MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Project MAC

Computation Structures Group Memo No. 48

Deadlock Avoidance in Multi-resource Systems

Prakash G. Hebalkar

April 1970

Abstract
ADSEI8L

This memo examines systems in wvhich many kinds of resources ate shared
instead of omly ome kind. The algorithmic'test far safeness of an allocation
state is extended to this case. Héw2ver it is found that an important property
of the algorithm {is lest in this process. It is ghown, however, that this is
inevitable regardless of what the algorithm used in this multi-resource case

is. The property is that of linearity, a term defined in the text,

Memos 45 and 46 in this gseries described the demand graph model for
representation of asynchronous systems of processes, which share resources i
from a pool, for a study of deadlock problems and presented some results
for the case of a system with one type of resource. 4 question that
arises immediately is whether the results extend to the case where more
than one type of resource is shared from a pool. This situétion can be
represented by replacing the scalar demands associated with the arcs by ‘
vectors, the components of which represent demands for each of the n types
of resource being shared. It will be noted that the results of mem0.46
are structural and consequently extend directly to the case of multiple i
resource types as long as the demand graph consists of single chains, one
per user,

The nice properties of the safeness algorithm do not, however, hold
in the case of multiple resource types (called the multi-resource case in
what follows). Consider the example shown in figure la. Suppose one is
investigating the safeness of the slice O and one tries to apply the safe-
ness algorithm given in memo 45 with vectars replacing all scalar demands
thereiﬁ. The modified algorithm reads:

Safeness Algorithm:

Iet 0 be the slice whose safeness is to be examined.
Step 1: Pick a chain X; of the d-graph in some way,

Step 2: Construct a sequence of moves (which consist of moving from
an arc to the next one across a transition) down X 8° that
the slice resulting from each move is feasible and the last

resulting slice, ¥', has the property

User 3

%3

¥
(8,8) 9,v'.y%

Y
[
(14,3) y**
(0,0) v

¥ ¥ 1

(3,12} (3,12)
i Y

Yr (0,0) (0,0)
[b
Capacity = {25,25)
Figure la
X1 Xy X
3 1
(8,8) ! (8,8) T (8,8) ¥
v — T (3,9 (15,17) (2,5)

3

(20,20) (0,0} . (0,0)
¥ 3

(0,0)
¥

Capacity = (25,25)

Figure 1b

- the algorithm no longer has the prefix property for the slices y'; v"

g(?'ﬂxi) < g(uﬂxi) where d (arc) means the vector of
demand associated with the arc

and the aequence is maximal, i.e.

g(i.s.(y)ﬂxi) ¥ g(y'ﬁxi) where < means every component
of the left hand vector is less
than the corresponding component
of the right hand vector
and where i*s Is the immediate successor function
If such a sequence cannot be constructed,go to step 3; if it can be
constructed, replace O by y' and repeat unless 'YEVT, the botrLom-
most slice, TIf y'syT, make a note of the success and quit.
Step 3: Pick another unused chain:(j, i#i, and go ta step L.If none
can be found, note the failure and quit.
With reference to figure La, the result of applving the ;lgorithm to 0 is
to lead to.y' and then to y" whereat the algorithm fails, Can oné conclude
as in the earlier case, that ¢ is unsafe? Clearly not, for ¢ = y* o yEx®
shows a way of constructing a full feasible sequence from U.to g.. Thus
>
etc., which 1t produces, i.e., the property that they represent correct

moves which need never be regretted, It 1s easily seen from the figure

that modifying the test in step 2 of the algorithm to read:

v { ¥i,21 sj=m, { d vy =d (€ M%) 3} where

o {2y' (1.e., { lies between slices

g and ¥') and

d G 0D Nxd 44 G Nx)
ensures that the prefix property is retained. Tn fact one can prove this,

as shown in the lemma after the two definitions which follow. The safeness

slgorithm with this substitution will be called the Modified Safeness

Algorithm,

Definition: The set of extensions ED of a demand graph D with
respect to a slice y of the demand graph is the set of all demand
graphs having (i} the same number of chalns and (i1i) the same
pumber of arcs, with the same vectors of demand associated with
them, up to the slice y but arbitrary many arcs {z 1 per chain),
having arbitrary demand vectore (subject, however, to the same

capacity vectors) associated with them below y. Any single

demand graph in this set is called an_extenmsion of D with respect
to y. Figure 1(b) shows an extension of the demand graph of
figure 1(a) with respect tec the slice v¥*.

Definition: A slice y of a demand graph D which can be reached

by a sequence of feasible slices from c is sald to have the

prefix property with respect to D and ¢ iff

¥0' e ED ~ { ¢ is safe with respect to an extengion of D' of
D with respect to vy = d a sequence of feasible

slices frbm ¥ to yg (the bottom-most slice of D') }.

In words the prefix property assures correctness of the partial sequence from
o toy, in conatructing a full sequence from o, wlthout having to look at
the part of the demand graph below Y. |
Lemug 1 : A slice y of D, which has at least two arcs on it with non-zero
demand vectors associated, has the prefix_property with respect
to D and y iff
{ vi,3,8 d_("rﬂxi)sd_(gﬂ}(_i}wherel.Si.s_m,ISan
and g 2 (s vy, L.e., { lies

between g and vy

i.e., iff Vi every ¢omponent of d(y) Xi) < the corresponding
component: of d(g[ﬁ Xi}.

Proof: Direct: Suppose ¢ is safe with respect to an extension p'

of D with respect to y. Then 4 a full sequence of feasible

1
slices from o to yg , call it %, Let a“:' ¢ L be the first slice
in I to use an arc just past y (i.e., it is the first element

ofEac'}#y). Then it is eclear that -sﬂxiscoﬂxigyﬂxi
14j l<i<m
nd - s § .
a YﬂXJ DﬂxJ

where O, F\xj is the arc just past y that lies on Go.

Thus 1f y satisfies the property above then clearly

d (yNxy) sd (o, N x) ==mmmmcenen R ELLC e PR (1)
and since a, is feasible

m .

T 4@ M) SEC mmmmmmmme et (2)

k=1 o' o

where g is the capacity vector
From (1) and (2)
. [y -vnN le . gb'r]xj ia feasible,where the expression on the

left rep;esents the slice y' in figure 2(a). Thus thers is a feasible
extension of ¢ -+ ¥ to y'. Now, since
m l - m
kf;l d &' M) $E=1 d (o, N %) from (1)

it EOIIOHé.that all movea down any chain. that were posaible (i.e. resulted
in feasible slices) from g_ are possible from y. Thus the tail I' of L,
the part following o , is applicable to the sub-sequence g + Yy 1in the sense
that all the mbves represented are possible, Applying_'ﬂ'(leas the moveé'that
have already been mgde when Onme starts at y) to the sub-sequence o + vy

“one has a full sequence from o that has o + vy as a prefix,

Converse: Suppose y does not satisfy the stated condition., Then
H¥- ay> 13
[d (v n Xilj >[4 (ai)]j- where o N Xy & 0y &Y ﬂ Xi
Let y, be the slice [y - y N X, 1*a;, 1i.e. the slice obtained by replacing
YN oxy by o -
It will be shown that there exists an extension D' of D ﬁrt v for which &

Dl

is safe but there does not exiat a full sequence from ¢ to Yo

having o + y as a prefix. D' is shown in figure 2b in its peneral form
and in figure 2c¢ as a specific example. It 1is easy to see that ¢ is safe
since there is a full sequence from g to Yp by way of g yn' and and 70".
However there 1s no way of constructing a feasible sequence from y ta Yoo
Thus there exists an extension of D wrt y for which there is no full
sequence from g to Yo by way of y even though 5 is safe. Thus y does not

have the prefix property. _ Q.E.D,

Note: There 1s a degenerate case,viz that of a slice having only one non- .

terminal slice, when the slice always has tﬁe prefix property.
The prefix property agssures one thaf partial sequences.of feasible_
slices can be extended to full ones. There remains the problem, however,
of constructing that extension. The logical action {s to continue to
abply the Mbdified Safeness Algurithm 80 as to construct the.extensiﬂn.
However , what happens when the algorithm fails to vield an extension? Can
one conclude that & is unaafé? Unfortunately this is not the case as
figure 3 iliustrates. Thefe the algorithm provides no extension of the sequence.

oY However vy 4 y' o y" 4 y"' indicates one extension. Thus the modified

»

.lxl arererarw

’l‘i Tk
' I |
| |
|
| |
! |
| 1
| |
I
: |
y —
¥
|
. “i a;
¥
YT) (0!0) . (DIO) YT
v ¥ 1 ¥

g=1 the capacity vector -

m
For £ #k ¥r{l[@) o =1¢]T-E [g(yﬂxs)]r} 1€r €n and C is
| stk

i.e. the glice [y-v(ﬁ .Y l-ﬂi has been made infeagible
-

For £ =k ¥ r{[_g(al'()]: rgjr- El[g(vﬁxs) -1 d(ori)]r}lern
a= .
s#l,k

i.e;ithe slice'[y-yfﬂ‘xk]°ﬂé is made infeasible but Y& is'fgasjble

Figure 2b

RN

Xy Xy %3 Xy,
s ; ' :
|
; | f f
| | | | o
| l |
! \ | |
| | |
| | ;
| [
1 (7,2) | |
| | |
|) I J
¥ J ‘1[v
(6,6) (6,6) (6,6) (6,6 ViYpev)
e — LJ
¥ ' \l’ //_»" . Yﬂ Y
(18, 18) (18,18) (11,16) (18,18)
2 ¥ Y Y
(0,0) (0,0) (0,0) (0,0)
¥ v ¥ g

Capacity = (30,30)

Figure 2¢

10

11

safeness algorithm has to be augmented so that it uses a different strategy
when it fails in the form in which it has been stated, Suppose one adds

a step, call it step ?', which is to be used in place of 2 in this case:

Step 2': Construct a sequence of moves down ¥, so that the slice
resulting from each move is feasible and the last resulting

slice y' has rhe property

73 3 [d (yn xi)]j < [d (& n Xi)]j

In other words,when attempts to find an arc on a chain which can be reached

by a feasible sequence of slices moving down that chain from vy and which

is the best overall, fail one wants to try crutches wrt that slice y, which
are better at least with respect to some one component of demand (like qi
in figure 3), with the hope that one can overcome the barrfers discovered
(one on each chain) in the initial attempts (Bl’ Bz, B3 in figure 3). In general
there are several arcs such as ai_between'y n Xq and Bi and it is clear
that some may he of no use in that mbving down to them does not result

in an adequate release of critical resources to overcome any barrier.

In fact fiéure la shows Chat one may have to move to more than one of tﬁe
arcs q{ in order to be able to cross the harrier (the sequence iz

y 4% ¥ 4" 4y"). In general up to (m-1) of these crutches may be
needed to overcome the barrier, Figure 4b shows another complication

in that I erutch suffices to overcome tﬁe barrier but mofe_ﬁrutches are

needed to reach the bottom-most slice.

Capacity = (20,20)

Figure 3

3
I | i
|
:
&
¥ ¥ ¥ °
Y 66 _—7 [0 6,6) v,
| b4 ”’/,f ' 1 \\\\ ¥
NAPR S S gl ¢ W) (8,57 (8,5)
a’ AN
Y 1 k4 AN .- ¥
N T
(12,6) (12,6) \ (12,6) ¥
B, B, By
¥ 4 \53';_‘
(0,0) (0,0) ©,0) Y
% ¥ v

12

13

The two figures above (da-and 4b) illustrate two different
problems. TFigure 4b emphasizes the fact that (intermediate) slices
using a crutch do not have the prefix property on account of the
result of Lemma 1. It Seems logical then to seek crutches that facilitate
crossing of a barrier and then immedi;tely try to reach a slice which
has the prefix property and which can now be reached. In order to keep
the algorithm local (a term defined a iittle later), however, knowledge
of the spec%fic arc which defines a barrier on a chain is assumed to be

unavailable, The complete algorithm 1s specified next.

Augmented Safeness Alporithm: i

Step O0: Let g be the slice whose safeness is to be examined.

If o= Yy note the success and quit; if not go to step 1.

Step 1: Pick a chaln ¥ of the demand graph (say xl) and go te

step 2.

Step 2: Construct a sequence of moves from g down %q éo tﬁat
the slice resulting from each move is feasible and a
alice y' is reached which has the two propertieé

) v d iy ny) s dany) o= 8% Y'
and

: (ii) d (1.s.(y")} N xil £d (' n xi) where

"i.s!'is the immediate su;cessor funﬁtion. '

Tf such a sequence can_be constructed replace g by '

and go to step 0.

If such a sequence cannot be found go to step. 3.

14

X4 X, X,
] | |
g \1(K b g
Y (6,6) (7,7) (8,8) v,v¥",¥y"
—_—
¥ // ¥ o~
/ 4 |
I y i Ve !
/! 4 r
———Ys - -
Y'!y"_ (4)7) (815) (7'9)
YI"|Y”"
D e 2o 3
NN
! NS :
I I \
v ¥
(11,11} (12,12) \ (13,13) '
‘\-n.._____-_ ——
v k]
| | o
| i (0,0) "'

Capacity = (25,25)

Figure 4&

15

Figure 4b

% X2 X3
’ ;
Y 4
(6,6) {(7,7) T (8,8) v
b T TN _
|r /// \\ +
1 i
I // f \ |
7 J \ |
- @D 5 \\ (7,9)
' T AN 3
\ \ :
\\ LN, 1
(11,11) (12,12) ‘\\ S a3,
\ ‘\ - .feas ible
¥ Y \ Y i
(0,0) (0,0) \\\\ (9,8)
t ¥ \ N
N
\4 . (13:13)
"~ ~ 1infeasible
3 ~
.
(0,0)™~
feasible
1
Capacity = (25,25)

Step 3: Pick an unused chain Xy j #1i, {(say 1 = i+1) and
go to step 2 if such a j can be found. If none
can be found call the Complementary Algorithm with
W and Yy set equal to vy. If it returns successfully

*
set g =y and go to step 0 else note the failure and quit,

Complementary Algorithm:

This algorithm takes three parameters: a demand graph D, a slice w
and a slice y. The first parameter wlill be consider to have been passed
to the algorithm at the first cell or ifmplicitly and, hence, is not
mentioned in ealls to the algorithm, The algorithm returns with a.slice_

- ’ .
Y having the prefix property wrt w and a sequence of moves from & to Y

when it is successful. In case of failure no value is returned.
Step 1: Pick a chain Xq {say xl) and go to step 2.

Step 2: Construct a sequence of moves from y down Xy B° that
%
each resulting slice is feasible and a slice v is

'reached which satisfies the condition:

*
w3 v fd iy n xi)]j < [d (wn xi)]j
¥
i.e. ¥ N X4 is a erutch of wrt w,

If such a sequence can be constructed go to stép 3,

if not ga to step 4.

*
Step 3: If v has the preflx property wrt © take the successful
*
return and return with the sequence from w ro vy . If

it does not have the prefix property call the Complementary

16

17

*
Algorithm with Yo set equal to y, and w unchanged.
Co to step 4 in case of unsuccessful return otherwise

go to step 3.

Step 41 Pick another unused c¢hain Xj {say Xi+1)' 1f such
a chain can be found go to step ?. [f not, cake the

unsuccessful return.

It will be noticed that the Complementary Algorithm is recursive and uses
a tree growing approach to the construction of a seqUeﬁce of feasible moves
to a sliée with the prefix property. The number of possible hranches at
a node is the number of chains having crutches that are.acceésible from
the current slice by a sequence of movesa dowm the corresponding chain.
When one of these crutches 1Is chosen the resulting slice becomes a successor
node to the priér one and the process repeats until a slice with the
prefix property is found. (See figure 5b).
| It is shown in lemma 2 below that the Augmented Safeness Algorithm
is always successful whenever o is safe {conversely, if 1t is.succeséful,

o is safe.)

Temma 2: The Augmented Safeness Algorithm applied to a slice g and demand

graph D is successful » g is safe in D.

Proof: By the definition of safeness the forward implication idg true.
Now for the reverse implication. Any failure of the algorithm implies

that a slice y, which has the prefix property wrt g was reached whereat the

Complementary Algorithm was applied and failed. Failure of the latter
means that at every leal of the tree grown was a slice § from which no
crutches could be reached, i,e. every chain i had an arc which 1s a

feasibility barrier B{ in terms of moves down that chain from & and

2] K e
there is no crutch between Bi and & N X Now let Bl, BE’ &m

be the farthest (i.e. loweat down) aof these barriers (there is one

for each leaf of the tree) on the chains X12 X207 % respectively.
Suppose now that o were safe. Then 7 a sequence ¥ of slices

from o to.yT, the terminal slice. Thus there is a slice o which

is the first slice in ¥ to use one of the Bi-

Cansider % al xj {(j £ 1).
an xj 2 gy n xj <= Bj by_the.choice of co
- Lf g T <
Uon){j YnXJ
then ¢ (gU n xj) > dyn xj) because y has the prefix property wrt o

.. [go = g N xj]- [v n xj] is feasible_since P === 1

and 1f £k > [d (g N X1 < I (v x5 h,
i.e. if gg N xj is not a crutch wrt vy
rthen d (y N Xj) < d (UO N xj) and therefore

[do - &0 A xj] Iy N XJ] is again feasible "“".‘_“‘"“‘"“'."’““‘-.--_"'-“ 2

18

© 19

From 1 and 7 one sees that one can mave the slice g from

ag N X4 to ¥ N Kj whenever

{gg N Xy ¥ Y N x; and gg I X is a crutch wrt vyl

we
is not true. Call the resulting slice ¥y

®
Then y is feasible and lies below y. Moreover

*
() v uses only crutches in addition to arcs in Yy

*
(1) v can be reached by a feasible sequence from o since g

%
can be and since ¥ k d (y N xk) <d (o4 N Xk) lck em

and finally y*.can be reached by a teasible sequence from y since vy has
the prefix property wrt D and g.
Thus Y* must have been reached by the Complementary Algorithm applied
at y. However by definition B, was the lowest barrier on X4 wrt all leaves
%

of the tree the algorithm examines. Thus there is no such v == 3 pontradiction,

Hence T cannot exist, i.e. g is unsafe. ' Q.E.D.

Reconsider the Complementary Algorithm. How far down does it need
to look before it finds a slice which has the prefix property or réalizés
that one cannat be reached using that particular éath in the tree?
Unfortunately figure 4c shows that inability to reach such a slicermay not
be perceived until all but two chains have been gone down (it is clear that
{f one can reach a slice having only one non-terminal slice then it has
the prefix property by virtue of the fact that all demands have to be less
than the Eapacity of the system)! Thus the amount of backtracking that may

be required for a single trial is considerable.

20

Xl Xz X3 X4

| | | |

| | |
. ¥ 3 3 ¥ g
Ys ¥ (8,8) (7,7) (9,9 (6,6) Y,v'

%_;T ————— SN T T T ['__"”7:;____
| / \ ¥ /
/ [N\ | / |

}ll' r/ § \\"x 3 / _ | '

. , Yom T on
YY" (6,9) (5,8) (10,0) / 7.0 ey
Y"' .‘,ltll r -”j : x'\\ \. ﬁ\ ! :

/i | N\ \ |
s f b i Y \\
. 1/'/ / \ SN (.
vw -7 &,y (35,35) | (24,18) | (14,12) y"
/ \ \
¥ Vi 1 R 1 \
e | N R -
Y{l; T (0,0) . (090) (G)D} (O:D) \""’Y”"
 { : ;
g1l _ Capacity = (35,35)

Here one can get from y to y'"" before realising that the move y —» v’

was a mistake. One discovers upon Ffurther trials that ¢ is safe since

Yo ™Yo T Yo' — Yy is ocue way of extending the sequence 0 —vy.

Figure 4¢

21

Moreover the niumber of possible trials is also quite large
as figure 4a points out. That figure shows that up to m-1 mediocre
arcs may need to be used to overcome a barrier.

The discussion so far points out hy example that when the

Modified Safeness Algorithm reaches a slice y beyond which it cannot

proceed, then one has no choice but to experiment with crutches with

the aim of reaching a slice y* with the prefix property, when the
algorithm can be brought back into force. The amcunt of backtracking
dnvolved in reaching Y* from y appears to be large, A formal result
regarding this backtracking is stated below, but some definitions

are necessary for its statement and proof, and these follow. The
term "algurithﬁ" in the definitions and theorem refers to an |

algorithm for the conatruction of a full sequence of feasible slices

for the purpose of checking the safeness of an arbitrary glice ¢

of a demand graph D.

Definition: A local algorithm is one which has a kaowledge of the part of

the demand graph above the current slice as the only (knowledge) input

in making a decision regarding what move (in the literary sense) to make

next.

For instance a local algorithm does not know or cannot "see'' the entire
remaining portion of the demand graph and thus make only the correct move
(in the defined technical sense). Similarly a local algorithm does nof

have recall_abilities in respect of past moves so that it cannof just

sweep down.thé chains one at a time and thereby gain (and store) knowledge

of the whole or part of the remaining portion of the demand graph. Were cne

22

to assume such an ability it is clear that an arbitrarily iargé memory
would be rEqﬁired to store the informatfon, and since any realistic
memory has finite capacity such an assumption is clearly unrealistic,
It is therefore convenient to assume zero recall capability (regarding
futile moves). It should be clear now that both the Modified and
Augmented 3afeness Algorithm are local wheun the strategles outlined

in parentheses in their definition are used.

Definition: A local algorithm is said to be a limited- backtrackine algorithm

if one can partition the sequence of slices it produces into sub-sequences
whose initial and terminal slices have the prefix property wrt the demand
graph and the slice g whose safeness is being investigated.

In other words the construction of a full sequence proceeds as in
figure 5a rather than as in figure 5b, where g4 Yir Y14 Yy represent.
the sub-sequences mentfoned in the definition, while yi, yé «+. are just

plain'Intermediate slices.

Definition: A limited backtracking algorithm is said to be linear if
the maximum number of sub-sequences examined, before the correct sub-sequence
to adjoin to the partial sequence ¥ already constructed is found (or it
ig discovered that none exists), is of the form
A.ﬁnl, Rys Mg, *° nm)

i

the form % ay niand theai are integer constgnts, and where the n
i=1 ' ' .
are some appropriate (relevant) mumber of arcs on each chain below vy,

where A is a constant and f(nl, T, r--nm) is linear in the m, i.e. of

i

the slice terminating the partial sequence ¥.

Figure S5a

Figure 5b

24

If f increases faster than the sum of the ny the algorithm is said

to be of higher order.

For example in the single resource type case the number of
sub=-sequences examined 1is m, {.e. A=m and f(nl’ s ...nm) = 1.
An example of an algorithm of higher order is found the case of
multiple resource types. (This statement is clarified in the
theorem below.) The 0y in the case of the Complementary Algorithm .
are the number of crutches below v {and above the next slice having

the prefix property say),

Thearem: It the multi~rescurce case there does not -exist a linear
limited-backtfacking algorithm (for testing the safeness of an

allocation state or a slice of the demand graph)

gﬁgggz The proof involves demonstration by means of a counter-example
that the number of wasted trials is of higher order. Refer to figure 6
which shows the counterexample.. The example will be c1arified in the
discﬁssion. The slice y répresents the end of a partial sequenée constructed
somehow (perhaps by the Modified Séfeness'Algorithm) from the slice ¢
_.whase ;afeness is being tested. Slice y has the prefix pProperty. As a
special case g may be y. By virtue of construction there are.no arcs
between y N Xi and Bi’ for any i, that have demand vectors which are
less fhan or equal to the demand vector associated wifh YNy, -

Nofe that {d (Bi) £d (yn xi) too . Thue the nearest s;ice with the
prefix property and lying below y lies bel&w 81 B2 - ﬂm ﬁhg barrier

glice. Thus any limited baektracking algorithm, which by definitfon has to

look for a prefix slice which 1s accessible from v, has to construct
a sub-sequence from y to y' where y' Is the firat slice in this sub-zequence
satisfying v' & BI Bz. B3 .. Bm i.e. Hj 2v' N Xj o> Bj 1 cj<n
The demand graph has been constructed so that there is exactly ome
set of k crutches which must be used to overcome the barrier. By non~obstrugtive
arce are meant arcs whose demand vectors are such as to permit aeccess from y
to any slice using g of the crutches shown (for any p < m~1) and the
remaining arcs from y. These non-obstructive arcs may be crutches themselves,
in fact they probably contain some of the oy crutchea that are presumed
to exist on each chain betwegn ¥y N X and Bi, The skeptic may assume
that the non-obstructive arcs are absent in which case ng, = 1 (wi>1 s.i < m),
To further simplify understanding pf the example, figure 7 shows a special
case of figure 6.
The conetruction of figure 5 is quife general in that k can be
an arbitrary integer between 1 and m~1l. Now suppose a limited back-traéking
"algorithm is given. Since it is local it must examine the combinations
of the crutches in some order and for each combination of r crutches
it tries out some moves. However since there is only one combination
that works, all other trials are wasted. The number of trials wasted
can be made non-linear by choosing a value of k appropriatg to the
aigorithm.
For example consider an algorithm that uses thg crutches 1 at a time,
3 at a time, ete. up to m-1l or m~2 (whichever 1is odd) at a time and then

2, 4,6 -7+ at a time.

xl xz L I B B R NI R R R I A N R xm
I |
_ : ! |
v | | | o
Y ¥
Y (pl)pzypsg 'pn) (p!‘:"pzyp3,°p“) . (plgpzi'pn)
Y i 1
| <—Non-obstructive arcs > }
- ':p‘
a az am
k § Y
_ !
| 4—-Non-obstruc§ive arcs > !
b § L
Byl Byskgaebd Byl Gipabhg,) | Bp| Bpobgs k)
b ! b |
(0,0,..0) (0,0,..0) €0,0,..0)
Y h {
Capacity = (CI’CZ’ Cn)
}5‘= 0 for l# j,h
= C.-(m-1 + k >
_ uj (i (m)Pj] _ “’j 0
by = { GémDip) - K by, 20
Of the arcs ai (i) exactly k have the demand vector (pl,pz,.ph+l,.pj-l,.9n)
(1i) the rest have the demand vector (pl,pz',.ph-l',.oj+1,.pn)

th

The critical resource is the jth. Specification of the h dmnpanent is

required to ensure that each @ is & crutch but g(ai)#g(y N xi)

Figure 6

26

(6,6,6) (6,6,6) (6,6,6) (6,6,6) v
3 I]
3
Q’l {7,5,6) . 0'2 (7,5,6) 0'3 (5,7,6) 0’4 (5,7,6)
b b .l
Bl (5.9,00 Byl (5.9,00 By (5,9,00 Bl (5,9,0)
N j k
{0,0,0) {0,0,0) (0,0,0) I(O,Q,D)

Here m=3,n=3, k=2, h=l,

A

Capacity = (25,25,25)

j=2 in terms of the notation of figure 6.

Figure 7

Pick k = 2, Then the number of wasted trials

k=]

no, of combinations of r crutches at a3 time m' =m-1 or m-2

&H

(r odd)

= the sum of the coefficients of xl, x3, xS, xT ‘e xn-l

in (1+mn.x) (L+n,x) €)) -r (1 + n.x)

In case n, =1 for all 1 (1 5 i £ m) the right hand side becomes 2?-1

1 |

(versus m),

Thus it has been shown that the number of futile trials is non-linear

28

for the counter-example, Q.E.D.
Comment : The'proof above 1s really quite conservative for figures 4b and 4ci

showed that merely being able to cross the barrier is not a guarantee of being

able to reach a slice with the prefix property without further backtracking.

The theorem above indicates that the Modified Safeness Algorithm is fn a .

‘sense optimal. As long as 1t succeeds the numbef of sequences examined
In-vain is at most m-1 and so the algorithm is linear. When it fails it

18 necessary to use crutéhes'in a trial and error fashion to.get past the
barrier and then quickly reach a slice.with the prefix property (say.by
use of the Complementary Algorithm}, when the algorithm caﬁ be uged again,
Finally one shauld note the following:

Comment : It ié clear that if no combination of crutches (from 1 to

m-1 of them} permits crossing of a barrler then y (and hence-ﬁ) is unsafe.

{

Reference:

[1] Hebalkar,P.G., Mepordinated Sharing of Resources in Asynchronous Systems",

Projecﬁ MAC Computation Structures Group Memo No. 45, January 1%70.

