MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Project MAC

Computation Structures Group Memo Ko, 50

*
Proposed Research in Computation Structures

Jack B. Dennis

April 1970

Part of the Project MAC continuation proposal to the Advanced Research
Projects Agency, January 1970.



Introduction

The Computation Structures CGroup is concerned with advanced concepts
in the organization of general-purpose computer systems -- and especlally
with the influence of the demands of programming and stvle of computer
usage on computer architecture. The research carried out by the group

*
is based on this premise:

"It is generally agreed that the cost of software development
is now the dominant expense in the application of computers.
The cost of computing hardware appears destined to diminish
indefinitely. Yet the cost of programming is bound to rise
as it directly represents human effort.”

The implication is clear: Any innovation in computer architecture that
can effect a reduction in the effort required to create working programs
is worth very serious consideration, even if it appears to reduce the
Mefficiency' with which computations are performed.

Qur {the Computation Structures Group 's) approach to innovation Iin
computer system organization is through defining with greater care the
function performed by a computer system. Any computer system defines
a programming language; the primitive operations of the language
correspond to the instruction types implemented by the processing
hardware, the commands that may be given Lo the operating system by
running programs, and the fumections implemented by a basic set of
library subroutines. 1In the design of existing computer systems,
negligible thought has been given to the language it defines -- the
language is the result of a multitude of decisions made by independent

groups, and very often with little rational thought.

%* Quotations are from publications of the Computation Structures Group.



-2~

We propose to work toward the design of an advanced computer systam
by first specifying the language it is to implement, and then deve loping
a computer architecture that can provide an effective realization of the
language. For lack of a better term, we will call the language, whose

definition we seek, rthe basic language.

Sharing of Proprams and Data

To further understand the characteristics we desire in the basic
language, we briefly review our hypotheses regarding the nature of
future computer systems. We assume that interaction with a large,
shared computer installation, or network of computer installations,
from a personal console will be the normal mode of engaging computing
and information services, Multiprocessing and multiprogramming will
be used so resources of a computer installation will be m:ltiplexed
among many independently written programs. The major portion of
information required to serve users will reside in on-line files,

We expect an increasing demand from computer users for use of
programs and data bases prepared at other computer installations.
When it becomes possible to achieve sharing of programs and data
bases through the facilities of a network of computer installations,
the concept of the "computer utility" will have been realized.
Implementing the computer utility requires introduction of the
concepts of ownership of information and access control into the
design of computer systems. The requirements that the controlled

sharing of procedures and data places on the structuring of



information within a computer installation (or in a network) have been
studied by the Computation Struetures Group. The tesults of this study

will be incorporated into the specification of the basic language.

vet access to a program or data base is not sufficient to make
it useful in a context different from the context assumed by its
owner -- problems of compatibility must be overxcome. A program cannct
produce identical results at different installations unless all primitive
operations used in the program have equivalent effects at each installation.
Procedures expressed in different programming languages cannot be used
together unless they employ identical representations of common data.
If a data base is to be used at different installations, then the
procedures thab operate on the data base must be expressed inm programming
languages that employ equivalent representations for all deta types

oceuring in the shared data base.

We believe a truly effective solution to the compatibility problems
that plague attempts to share information is to be achieved only through
adoption of a common intermediate representation for those procedures
and data that are to be ghared. We intend that the basic language be a
practical common intermediate form for programs and data specified in

a significant range of popular programming languages.



Programming Generality

"A most important means of Ccreating a program is to comstruct
it from existing programs. Very often the exact program for
an application does not exist, but ma jor components of it
have been expressed as programs, very likely in different
languages.

"Programming gemerality is the property of a computer system

that enables users to combine existing program modules,
independently expressed in different languages."

Programming generality is a rare property in contemporary computer
systems: It is generally not possible to combine independently written
programs without making internal changes. The exceptions are when the
component programs are small and do not employ dynamic storage allocation
(e.g., basic library subroutines), or when the authors have expended
much effort to ensure that a particular set of modular programs can be
used together.

We believe the attainment of programming generality has far-reaching
implications for the architecture of computer systems. The following
summary of a relevant argument is taken from the abstract of a paper
presented to the IFIP Congress 5H8:

"To exhibit programming generality, a computer system must

permit a program module to 1) create information structures

of arbitrary extent; 2) call on procedures with unknown

requirements for storage and information structures; and 3)

transmit information structures of arbitrary complexity to a

called procedure. These requirements imply that the hardware

or operating system must maske storage allocation decisions

and, hence, that location-independent addressing must be

used. A small unit of storage allocaticn is necessary to

prevent waste of valuable storage capaciky and unnecessary

information transfer. Exploitation of detailed parallelism

[in computatioms] is then essential to fully utilize the

processing hardware."

Programming generality is, however, just one explanation for our interest

in parallelism,



Parallelism

Many changes in the field of cemputing and information processing
peint to the inereasing importance of concepts of computer system
organization that permit many parts of a computation to be carried
forward concurrently. Designers have reached the limit of their
ability to devise more powerful processing units by adding complexity
to hardware that interprets a sequential representation of a process.
The emergence of large-scale integrated circuits suggests that
improvements in performance will be achieved through parallelism rather
than increased speed of logic circuits. To these arguments we add
another arising from cur interest in systems that offer programming
generality: To exhibit programming generality and at the same time
to be efficient, a computer system must multiplex its resources among
many computations sa resources not required by one computation are not
left idle. Exploitation of parallelism is required for efficient
utilization of processing and memory units if programming generality
is to be obtained in a system having several levels cof physical memory.

Proposals advanced elsewhere for highly parallel computer systems
have neglected the question of programming generality, The Computation
Structures Croup has been studying possible machine organizatioms that

are highly parallel, vet have the necessary features Lo achieve



-6-

programming generality. Our present concept of such a computer is
briefly this:

" The machine has two major parts -- the memory svstem and
the pracessing hardware, The memory system has, say,
three levels, M, , > M. ... . 1In each level addressing
is associative Using a Eey congisting of a pointer [to an
information structure] and a name byte [that selects one

of its components}, ... TItems are brought inta higher
levels of memory on demand ... . The organization of the
processing hardware is intended to permit extensive sharing
of multiple specialized units by many computations ...
using a 'service on demand' principle of control."

This concept of computer organization is consistent with our present

thoughts regarding specification of the basic language.

Research Program

Future research in the Computation Structures Group will fall in
two principal areas: One is the'study of theoretical and practical
issues concerning specification of the basic language. The other is the
study of problems relating to implementation of the basie language in
the form of a highly parallel computer system. The near-term ackivities
projected for these two branches of researeh are discussed in the

fellowing paragraphs.

Basic Language

The foundations for the specification of the bagic languapge are
provided by past research, within and outside Project MAQ, on the
representation of parallelism in computation. Of particular
importance is the work of Rodriguez, whe introduced the concept of

"program graph" and clarified issues relating te parallel programs



-7~

containing decisions and iteration. We have extended Rodriguez's work
and used a variation on his program graphs in teaching an undergraduate
subject on implementation of computations.

For the representation of structured information, we have defined
a graph-theoretic medel that is a generalization of trees. We have
found that our model is nearly identical to the abstract "objects"”
used by the IBM Vienna Research Group for their definition:of PL/1.

It is also a simple extension of Landin's abstraction of structure
often used in connection with the lambda calculus model of cemputer
programs.

Issues that must be resolved to formulate a complete specification
aof the basic language include both theoretical and practical matters.
The most important theoretical questions relate to representing
parallel computations on structured information, modeling co-routines,
and representing parallel computations of the form "apply procedure
P for each element x of the set X." Other issues concern the
specific choice of primitive operations and data types, and the
design of access control and debugging features of the language.

In parallel with the development of specifications for the
basic language, we will study the problem of specifying translators
from important source programming languages into the basic language.

The work toward a specification of the basic language will be
supported partly by a grant from the National Science Foundation
and partly by the main Project MAC funding toward which this

proposal is directed. In this effort we expect to work clesely



with the Programming Linguistics Group, for their research in formal

semantics and extensible languages is obviocusly relevant.

Assaociative Memory Svstems

We explained earlier how progress toward programming generality
requires that the machine level representation of procedures must
encode references to information in the form of location-independent
tokens. That is, the tokens or identifiers used to refer to variables
and information structures must not have any implication respecting
where in memory the variables and information structures are stored.

In current systems (such as Multics) the efficiency with which
lacation-independent addressing is implemented is severely limited
by the fact that different identifiers are used to locate information
within the different levels of memory. Software procedures must be
inveoked to make conversions of identifiers whenever information is
moved between levels of memory. If a uniform scheme of identification
is adopted for all memory levels, then it is possible to design hardware
structures that perform all parts of the memory allocation task. (This
has been done in the "cache! memory of the IBM Model 360/85 system,)

In such systems, the higher levels (least capacity, fastest access)
of the memory hierarchy must be accessed associatively,

For this reason, we are studying the design, organization, and
performance of hierarchial associative memories, We are interested

in associative memories that provide for concurrent servicing of



-G

many simultaneous requests for retrieval of infurmation._ In this context,
shift registers, delay lines,and magnetic drums are attractive, and

we are studying ways in which these serial devices may be used in
associative memory systems having a high capacity for serving concurrent

requests.

Asvnehronous Modular Systems

We believe that successful construction of a highly parallel computer,
such as we envision, requires the use of asynchronous communication among
its parts. For several years the Computation Structures Group has been
studying the representation, design, and implementation of asynchronous,
modular switching systems. This work is closely related to the work
on "macromodular systems' led by W. A. Glark at Washington University
with ARPA support. Whereas their work has the practical objective of
making it easy for individuals to construct specialized digital systems,
current research in the Computation Structures Group is concerned with
the theory of schemes for representing such systems, Our most recent
success has been the conception of "coordimation nets" -- a scheme for
representing the coordination requirements of independently timed
activities. We have shown how to obtain a design for an asynchroncus
modular system that implements the coordination of events specified
by an arbitrary coordination net. Situations requiring hardware
coordination of concurrent activities will be commen in highly
parallel machines of the future. We owe much to Anatol W. Holt as
we have made very profitable use of his ideas, especially his

"petri nets", in our research.



-10-

We expect to carry further our theoretical studies of asynchronous
systems, and ko begin experimental work to evaluate the applicability
of our concepts to theldesign of large-scale systems. We hope to
develop a theory which will characterize formally those intercconnections
of logic gates that define deterministic esynchronous hardware modules.
(We already know very natural communication constraints under which
systems formed from deterministic subsystems may be guaranteed to be
deterministic). We anticipate that these and related theoretical
achievements will eventually replace the classical switching theory
(due to Huffman and Caldwell) as the foundation for the design of
asynchronous digital systems.

We wish to set up a modest "lahoratory for asynchronous switching
systems" for experimentation with applications of our theory to design
problems. We will design and construct experimental versions of basic
control modules, demonstrate their use in typical digital subsystems,
illustrate the implementation of coordinatiom nets, and explore the

design of time-dependent computing modules.



