system
1 p+l

is inconsiatent.

Consider the identity in (3). It will be noticed that each term
in parentheses contains exactly m variables, each with coefficient 1.
Since one can multiply (3) through by the ILCM of the A's and p's to
get integer multipliers, it may be assumed that the A's and u's are
integers. The number of terms appearing on the left hand side when (3)

P
i3 expanded out iz m T A, while that on the right hand side i3

13
q .
m O - Since (3) is an identity, these two numbers must be equal.

p+l

P
Thus o T A =4 ¥
1 "

Therefore, =-C 7 kj +C ¥ Wy = 0



The system is therefore incongistent if positive integer A's
and p's exi#t which satisf; (3). This can be reworded as saying
that for conaistency no permutation of the labels of slices in a
gelection (with repetition) from [yl, Yo - yp} should produce
a permutation of the labele of alices in a selection of the same
order from {yp+1, aee yq} (again with repetition allowed). This

follows because the a: correspond cne to one with the a: {label
i i

components af slfces) and because a multiplier N, (or u) » 1

corresponds to picking the &lice more than once.

Step 2: Now consider a selection (in this proof, always with
repetition allowed) from [yl, ...yp}. Then any permutation of
the labels of these &lices must ¥ield slice-labels with the

Property that each companent a: satisfiea
i

where "< means"

i earlier than or th

£¢b of the a fub of the ol same as" and the
components of the s < components of the arcs on each chain
alicea in the aelection i slices in the selection are numbered in

sequence downwards

a0 that ggb of the . £ the slice in question < gub of the sliceg
slices from the (resulting from a from the selectign
gselection permutation)

i.e. the slice 1ies in the hull of {71,---7P}



For exsmple one gzlice-label resulting from the permutation

of A, 32 Gy qnd Ay By Cy is A, B, C, which clearly satiafies

3
Al B2 C, < Ay 33 C2 < A3 33 C‘,+ and A, B3 02 lies in
the hull of A3 BZ CZ' A2 B3 02 and Al BZ Cﬁ

Thus if ncone of vy

ree Yq lies in the hull of Yl""Yp

p+l’

then the labels of any selection from {y ,...yq] cannot be

p+l
a permutation of the labels of a sub~set of [yl,---yp]. Thus
no inconsistency can result and therefore numbers for the arcs

exist which satisfy both the feasibility and infeasibility

requirements. Q.E.D.

Lemma 2, Consider a demand graph with m chalna, the tth chain having
n, arcs. Let [yl,...yp} be a set of slices of the demand graph which

1ie in one rank, R, and let Yl""yp be required to be infeasible

(feasible)}., Furthermore let Yl""Yp completely partition their hull

(1.e. # a slice at the same rank as {Yl,...yp} in the hull of

{Yl, 72,...7P] but ¢ {yl,...vp}. Now if all the slices in the hull above

(below) rank R are feasible (infeasible) then a necessary and sufficent

condition for inconsistency is the requirement that a slice in the hull

below (above) rank R also be required to be feasible {infeasible}.

Proof: The necessity follows from Theorem 1 above which states that any
feasible nodes outside the hull do not affect the consistency

or inconsistency, It remains ta be shown that



i The feasibility of all nodes in the hull above

rank R cammot cause inconsistency

ii The feasibility of any additional node which is
below rank R causes inconsiatency

i The proof of this part consiats merely in showing that
a permutation of slice-labels of a subset of {yl,...yp]
cannot result in lasbels of slices which lie entirely
above or entirely below rank R. This follows from the fact
that all slices in a rank have the ssme index=sum (when
arcs on each chain in the demand graph are numbered sequentially
from the top), representing the equal number of "moves"
involved in reaching any of them from the top-moat slice.
Thus x nodes of rank R have a total index sum of x.R
(1f the arcs on a chain of the demand graph are numbered from
0 up), But x-R > the index sum of x nodes all at ranks less
than R < the index sum of % nodes all at ranks greater than
Ryand 1t i1a lnown that any permutation of x glice-labels can
yleld only x slice-labela since each 8lice~lgbel has tao have a

component corresponding to each chain of the demand graph.

il Step 1. Let vy be a glice in the hull at a rank greater than R

that is required to be feasible. Let [13 ) be a

1! jz' "'Yj‘l

subset of [yl,...ypl such that y is the gb of Yi b o-eeY
: 1

Iy
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but not of [yjl, 712, ...ng} - Yj where Yj is one of YJI‘..'ng'

That is {yj ""Yj } is the smalleat set of slices at rank R
2

1

whose gib y.is. Such a set has to exist since the set of all
slices at rank R that lie on a path from gub {YI,...YP} to v
certainly have y as a gg¢b and all such siices belong to the hull
and hence to {yl, Yy» ...YP] by assumption.

How it will be shown that slices LPUETER) , all lying
1 =1
above rank R exist such that the labels of v, ¥ Y yeesY
sl, 32 sz_l

are permutations of the labels of ¥y, , Y. ses=¥,
1,7 3, 1,

In the discussion that follows the labels of slices v, Yeaa
will be designated by v, ¥'.., . Thia should cause no confusion

as the context should resolve any ambiguity. Yg ,...Ys are
1 z

obtained as follows: Take the elements that make up y from

?j , yj ....Yj . Take any of the g "stripped" labels remaining
1 2 L

and distribute its components among the other g-1 stripped labels

giving each a component from the same chain as the one it

contributed to y came from. The resulting labels are Yg s Yo TR .
, 1 2 -1

This is 1llustrated for A3 B1 02, A2 33 CI’ Al 52 C3 below:

1, T
A3 B1 02 A, B, C Al B C3 + yjl, yjz, Yj3
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stripped labels: B, C, AZ ¢ Al B2

result of distribution: A2 B Cl AL B

clearly (A3 + B1 + cz) + (Az + 33 + cl) + ('Al + 32 + c3)

E(A3+33+03)+(52+Bl+01}+(A1+32+C2).

In general it fg obvious that Y, Yo o ...ys is a permutation
- 1 =1
of vy, , v, . ves¥. .
jl 32 jf,
It remains to be shown that Yo s Y. seee¥ a1l Iie above
8" sy sp-l

rank R,and are therefore feasible,which together with the feasibility

of v implies an incompatibility,

Step Z: It is obvious from the construction that each component of
the cannibalizad stripped-label is < the corresponding component
of Y. In fact the above relation has to be strictly less than for

at least one received component in each receiver yj (1.e. stripped
k
Yj ) viz the one component it alone can conzribute to y (if no
k
such component exists Yj 18 redundant in the set [Yj ,...Yj 13,
k 1 ?

Thus each of the resulting aliceg ys > Yy rees¥y has an index
2 21

Sum < that in rank R. (The reader can verify this in the example

above, ) Q.E.D.

Corollary 1: If a slice y of a demand graph ig feasible but none of itrg
immediate Succesgors i3, no slice other than Y in the hull of {ts Successors

can be feasible,



“]2e

Corallary 2: If a feasible sequence of slices exists (in the lattice
of glices of a demand graph) from a slice y to rank L-m and the last slice
in this partial sequence has m successors then the sequence can be extendecd|

to the bottom-most slice Yo {at rank L) t.e. vy 1s safe.

This corollary follows from the fact that Yo has always to be safe
{by convention) and that the hull of m brothers extends to m-1 ranks below

them.

The theorems and lemmas above and their corallaries represent teools
which will be used in the rest of the discussion which ralates to a class
of safeness tests that are non-exhaustive but of s character different
from the safeness algorithm of [1].

While the results in corollaries 1 and 2 of theorem 1 in [1] are
valusble in simplifying the testing of safeness of slices, it is clear
that the conditions of corollary 2 are infrequently met while those of
coroliary 1 may require completion of a sequence which 13 complete,
in the sengse that there is no chain but y, remaining, so that no
advantage 1s really gained. Consequently, the discussion that follows
concerns itself with complete testa (f.e. ones that always yield an
gnawer of "safe" or "unsafe") for safeness of a state g of the kind that
require the feasibility of p {from p=1 up to p="all possible") sequences
of length k (some number). Can such tests be shortened (i.e. k reduced)
when it is known that ¢ is an fmmediate successor of a safe allocation state?
These tests will be called (k, p) feasibility tests. It is obvious that

wp(p 2 1) an (L, p) feasibility test is always a safenesa test, where L 1s the
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length of a path from ¥ to Yp - Theorem 2 below concerns irself
with (L, 1) feasibility tests and heorem 3 with (L, "all posaible')
feasibility tests; the bounds in these two theorems display the

range for (L, p) feasibility tests.

Theorem 2: Consider an m~chain demand graph with a safe slice Y and a feasible

lmmediate successor slice ¥y (corregponding to a move downt chain Xi)'
Let L be the relative rank of Yo {the terminal slice) with respect to \'E
Suppose there exists g feasible sequence from Yy to a alice at relative

rank K wrt ;-

Then (a) For K « L-3 safeness is not necessarily impilied

(b) For K 2 L-3 gafeness is necessarily implied

l.e. a (K, 1) feasibility test cannot be shortened beyond -3,

Proof: It will be assumed in the proof that none of the following three

special conditfens in which Yy 1s trivially known to be safe occur

i Y has no sons other than Yi (A feasible path from ¥ to
Yp Must pass through Y; in this case.)

ii d(Yi n xi) < d{yn xi) (In this case corollary 2 of
Theorem 1 of [1] applies)

iit % 3ys 1, integers O < 11» 35 = mauch that Y N le
and Yy N xj are not penultimate or terminal arcs
2

of the corresponding éhains.
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For it is always possible to move from a penultimate arc

to a terminal arc on a chain with a feasible slice resulting.

When this ia domne at most one chain remains if the condition

(1i1) was.not satiafied and it i3 known that it is posaible to

move down that chain by moves which result in feasible

slices as d(arc) < capacity for any arc. Consequently L Z 4,
Consider the slices at the rank L-n, _Then n represents

the total number of arcs.remaining {(i.e. below a glice Yo at this

rank). The additive decomposition of n represents the marner

Tn which these arcs are distributed over the m chains. 1In particular

whan n=3 there are only three distinct decompositions viz

3 =340, 3=24+1, 3=1+1+1

Thus there are three forms for a slice label, viz

v, = ail azz ves o YT “: where n, 1is the number of arcs
i m aon the ith chain
Y = 1 2 [N aj "= =a ajz LA U-j3 Y] m
2 anl ", n -1 n,-1 n.-1 ﬂnm
i1 13 15
Y, = C"t]\- 0":_ asn “.il ase aiz aea m
= -1 -2
3 1 "2 i1 35 o

Suppose a slice Yy at rank L-3 is feasible, If Yo is of the form ¥

then clearly there 1s a possible path from Yo to Yo a8

darc) s capacity for all arcs

= 0 for termianal arcs.



~15a~
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If it is of the form ¥y again it 1s clear that there exiats a
feasible path from Yo to Yr viz the one involving moves down

the chains y, , x, , x. one ar a time. Similarly, for form
1,7 73, 35
Y4, moves down Xy and Xy provide a feasible sequence from
1 2

Yq to Yoo Consequently a feasible sequence from Y, up to rank
1-3 or greater is gusranteed to be exteusible to Yo This proves
part (b) of the statement of the theorem.
For n = 4, the distinect decompositions are n = O+, 4 = 1414141,
4 = 242, 4 = 3+1. On account of the third decomposition there are glices

with labels of the form

= 1 2 L N jl L jz L ] m
Yo =%, g O, -2 O, -2 T
1 "2 i 1 m
1 2
Suppoge Yo ta feasible. Then 1t does not necesgarlily follow that the
two immedinte successors of Y are feasibla, Consequently if there ig
a feasible sequence from y of length L-4 which terminatees on a slice
of the form Yy then the sequence may or may not be axtensible to Yop
80 that the existence of the dequence of length L=4 cannot be used
to draw conclusions regarding the safeness of Y. It remains to be
shown that the infeasibility of the two immediate successors of Yp»
viz Yy and Yys does not conflict with the safeness of y. Theorem 1
gave necessary conditionas for incompatibiiity fn terms of the hull of
Yy and Yge Consider
L1 2 I Ia o
T T A PR Y ¢ O
1 "2 jl j2 m
a slice distinct from Yo and yet at rank L4, See figure 3 for the .

relationship of ¥y' to Yor Let v' be accessible (by means of a feamsible

sequence) from y.
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Then the sequence y' 4 ¥" 4 y™ 4 y!"' & Y%

Bequence from y' to Yp which does not intersect the hull of

8 a feasible

Yl and yz, where

vie ol ol gl ot
1 By a‘nj;:‘l -jz '
3
1‘,l"l'l = EECI I N PR, a - LRI I
nj12
11H jl
Y E ..-...'.‘.%-1
D]

Consequently there exist paths accessible from Y going through rank
L-4 to Yr which avoid the hull of Yl and Yoo i.a. \5 and Y, may be
infeasfble while v is safe with no incompatibility.

It can be similarly shown that there are slices at ranks L-n
(n > 4), viz.

YOE llll..ll%-n' l—-cu-qn-n'
I RF

k

“r 3 i

where n =na +n! + «++ a' and each n' =2 2, all of whose immediate
I 1 I 1

successors may be infeasible while y is safe (The slices corresponding

to ¥y and y" in the previous paragraph are
i 3 3
f = LI I 1 e 2 k
Y = T =(n' +1) T, -n' T M. ~(m' -1) “°° and
iy 32 3 I Ik

' 31
le LN - ' ll...-n o ' Aas ey
anjl(njl+1) n (njk_z)
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As it 1s not known at what form of slice a feasible sequence
of length k from Yq ends and it could be Yo OO conclusions
can be drawn about the safeneas of v, when k « 1l-4. This 1a

part {a) of the theorem. Q.E.D,

Theorem 3. Consider an m-chain demand graph with a gafe alice y and

a feasible immediate successor slice Yy (corresponding to a move down

chain Xi)' Let M be the second largeat of the numbers {nl-rl—i, n, -r2-1,---

1 2 m
. -rm-I] where v, =a, a e, e Suppose all possible sequences of

1 %2 m

length k are feasible. Then

(a) Tor k = A determinacy of Yy iz a necessary consequence

() For k < A1 determinacy is not a necessary consequence

i.e.

a (k, "all possibla") feasibility test cannot be shortened beyond h.

Once again the apecial cases singled out in Theorem 2 above will be
tgnored. Let A = ", -rz-l then in addition if n, -7, =1 <™
then by the second corollary of Theorem 1 of f1] Yy 1is known
to be safe whenever k > n, -V, -1. Consequently it is assumed
that oy T -1 » A\,
1f all sequences of length k 2 : are feasible then in particular
- - -
the m-1 single chain sequences from y, to [y, = v; N xj] dnj-l (3 2

are feasible. In fact as a consequence of the convention that

d(ai ).= 0, ¥} the m-1 single chain laquences.frun v, to G+
: i

[71 - Yi'ﬂ XJ] g ai _are feasible. Kow consider one of these sequences.

i
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it leads from Y; to say ¥' (say chain 1; ts finished}, Then
as d(Yi N X5 ) is replaced by 0, the uni-chain sequence down
1

chain j2 which was applicable to Y; must be applicable to y',
J i
no_ - - . . 1 2
leading to y =_[vi L le Yy N qu] L
- 11 1s

Continuing in this manner it is clear that a feasible saguence

exists from Yi to

= 1 2 R - wher 3
YO = o, a, M T, ere T

is the terminal arec on Y. w
1 2 i ™ ] 1

Now as d(r:,1 ) = d(n2 Yo d(nm } =0, and d (any arc) < € it is
i U "m r :

clear that this sequence must sxtend to Yoo As g result Y, must he
safe. This is part {a) of rhe theorem.

Part (b) of the theorem is proved by showing a general example
in which Y; can be ungafe or safe in spite of the feasibility of all
Sequences of length A-1 (the case k < A=l will then be seen to be
obvious). By virtue of the definition of A, none of the k=length
sequences can involve arcs below qf K (the arc resched hy making
all k moﬁes down Kﬂ) or ai{** 50 that their feasibility imposes
no constraints on the demands associated with these arcs, Two examples
are actually shown, one corresponding to the case ¢ = i (figure 4a) and
the other to the case n, =T > uz - rﬂ (figure 4b).

In both cases a feasible sequence exists from %y O Y5 as in the

proof of part (a) above. However it is obvious that this sequence is

not extensible so that Yq is unsafe. However y can he safe because
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a sequence from y to Y6 = [yo - Yy N Xi] < YNy can he extended

down chain jl to [y n Xil * &g (¥j # 1) and then as d(ni ) =0
] b

and d(ui) < capacity this sequence can be further extended to Yo

Thus y can still be safe. This proves part (b). g.E.D,

It will be noticed that fn the proofs of Theorems 2 and 3 above the safencss
of y was not actually used. It was merely shown that the safeness of y does not
produﬁe compatibility problems, Thus no tests of the (k, g) feasibility type
seem to be simplified (shortemed) by the safeness of the predecessor state.
Secondly, let nj = nj -rj then the two theorems bound k for (k, ¢) feasibility
tests absolutely by (ni + né + s n&)—B above and by the next to largest of
[ni-l, né-l,-‘-n;-l} below. Moreover, the least upper bound for the value
of k needed for completeness of e (k, g) feasibility appears to decrease as ¢
i3 increased ; this is hardly surprising:

In a corollary to Lemma 2 it was indicated that if a feasible path exlsts
up to rank Lem and the last slice has m successo?s then the sequence can bc
extended Lo Y * why then is the bound for a (k, 1) feasibility tést -3
rather than L-m? The reason is that it is not known in a (k, 1) feasibility
test whether the last slice has m successors when k = L-m. In fact only one
slice at rank L-m has m successors. viz the one corresponding to the
decomposition m = 1+1+1+%k ***** m timea. There is a special case when the (k,1}

test can be stopped at L -nﬁ wharea nﬁ = max {ni, ni “es n;], viz the one
2

m

1 k m .
where the sequence from M Lo a“l a“z e GTR e is feasible (in the last
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slice only chain X remains), What these two apecial ceses point out is
(k, 1) feasibility tests should be modified to detect such special
cased in actual use,

Once again it appears that the safeness algorithm specified in [1)

is the preferred teat as it cannot be worse than the (k, 1) feasibility

test.
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