MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Project MAC

Computation Structures Group Memoe Ro. 52

On the Exchange ¢f Information*

Jack B. Dentis

October 1970

*Prepared for the 1970 ACM-SICFIDET Workshop on Data Description and Access,
Rice University, Houston, November 15-16, 1970.



On the Exchange of Information
Jack B. Denmnis

Project MAC
M.I.T., Cambridge, Massachusetts 02139

October 16, 1970

There i3 widespread and inereasing interest in moving information
between computer installations which may differ in their hardware, soft-
ware, or their program libraries and data files [1,2,3]. There is general
agreement that the task of making a major program written at one installa-
tion available for use at another installatiom ia difficult, and is not
seriously undertaken without thorough analysi;. Yet there seems to be
considerable optimism that the problem of accessing a data base at a
foreign installation can be solved through development of a "data description
language™ that would serve to characterize any class of data objects that
might be communicated among computer installations [4]. The purpose of
this paper is to argue that the general problem of data exchange is no
legs difficult than the problem of program exchange, and that the concept

of a "data description language" is not a sclution to the problem.

The Problem
To express the general problem of data base tranafer, conslder two
contexts within which procedures may be executed $0 as to accomplish

computations on behalf of users. Let these be known as context A and

This research was done at Project MAC, M.I.T., and waa supported in part by
the Advanced Research Projects Agency, Department of Defense, under Office

of Naval Research Contract Nonr-4102(01), and in part by the Natiomal Science
Foundation under grant GJ=432.



context B. By the term "context" we mean the collection of all those factors
that determine the detailled course of execution of computations performed
by a computer inatallation. The factors defining a context for execution

of a procedure P are normally these:

1. The programming language in which P 18 expreased for presentation
to the computer installation.

2. The compiler for the programming language in which P is expreésed.

3. The computer hardware in which the compiled form of P is run.

4. The file manipulation and communications services provided by
the operating system of the installation.

5. The set of rules used by the installation for binding external
references contained in P.

6. The status of catalogs or directories of data and procedures;

the files themselves; the user account under which P is executed,

A difference in any of these factors may cause the procedure P to have
different effect when performed at twe installations.

Now let us formulate the problem. A data base D has been created by
procedures OPerating in context A, As shown in Figure la, let Q be rep-
resentative of these procedures. It is desired to make use of D in a
distinct context B. We assume that 'make use of D" means that a user wishes
to carry out computations in context B in which certain procedures either
retrieve information from D or alter the content of B, Let P be represen-

tative of these procedures (Figure 1b).



(a) (b)

context COI‘ItEKt %/

Figure 1.

Now in the users mind P, Q, and D are cbjlects that have existence
independent of any computer system: P and @ are abatragt procedures;

D is an abgtract data object. Procedure Q muat be expresaed in a

programming language and compiled before it 1s ready for execution in
context A. Let the compiled form of Q be QA some repregdentation of Q in
context A. Operacion of QA and related procedures in context A produces
PA 2 representation of D acecording to the data types and compiling
conventiona of context A,
To apply procedure P to structure D in context B requires chat P be

expressed in a programming language and compiled into P, and that D be

B

translated into Dy, where Py and D, are representations of Pand D in
context B,

The problem {3 to ensure that the effect of executing P wich D in
context B will be "consistent" with the effect of executing Q to generate
D in ceontext &. To be more specific we assume that the effect desired by

the user of P is exactly the effect that would result from applying P to

a copy of D in context A: The desired effect is the rezulc that would be



Figure 2.

obtained by expressing P in the same language as Q, tmanalating it with the
same compiler, and ruﬁning it in the seme operating environment as P except
for use of a copy of D. Thus we adopt the following as our criterion for

successful achievement of program and data transfer between two contexts:

Application of P to D in context B must have the same effect as
though P were applied to a copy of D in context A. If this
property holds for sll procedures P and all structures D we say
that contexts A and B are gonsistent.
For investigating the conditions necessary for two contexts to be
consistent, we offer the following interpretation of the phrase "have

the same effect.” Suppose the diagram in Figure 2 is an adequate model

for procedure P:

D reptesents the data base prior to execution of procedure P,

D' represents the data base after execution of P,

X denotes data {other than D) accessible to P but not altered
by P (input daca)}. |

Y denotes data {other than D'} that execution of P generates

(output data).



Example: The procedure P might be an information retrieval program that
responds to a command message X by producing an augmented file D'

from D and generating an output message Y.

By considering the data objects X, Y,and D or D' to be components of
a single compound data structure, we may think of procedure P performing
the transformation on thig structure illustrated by Figure 3. Thus the
computation of Figure 2 is a special case aof the computation in Figure &4
wvhere D and D' may be arbitrary data structures. We shall use the meodel
of Figure 4 for our discussion of consistency.

Letla’be the (infinite) class of abstract data structures from
which D is chosen. Similarly, let‘fa be the (also infinite) class of
abstract procedures from which P is chosen. Eéch abstract structure
D €5 and each program P €‘4ﬂ will have one or more representations in

each context. We define several relations that give the correspondence

Figure 3.



of representatioms to abstract objects:

1.

Let the relation

CA‘E'((?"AOA

contain each pair (D, DA) such that DA

of D in context A. We assume that the range of CA includes

is a representation

all of X that is, each element of .&L is a representation
of some object in.{Q.
Let

Cg & A ""(gs
be similarly defined for context B. We denote by C: and C;
the converse relations to CA and CB'
Let the relations

t

v Ax
ty S A1 A

In

give the correspondence of each abstract program P € P to
its representations in 1-1 and ')‘{; Again we suppose, for

exanple, that the range of tA is all of ﬂ



Fach abstract program P € iyis an operation on abstract
structures:

£: A - AU
We assume the domain of any program to be all ofﬁy; the
result of applying P to invalild data may be indicated
by a "success" or "failure" bit im the ocutput data structure.
We ignore the possibility that P may loop or contain bugs.
Each representation of a program ias an operation on repre-

sentation of data structures:

Al ‘('(A "‘(‘0.;.
Pp ‘MB "'AQB

A A
PA
C*
CA ' A
tA
D P p——— D'
s
CB -
CB
PB

Figure 5.



The consigtency of contexts A and B is characterized in terms of these
definitions by Figure 5, where P is an arbitrary procedure and D is an
arbitrary abstract data object. The dlagram expresses the requirement
that the result of applying P :5 D in either context A or B muat result
in some representation of the unique data structure D' = P(D). For consis-
tency, this condition must hold for any chaice of P € 79 and D Edfj In
symbols, congistency requires that the two compositions of relatioms

*
FA = CA @ PA o CA

and

*
FB = CB c PB ° CB

be identical functions wheare

(B, B,) € t, and (P, Pp) € t,

and P is any member of'fz
*
For FA to be a function it is necessary that the relation CA be a
5 €4

can be reached by computation in context A for some choice of P and D.

function. Tc show this we must assume that each representation D

M
Consider amy DA S A‘A and suppose

(Dl, DA) €C,,

(DZ’ DA) € CA, Dl * D2
Because D, is reachable we may choose P and D such that
(D, DA) € CA a PA where PA = tA(P)

But then

(D, D) € F,, (D, Dz) €F,

' *
N - P
contradicting the assumption that F. CA °o P, o CA

ig a funccion.



* i 5
Similarly, CB must be a function. Thus CA and C partition,ﬂg andAi%

B
into equivalence classes -~ each equivalence class consisting of all
representations of some data object in context A or context B, respec-
tively.

Now let us consider the requirements that consistency imposes on
the representation of a procedure (Figure 6). Suppose progedure P

transforms D into D'. Then the implementation of P in context A may

be applied to any representation in the set

o = (D, | @, b€ c,)
and, in each case, must produce a representation in the set
- T T ]
p=1{0 | @, p»€g,]

iLf the consistency condition is to be satisfied. The conclusion ia thus:
For two implementations of a procedure to be congistent, they
must perform the identical transformation of the corresponding

data equivalence classes of their contexcts.
/"'—-....

e ™~

\

Figure 6.



-10-

Computations on Structured Data

It is interesting to examine the consequences for consistency of
further assumptions regarding the structure of programs., 1In this section
we congider the consequences af adopting a gspecific formal model for struc-
tured information in computer systems. According to our model [5,6], 4

data structure has two parts — first, a collection of elementary objects;

and second, a directed graph that gpecifies the manner in which elementary
objects are selected and accessed.
The important subclasses of elementary objects (primitive data types)

are fairly well established:

data type range
truth values {true, false}
integers (o, I1, T2, ...}
reals power set ({integers))
*

bit strings {0, 1]

*
character strings on v

some alphabet V

S8ince in practice the set of data representations 13A in context A is always
a countable get, the abstract clasa of 'reals" can be at moat countable 1£
our condition for consistency is to be met.

Since each elementary object must be considered as a posaible data
structure, the conditions developed above must apply to the primitive

transformations of elementary objects used in constructing programe in the

class ‘70



11~

Example: A simple example of the concepts just discussed is the treatment
of zero by computer hardware, In certain computers zero has two
representations, +0 and -0. Moreover, the rules of arithmetic are
not uniformly interprete& where both operands are zero. For instance,

the rules
-0y + (-0) = -0 and (=0) + (-0) = (+0)

have both been used in different contexts. Nevertheless, the two
contexts may be consistent provided +0 and -0 belong to the same
equivalence class in each context -- that is, they are both repre-
sentations of a unique abstract object zerc. If the class‘fdof
abstract programs allows a test that distinguishes +0 from -0, the

contexts are not consistent.

The structural part of a data structure provides a loglcal means of
making reference to a particular elementary object within the structure,
Operationally, computer systems implement primitive operatlons such as
indexing and table searching that permit these references to be coded in
procedures. Two types of primitive operations are provided =-- those that
permit access to and alteration of elementary objects without changing their
number or arrangement, and those that alter the structure (by adding, deleting,
or rearranging elementary objects), To be more specific, it is useful
(and conventional) to represent a data structure by a directed graph. Each
elementary object of the data structure is associlated with some node of the
graph; these nodes are drawm as circles with the elementary object written
inside. Each branch of the graph of a data structure is labelled with a
selactor that distinguishes the branch from other branches originating from

the same node.



-12-

Figure 7,

Many workers have reatricted the grapha of data atructures to be
trees, while others have argued for general graphs including graphs haviog
arbitrary eyclic structure, My preference is for directed acyclic graphs
having unique roots. The reasons for this choice concern access control,
concurrent procesaing, and the sharing of access to substructures.

Figure 7 1ig an example of a data structure,

A pointer is a variable whose value may range over the nodeg of all
data structures in a computer syetem. A pointer value is thought of as a
teken that denotes the data structure having the node identified by the
pointer as its root node, and consisting of all nodes and branches reachable
over directed paths from the root. We assume (as in practice) that access
to a data structure by a procedure iz made possible by a pointer argument
to the procedure. The procedure may obtain a pointer to any node of the

data structure by repeated sxecution of a primitive cperation called gelect:

gelect p, n =+ q: If a branch labelled n emanates from the node

designated by pointer p, then pointer q is givem as value the



-13-

nede on which this branch terminates. Otherwise a new branch
labelled n that terminates on a new node is created, and this
node becomes the value of g,
Two other primitives are deleté and link.

delete p, n: The branch labelled n emanating from node p

is erased. Any substructure that becomes detached evaporates.
link p, n, q: A naw branch labelled n replaces a previcus
branch labelled n emanating from node p (if any), and the

new branch terminates on node q.

Computation is performed by agsignment statements like
WX (XK+y)=+z

in which the variable letters denote pointers to nodes having associated
elementary objects.

Different implementations for computation on structured data make
use of various machine-level representations, and different cholces of
primitive operations. Examples are: LISP where address~linked cells are
used to represent binary trees and the basic cperations are gar, ecdr,

cons, atom, equal; ''structures" in PL/1 where selecticn is limited to

integer subseripting and table look-up i3 used; COBOL indexed fileg where
directories and hash-coded searching are usual.

A procedure that operates on structured-data is a logical arrangement
that specifies how execution of a set of primitive operators is to be
sequenced. We now consider the relation of such an abstract procedure P

te PA' any representacion of P in some context A. We cleim that each



-1&4-

primicive operator in P must be translated by tA into a representation
that effects a consistent transformation of data cobjects in context A.
To justify this claim, consider the following example: An abatract

procedure P accepts as input aldata structure Xq degignated by painter

P Under direction of an input message P performs a series of select

0°
operations to obtaln a pointer Py to a substracture Lo of %+ This
structure is given to procedure Q which examines the structure X and
generates an output message. The computation performed is illustrated
by Figure 8.

According to our earlier argument, to the abstract structures

Xgs wvrs Ky there correspond equivalence classes of representations

Gya ~es Oi in context A as shown in Figure 9. Our claim requires that

//’—\ C /
| o

\

——— Kk

)
\

\
\\ // \

vy

e —

———

Fi 8.
raure Figure 9.

< TN

/
/

v e ————— e i — e — —— — i —p—



13-

the representations of the select operations in context A must map
between the successive equivalence classes as shown in the figure.
This must be true, for otherwise we could determine a sequence oOf
selectors to present to P such that P's output could not be guaranteed

to be the correct substructure of X+

Data Description

We regard a data description language zs a2 way of setting down in a
finite number of symbols, a specification of a class of abstract data
structures. Implieit in all discussions of data description we have
seen iz the concept of a (usually infinite) universe U of all possible
data structures., If L is a daka description language them each sentence
of L iz a formal specification of some (finite or infinite) subset of U.
As an illustration (and possibly ae a useful proposal) we outline a data
description language L based on the universe of tree-like data structures
introduced earlier and some "definition schemata" used by the staff of the
IBM Vienna Laboratory in their work on formal definition of programming
languages [7].

Ea¢h sentence in the language L will specify some subclags of data
structures in the universe U consisting of all data structures that can be
formed from elementary objects in the clasa E and selectors in the class S,
For our examples of the use of L we will let E consist of the types of

elementary objects introduced above:

E = integer U real U truth-value U string

Elementary objects rhat are integers or strings may occur as selectors in

objects in the universe.

S = integer U string



=16=

The elementary objects will be represented as follows:

integers by thelr Arabic mumerals

reals numbers with radix print

truth values {true, false}

strings strings in V* enclosed by single quotes.

V="_{a b, 1oss 2, 0, v00s, 9, +, -5 %, /}

A data description in L consiats of a finite list of declarations,
eaah of which defines a clasa of data structures in terms of simpler
classes of structures, We denote the classes of structures involved
in a deta description by underlined words. Each definition starts from
the classes of elementary objects and the clagss of selectors.

Each declaration has one of five forms characterized by the
five "definition schemata" introduced below. For each scheme of
definition, we give the general form of ita syntactic construction,
and then a statement of its meaning, The letters W, W', Wis Wy or. stand
for the names of classes of structurea, the letters s, 815 8y -u- atand
for selectors {elements of S); Q denotes some subset of S; e, @ys €95 «--
denote elementary cbjecta.

The first definkion schema allows the specification of restricted

classes of alementary objects, inciluding finite classes,
la. W={e, e, ..., g ]

Each elementary object e 151i<k, is a member of the class W

i’

Ib. w={e €W | ple)}
Each elementary object in the class W' that satisfies the

predicate p is a member of W.

le. W=[4, 1) where 1, j € integer

A shorthand notationm for W= {1, i + 1, ..., § - 1, j}.



_=17-

Exampleg:
day = {'monday', 'tuesday', ‘wednegday', 'thursday',
'"friday', 'saturday', 'sunday'}
range = {e € real [ Q< ex< 1,}

precedence = [1, 10]

The gecond schema provides a means of stating that each structure 1in
2 class W must have exactly k components identified by specified selectors,

where each component is 1in a spacified class,

2. W= ({8 W), {s,; Wyls eens (8, WD)

The class W contains all data structures of the form shown in

Figure 10,

Figure 10.

Example :
record = ({'name’; string), {('age': integer?,
{'sex'; gex), ('salary'; integer))
sex = {('male', 'female'}

A data structure in the class record is ghown in Figure 11



-18-

Figure 11.

The union symbol of logic 13 used to specify a class of structures

formed by jeoining several classes.
3. W= Wl U W2 ... U Wk

A structure x is in W 1f and only if x is in some Wi, 1L i<k,

Example: By using definition schemata 2 and 3 together, we can specify a
class of recursively formed structures having unbounded depth.

atack = rest U last

H

est

{({'value'; real), {'mext'; stack))
t

lase ’({'uluef; m.L))

et

Figure 12 shows a data structure in the clagss stack.

"next’

'value'

Figure 12,



-19-

Schema 2 only permits definition of structure classes in which the
number of components under a node of a2 structure is bounded. Also, each
selector that appears in a structure defined by schemata 1, 2, 3 muat appear
in the definition. The fourth definition schema overcomes these restrictions
by specifying the comstruction of data structures from stated sets of

selectors and structures.
4. w={{s; W) |SE€aq}

Each member of W is a structure having the form shown in

Figure 13 for some integer Kk,

{31,52,...9k} SQ s, #s, if 1 # ]

i
{xl,xz,...xk] S W' (not necessarily distinct)

Figure 13,

Figure 14.



-20-

Example:
inventory = {{part-name; part record) | part-name € string)

[

art tecord ¥ [{'om hand'; integer) | {'redrder'; integer)}
Part rtecord integer integery

Figure 14 shows a data structure in the class inventory.

Finally, gchemata 1 through 3 do not glve us the ability to specify
that the components of a structure are selected by arbitrarily many
consecutive integers. This is essential for sgpecifying vectors and arrays

of unspecified dimengion. In the following J, Jl, and Jq stand

for arbitrary sets of integers.

S5a., W= [W']

5b. W= {[J, I,) W
Sc. W= ([3;, *]; W
5d, W= ([* J,1; W
Se. W= {J; W

Figure 15.



-21-

Schemata 5a through 5d define classes of structures as shown

in Figure 15, where i < j and

5a: i, j € integer
5b: i €d, €T,
5e;y 1 € Jl, j € integer
5d: 1 € integer, j € Jz
Schema 5e is shorthand Ffor

LACIRCS PHE SRS PHIE 29 SN {3y % 2)
where

{jls jZ, ey Jk} =]

{xl’ Xys ==y xk] cw'

Example (symbol table):

symbol = {x € string | 1 < x| < 5}
value = integer | string U real
entry = ({0; symbol), {1; value})
table = {[1, *], entry)

A data structure in the class table ig shown in Figure 1é&.

Figure 16.



2=

The following example illustrates a more elaborate recursive definition

using schemata 1, 3, and 5a.

Example {(abstract arithmetic expressions):

eXpr sum U difference Uproduct Ugquotient Ureal
Sum = ((ratr, '+'), (rand, term-list))
temm-1ist = ({1, *]; term)

term = difference U product U guotient U real
difference = ({ratc', '-'), {rdl’ expr), {(rd2! expr))
product = ({ratr, 'x'), {rand), factor-list))
factor-list = [factor] ([1, *]; factor)

factor = 3gum U difference U guotient U real

This definition is 1llustrated by Figure 17,

'racr! 'rand'
1 2 3 4
‘ratr} ‘ ' t
'rdl Yrd2! 'vatr' 'rand' ratr 'rd2'

‘rdl!

9 (D @

'vd2'!

Figure 17.



-23-

The classes of data structures that may be defined uging schemata
1 chrough 5 are limited in that it 15 not pessible to specify that tyo
substructures must have arbitrary but equal numbers of components. a
convenient way to remedy this limitation 1s to associetae integer-valued
parameters with class names and permit these parameters or simple arith-
metic expresasions to appear 1n place of integers anywhere in the right

parts of class declarations.

Example (triangular matrix):
trimatrix(m) = [{1; row(m-1+1)) | i € [1, u]}

row(j) = {[1, j]; real)

This definition is illugstrated by Flgure 18.

tri matrix (3)

Figure 18.

All structure classes so far defined have graphs that are
strictly trees: No method hag been provided by which classes of gtructures
that contain shared substructures may be specified, It gseems that the most
convenient way of providing this missing capabiliry is by permitting chains
of selectors to appear in the right parts of schemata. For inatance, the

declaration

matrix (m, n) ={('row' . [1, m] * [1,n];e), {‘col’+[1,n]. [1,m]; e)|e € element)



=24=

specifies a claas of rectangular matrices whose elements may be acecessed either
as elements of rows or as elements of columms. Our final example shows how
the full class of directed graphs might he repreaented by a class of data

structures convenient for implementing the common procedures used with graphs.

Example (directed grapha):

graphin) = [('ortg' + 1 « j; b), {'dest’ « § » i; b} |
b € braneh(i, j), £ € [1, n}], j € {1, nl}

({('or?; 13, {'ds*; 3§), ('da’"; branch-data))

branch(i, i)
A gtructure in the class graph (3) representing a graph of three nodes

is shown in Figure 19.

1
2 3
1
2 3
or' ds' 'da’ 'or Vds ! 'da" 'or' /ds 'da! 'or' /' 'ds
SO GOSN O .

Figure 19.

x.



-25-

Conglusion

For the purpose of moving data structures among computer installa-
tions, it will be necessary to define a "concrete representation" of a
suitable class of sbstract data structures for use as a common language
for data interchange via communications networks. The examples in this
Paper have been chosen to demonstrate the merits of the class of abstract

data structures,

I see two principal uses for a data description langusge of the kind
suggested above. One of these usez ig in translating data structures in
one context into the common repreaentation adopted for interchange. If
the representations in the context do not contain type information for
the elementary objects, or if the representation is ambiguous without
additional information, then a formel specification of the class of data
structurers may make it possible for a standard program to perform the
translations. If complete type information is included aa part of
representationg of data structures, then they may be converted into the

copmon £orm without need for a data description,

The second ume for s data description is in the context to which the
data iz moved. A description is not needed to translate from the common
form to representations in the new context, because the comman Fform
should have complete type information. However, if the new context does
not retain complete type information, a description may be uaeful to a
general purpose program for retrieving information about transferred
data structures,

Neither of these uses of a data description language waives the

requirement of comsistency of contexts between which data is moved.



T

Thus the concept of data description languasge is not a substitute for a
universal representation for data structures and the procedurea that
operate on them. The gventual gsolution will be a common intermediate
language used ag a standard semantic base for assigning meaning to programs
and information structures, We believe this is not an unreasonable goal:
After all,System 360 machine language is currently serving this purpose

for a large class of programs even though lts qualifications for the role

are far from ideal,



=27~

References

Naur, P., and Randell, B., Eds. Software Engineering, Scientific
Affaiyrs Division, NATO, Brussels 1969,

Proceedings of National Symposium on Modular Programming. Informa
tion and Systems Press, Cambridge, Mess,, June 1968.

Dennis, J.B. A position paper on computing and communications.
Communications of the ACM, Vol. 11, No. 5 (May 1968} pp. 370-377.

Cheatham, T.E., Jr. Data degscription in the CL-II pProgramuing
system., Digegt of Technical Papers, ACM Natiomal Conference,
Assoc. for Computing Machinery, New York, September 1962,

Dennis, J.B., and Van Horn, E.C. Programming semantics for

multiprogrammed computations. Communications of the ACM,

Vol. 9, No. 3 (March 1966) pp. 143-155.

Dennis, J.B. Programming generality, parallelism and computer
architecture. Information Processing 68, North Holland,
1969, pp. 484-492.

Lucas, P. and Walk, K. On the formsl description of PL/I,
Annual Review in Automatic Programming, Vol. 6, Part 3,
Pergamon Press 1969,




