MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Project MAC

[

Computation Structures Group Memo 64

Computation Structures Group

Progress Report 1970-71

January 1972

This research was done ar Project MAC, MIT, and was supported in part
by the Advanced Research Projects Agency, Department of Defense, under
Office of Naval Research Contract Nonr N0Q014-70-A-0362-0001, and in
part by the National Science Foundation under grant GJ-437.

e e R e

l".;::-u. PO

A. Iniroductica

The Computation Structur:s Group is concerned with the sktucvy
and analysis of fundamental issnes arising in the design and
construction of gencral-purpose computer systems. Tha re-
search encorpasses hardwarc and software aspects of computer
systems, and much of the work hac contributed toward establish-
ing a commen cenceptual -basis for both aspects. The acaom-
plishments of the past vear are principally in two arcas:

One is the theoretical study of Petri nects as a model for
asynchronous systems of interacting parts, and the realization
of Petri rets in the form of speed-independent medular switch-
ing systens. The geal of this work is to build a sound thegry
to . sBerve as the basis of a new methodology far the design of
asynchronous digital systems. The second area is the evelu-
tion of & basc program language. This effort is expected to
lead to a practical formal definition scheme for source pro-
gramming languages and will providc a sound basis for the
functional design of advanced computer systems,

B. Petri Nets

A3 reported last yedr, we have found Petri nets to be an cle-
gant formalism for representation of CONCUITENncY in processes
and for studyving asynchronous s¥ystems. Petri nots stand out
in relation to other schemes because of the preciseness and
ease with which they can exXpress parallel aciions, resalubion
of conflicts, and interaction amonyg processes. Moreowver, they
have the simple structure that is essential for analytic
study. Simple as they are in their structure, study of the
genexral class of Petri netg is difficult because nf the var-
iety of situations they can represent., A study of subclasses
of Petri nets which represent simpler eituations is a necessary
step toward understanding the general class of Petri nets, and
such study has been an important cbjective of the group in the
past year. We have identified several subclasses of interest
and have found useful results about them. Before discussirg
these results, we present a brief introduction to Petri ne.:
and the subclasses of interest.

A Petri net [1,2] is a directed graph which can have twa types
of nodes, namely transitions and places, where the directed
8rcs can conncect only transitions to places and places to trans-
itions (Fig. 1.). 1In drawing the graph, places are represented
by circles .and the transitions by bars. The piaces from which
arce are incident on a transition are called input places of
the transition, termipats are called the output places of the
transition. Zach place can have markers (sometimes called
tokens) in them. A transition having markers in all of its
input places i= said to be snabled. Only enabled transitions
can fire; in the act of firing, the transitien picks one

marker from each of its input places and puts a marker in each
of its cutput places. The marking distributior in the net
changes as transitiens fire, and each new marking distrikution
hakes firing of other transitions possible., With regard to

the firing of transitions, an important situation is when

e

S e ——

FIG.E. A PETRI NET.

transitions share some input places. When two transitions
which have a common input place are hcth enabled but the
common ilnput place has only one marker, the transitions are
said to be in conflict because the firing of any one of the
transitions disables the cther. A net is said to be safa if
no plece in it will ever have meore than ane marker at a time.
A net is said to be live if at no time in the operation of the
net will any transition be ruled out ag a transition that may
fire some time in the future. Confliect, safety, and liveness
in a net depend on the initial marking distribution. There
are, however, some structural restrictions which can guarantee
some of these properties. By structural restrictions, we mean
restrictions with regard to the arrangements of transitions
and places such as the restriction that transitions not have
input places in common. The restrictions we use below to
define subclasses of Petri nets are purely syntactic as they
define loecal constraints on the arrangements of transitions
and places. The subclasses are:

1} State Machinas {SM}
2} Marked Graphs {MG}
3) Free Cholce Petri Nets (FC)
4} Simple Petri Nets (SN)

The restrictions that define these subrlasses are given below.
The Petri nets without any restrictions will be referred to
as general Petri nets to emphasize this fact. The following
text should be read together with Figures 2 and 3. Figure 2
shows what kind of lecal configurations of transiticn and
places are permitted for each subclass cof nets.

1. State Machines [SM) -~ A state machine is a Petri net in
which every transition has oxactly one input place and exactly

LOCAL CONFIGURATIONS

STATE MACHINES

EVERY TRANSITION HAS
EXACTLY ONE INPUT PLACE
AND EXACTLY ONE
OUTPUT PLACE

FERMITTED NOT PERMITTED
jiifj:lty-

MARKED GRAPHS

EVERY PLACE HAS
EXACTLY ONE (NPUT
PLACE AND FXACTLY ONE
OUTPUT PLACE

<

FREE CHOICE NETS

EVERY ARC FROM A PLACE
TO A TRANSITION (S E{THER
THE ONLY OUTPUT QF THE

PLACE OR THE ONLY INPUT
TO THE TRANSITION

9,

SIMPLE NETS

EVERY TRANSITION HAS
AT MOST QNE SHARED
INPUT PLACE

= | 2| AY | AY

PETRI NETS

NG SUCH
- RESTRICTION

FIG, 2, THE SUBCLASSES OF PETRI NETS.

A R — e

-4

one output place. The state machines being discussed here are
identical to the state machines of automata theory in their
structure, (Fig. 43,

2. Marked Graphs (MG) =-- A marked graph is a Petri net in
which every place has exactly one input transition and cxactly
one output transition. Thus the restricticn im this case is
Similar to the opne for state machines but it applies tc places
instead of transitions. State machines have been studied ex-
tensively but the recognition of marked grapha and the study
of their properties is recent. Genrich [3] started the study
of marked graphs and his ideas .led to a detailed study by

Holt and Commoner [4]. The mathematics relating to marked
graphs is fairly well understood now through these studies.

In our previous repart we showed a direct relationship between

the elenentary asynchronous modular control structures devel-
cped by us and the marked graphs. The study provided a simple
way for obtaining hardware structures that mimie marked graphs,
and als-: a method for determining if a control structure is
free of 2ay hangups. This year the study has been carried
further to include a broader class of nets called free cheice
nets. The free cheice nets and results relating to them are
described below.

3. Free Choice Nets —— A Petri net in which every arc frem a
place to a transition is eithar the only output of the place

or the only input to the transition is said to be a free choice

Petri net. This condition on Petri nets is the same as re-
quiring that when an input place is shareg by some transitions,
those transiticns have no input places other than the one
which is common tec them. Thus when a marker arrives in the
shared place, all of the transiticns which share that place
are enabled, and one af thenm may be freely chosen to fire,
When the movement of a marker is regarded as flow of control,
the situation just described represents a free choice with
regard to where control flows from the shared place -- thus
the name frees choice nets. Free choice nets include both the
state machinas and the marked graphs. :

A free cheoice Petri net e¢an be uged to represent the flow of
control in a program as shown in Fig. 5. In this figure, the
shared place x together with transitions T and ® represent a
decision element =- the if statoment inm the program. The
direction in which control flows from place x is not arbitrary
—-- it conforms to the outcoms of evaluating the predicate
associated with the if statement. Tg the net congidered alone
the decision about the direction of flow is external to it be-
cause it is bascd on infeormation cutside the net; the infor-
mation flows into the net by way of the interpretatien whiah
associates a certain if statement with the free cheica trans-
rtians in the net. 1In the stody of Petri nets and also in the
studv of combutation schemata, it is important to distinguish
Wiat information is a part of the net and what is external to
it.

Some important results about free choice nets have been found
recently by Commcner of Applied Data Research and Hack of the

T ——

o rrr— e o o . B 1w e

FC

SN

PN

FIG.3. THE INCLUSION RELATIONSHIP AMONG
THE SUBCLASSES OF PETRI NETS.

STATE MACHINE AS A STATE MACHINE AS A
PETRE NET . STATE DIAGRAM

FiG.4. STATE MACHINES,

BEGIN

FORK

n=— n+l A m—mxi

“JOIN " JOIN ¥

i=—1-l

I_F i > THEN GOTO g

FIG. 5. FLOW OF CONTROL

IN A PROGRAM.

azas

R

. -7-

Cemputation Structures Grouip. Commoner hag found necessary and
sufficient conditiecns for liveness and safety of a free chaice
net, and Hack hasz found conditions for the existence of a live
and safe marking for a nel. a live net is one in which the
activity ecan continuc indefinitely without any hanqup, Hangup
is a condition in which a4 part of the net enters intoc a state
of inactivity from which it cannot recover., In Our common
experience a hangup for a machine is an unfortunate state in
which its activity subsides and it fails to respond to stimye
lation because of scme lopelese jam inside it. Safety aon the
other hand means that ng more than one token will be in any
place at any time. This is impertant where the Flaces repre-

“Treprescnted by the tokens. When places rcpresent registers
in a digital computer, safety means that g new piece of data
will net be placed in a register until the pYevicus one has
been used up. In that wWay mixup of data can be avoided. Hack's
work thus provides a Way tc determnine if an uninterpreted
parallel program which can be expressed az a flow diagram has
a2 starting condition for which it will gentinue to cperate
without any hanqups cr mixups.

4. Eimple Petri Nets —— A Petri net in which no more than ane
input place of any transition is a shared input place is called
& simple Petri net; a transition in a simple Petri net may
Lave any number gof input places but at most one of those places
may be an input place of some other transition. The class- of
simple Petri nets bProperly contains the free cheice nets.

There are gituations which can be represcnted by simple Petri
nets but not by tres chojce nets., Figure 6 shows such a situa-
tion which arizes in reprasenting flow of control in coordin-
atirg processes. An impartant aspoct of simple nets ig that
they are able to represent interprocess coordination such as
implemented by Dijkstra's semaphore primitives, A study of
simple Petri nets has lad to an understanding of the limita-
tion gnd capabilities of the semaphore primitives, Details

of this study are presentcd in the next section.

5. General Petri Nets —- The class of Petri nets without any
of the resirictions 15 called general Petri nets. ‘There are
many Petri nets in the class of general Petri nets for which
there are no equivalent nets in the subclasses defined. In
particular, a Petri net which cannot be transformed into a
simple net arises in the study discussed belaow,

Recent work by Patil [5] has shown some interesting facts
about the Semaphore primitives of Dijkstra [&] by eastablish-
ing a ecorrespondence between the flow of control irn inter-
acting processes and Petri nets, In Fig. 6, three processes
coordinate their activitigs with the help of semaphores,

The Petri net for each individval process is obtained by
representing each instruction by‘a transitien, connecting
these transitions into a chain by means of places tc indicate
the fiow of contrel in that brocess, and placing 2 token

in the input Place of a transitien tc indicate the present
site of control, The Petri net for a collection of inter-
Acting processes is ocbtained by interconnecting the nets

. PROCESS =
' P Ps P
E b= x+x 5 u=—uxuy 9 P[S),,]
2 P[s,] 6 P [Sy] 10 2= z+y
3 y=-— 1 7 y=—u i [S,]
4 Vs, 8 vsy] GOTQ .9
GOTO i GOTQ 5 INITIALLY SEMAPMHQRE
Syzt AND S0
a}

b}

FIG. 8. FLOW OQF CONTROL IN PROCESSES AND THE
CORRESPONDING SIMPLE PETRI NET.

-9-

for individual processes by means of places which repre-

sent the semaphores: A transitian that represents an jiqstruc-
tion P[5] is provided an input from the place that represents
semaphore variable 5, and each transition that represents an
instruction V[8] feeds into the place representing the soma-
phore. The number cf tokens in the place corresponding to a
semaphore eguals the value of the gemaphore variable. Thus,
corresponding te the fact that the control in a process can
get past a P[S8] instrvoction only when the process can decra-
ment the semaphore variable S by 1, we have the phenomenon in
the net that the transition corresponding to the instruction
?{5] can fire only when it gets a token from the place repre-
senting the semaphore.

The above method of gbtaining Petri nets for flew of control
applies only to processes which deo not have conditional state-
ments. The Petri nets for such processes completely describe
the flow of controel., Morecver, these nets are simple Petri
nets because the only transitions which can have any shared
input places are the oanes which correspond to the P[] instruc-
tions and each of these transitions has only one shared input
place,

If there are any conditional instructions, they would have to
be represented by two transitions, one for the outcome true

and the cther false, and these transitions would share the
input place so that for any particular executien of the con-
diticnal instruction, only one of the transitions would fire,
Which of the two transitions fires depends on the value of the
predicate associated with the conditiconal instruction. Since
this information is external tc the net, the net only partially
describes the flow of caontrol in this ecase.

Interacting processes which do not contain any conditiocnal
statements are of particular interest to us because it would
seem that the semaphore primitives would be adequate for des-
cribing their interaction, but our study has uncovered the
surprising fact that the renaphore primitives are inadequate
for this purpose. This foc= is brought out by a study of a
Froblem e¢alled the 2-out-of-3 problem which is discuszed be-
low.

The 2-cut-of-3 problem can be explained in the framework of a
message decoder. When viewed as a hardware device, the de-
coder has three input wires colored red, yellow and green, and
three output wires called X, ¥ and z. There are three diff-
erent messages which can be sent to the decoder. Message X
consists of signals cn the red and yellow wires; message Y
consists of signals con the red and green wires; and message Z
consists of signals on the yellow and green wires. The decoder
¢an be thought to have three processes inside it, one for each
Mmessage. Process X waits for message X and responds on out=
put wire X; the other proccsses are defined similarly. We
will be concerned with the above decoder in its software form
in which signals are represented through the use of semaphores;
each wire is represented by a scmaphore and incrementing the
semaphore count by 1 corresponds to sending a signal. A

-10-

FIG,7. THE 2-OUT-QF-3 NET.

s

-11-

signal is accepted by decrementing the semaphore count by 1.
The questfion is: Can the three processes which deccde the
messages be so coordinated by semaphore primitives that the
decoder functions correctly? Since each individual Process
just waits for the associaled meSsage to arrive, we insist
that the procvesses not use any conditional instructicns.
Therefore, instead of asking the guestion in the form above,
we agk: Ts there any finite colléection of procesces not using
conditicnal instructions that ean specify the operation af the
decoder with the help of the sémaphore primitives? The answer
to this guestion ig negative.

The reason for the negative answer is that the decoder repre-
8&nts a net ecalled 2-out-of-~3 net, whieh is not a simple Petri
net, and it has been possible to chow that this net cannct be
transformed into an equivalent simple Petri net [S]. Thus it
ig ¢lear that the semaphore primitives need the help of condi-
tional statements to carry out cocrdination among processes,
{Fig. 7.). It should be recalled that the very purpose of
introducing the semaphore primitives was to obtain a nare
direct means for coordinating processes and toc do away with
Eneaky use of conditional statcments ro perform coordinaticon.
With the aid of conditional statements one can implement
coordination of precesses by such simple-minded schemes as
repeated testing of a variable unkil it beconmes,say, 1. Such
schemes can implement coordination, but the implementation is
very wasteful of computer resgurce because there is no limit
to the number of times the variable may have to he checked.
The semaphcore primitives rectify this defect, but they are not
able to implement all caordinations hy themselves, Thus the
question is, whether together with conditional statements they
can express all conceivable coordinations without paying the
Price of unbounded computation. The study has shown that the
answer to this guestion is affirmative.

At the root of the shortcomings of the semaphore primitives is
the fact that a Pl] instruetion operates on only one semaphore.
Unfortunately, a generalized instruction such asg P[S1,...,5k].,
which simultaneously operates cn semaphores 81+ veuy S5k, cannot
be always expanded into a Sequence of instructions P[S,], ceny
PIS;]. But the generalized instruction can be expandeé in
terms of P[3;, 83] instructions samh of which operates on two
semaphores. Even though P[S,, 8.] is adeguate, one may wish
to allow more arguments in iﬁscrﬁctions for the sake of effi-

- ciency. : -

C. Asynchroncus Speed-Independent Circuits

A 8lgital system is often built as twe inrterconnected parts --
a data flow structure containing registers, functiocnal opera=
tors and data paths, and 2 control structure that generates
signals that initiate actions by operators in the data flow
Btructure, '

'"TﬂﬁéfhEﬁrBﬁbﬁg_Efstems the operators may begin action only at
¢ertain time instants determined by a central generator of

ke

. -12-

clock signals. The design of the control structure involves
choosing the appropriate number and duration of clock intarvalg,

and realizing a switching circuit that routes the claock signals_

to operators as required to implement the system's function.

In an asynchronous contral structure,cach operater in the data.”;

flow structure sends an acknowledge signal te the control
structure to indicate that action by the operator has been
completed. The acknowledge signals from operators are used
directly in the contrel structure to initiate action by oper-
ators that become eligible for execution. 1In this way, initia-
tion of an operator is delaved only until completion of those
actions upon which correct functioning of the operator de-
pends, Xo special generator of timing signals is used, the
timing of system operation being determined by the durations

of actions by the wvperators. -

If the control structure of an asynchronous system will func-
ticn correctly regardless of delays in its components and
their interconnecting wires, the control structure is called
a speed-independent c¢ircuit. - -

A system described by a logie diagram for a synchronous reali-
zation ¢f it is both overspecified and underspecified. The
particular choice of ¢lock instants is irrelevant tec the func—
tion performed by the system, but is essential for the diagram
to have any meaning. Yet understandings between the specifier
and implementer about timing of actions are necessary for
unambiguous interpretation of the description. These undei-
standings are not usually represented in a logic diagram.

That a synchronous system is overspecified makes understanding
or altering its function difficult; that it is underspecified
makes "design verification impossible in the absence of gver-
simplifying assumptions. The description of a system as a
spead-indepedent circuit does not suffer these problems. Two
parts of a speed-independent circuit are interconnected if,
and only if, some action by one part is dependent on conple-~
tion of some action by the other. ’

This reasoning shows that speed-independent implementation of
digital systems is of particular interest when one desires
assurance that a paper design will yield a correctly funetion- -
ing system when translated into hardware. Speed-independent
implementation is also attractive where a system is built from
several interacting parts {there are no clocks in the subsya=-
tems ta be synchronized), or where a system has much coneurrent
activity {which could only be slowed up by synchrenizing action
to common clock signals}. Computer systems developed in the
future are likely to have all of these characteristics,

The group has been studying schemes for representing systems

s¢ that ccnversion of the description into a speed-independent
realizaticn may be accomplished by a mechanical procedure

with a guarantee that the resulting hardware will function
correctly according to the description. In this way, the
onerous task of debugging the hardware {(as opposed to debugging
the system description) would be largely elimirated. In

-13- ‘ . —— - o= ==

particular the faults that appenr in hardware systeme because
of misunderstandings about the timing of signals would be
avoided,

We are concidering two classes of Epeed~independent circuits
based on two assumptions regarding the origin of delays which
must not affeect correctness of system cperation. Both classes
of circuits are interconnectiocns of primitive modules which
may be individual gates or specific circuits realized in turn
by the intercconnection of simpler modules cor gates.

In a type ! circuit we assume that all interconnecting wires
are sources of arbitrary delays. Thus a Signal sent cut by
one module to two others may reach one module arbitrarily
earlier than the other. In a type 2 circuit we assume that the
output of a module may be delayed arbitrarily, but when an
output of a module changes, the change is obscrved immediately
by all modules to which the output is connected. The type 2
assumption 1s less restrictive, and is appropriate for cir-
cuits in which delays on interconnecting leads are negli-
gible compared to delays within gates. This is normally the
case within a semiconductor chip, fer example. The mare
general type 1 assumption ig appropriate for intercennections
between standard parts where the designer does not know the .
mechanical arrangement of the parts. : '

A principal gual of cur work is to find a finite set of prac=
tical modules with which it is possible to implement any
digital system as a type 1 speed-independent cireuit. In
last year's report we described a collection of control
modules adeguate to implement any marked graph as a type 1
cireuit, The complete set of control modules are also ade- i
quate for implementing free choice and simple Petri netg in ’
the form of type 1 speed-independent circuits, and are con-
venient for defining control structures for complex digital
systems.

The C-element of Muller [7] is a very important gate type for
the construckion of control moadules. He have shown that the
C-element cannot be implemented ag a type 1 intercennection
of AND, OR and NOT gates, 1In fact, there is very little

that can be done by a type 1 speed-independent circuit using
only AND, OR and NOT gates. These results are included in a
paper by Dennis and Patil [8] . ©Since several hbasic control
modules have type 1 realizations using NOT gates and C-elements,
these results emphasize the importance of the C-element as a
fundamental gate type for speed-independent circuits. More
recently, Fred Purtck has defined a complete set of hasic
modules for the realizatien of general Petri nets as type 1
gpeed-independent cireunits.

Our success in applying speed-independent design to cantrol
Structures for digital systems bas led us to investigate the
applicability of the concept to complete digital systems. As
‘an experiment. Dennis and Plummer developed a design for a fast
tounter that could be sampled repeatedly without interfering

With continuation of counting. The design is a type 1

Y ——— .
T ——————— e e R

-14-

interconnection of as many identical stages as desired, each
stage being a type 2 cireuit using CR-gates, NOT-gates and C-

elements. Commands"ta”‘cuunt"cr‘tu“*samplﬁ*-fLUW'through the—— -

Stages of the counter from the least significant end changing
Or reading the bit held by each stage. In this way the spced
ef the counter is independent of the number of stages, The
details of the design have been reportad [8]. Bill Plummer de-
signed and constructed an arbiter mcdule to resolve conflicts
between 'count' and 'sample' commands, and has prepared a

Paper on his work [9]. :

D. Base Language) -

The Group is working toward the definition cf a common base
language that could serve as a target representation fér pro-
cedures translated from a variety of practical source languages,
for example, FORTRAN, ALGOL and LISP. By specifying a formal
interpreter for the base lanquage and giving a precise des-
cription of the transiation of Scurce programs into base lan-~
guage programs, we would have a complete scheme for the formal
definition of the semanticsz of programming lanquages in terms
of a common set of semantic notions (those of the base lan-.
quage) .

The motivation for this work is the design of computer systems
in which the creation of correct programs is as convenient and
easy as possible. A major factor in the convenient synthesis

ly, and perhaps by different individuals using different scurce
languages. This ability of a computer system to support .
modular proyramming is called Programming generality [10,11].
Programming generality requires the rommunication of data among
independently apecified procedures,and thus that the semantics
of the languages in which these procedures are expressed must
be defined in terms of a common caollection of data types and a
common concept of data structure. .

We have observed that the achievement of programming generality
is very difficult in conventional computer systems, primarily
because of the variety of data reference and access methods
that must be used for the implementation of large programs

with acceptable efficieney. For example, data stryctures that
vary in size and form during a computation are given different
Tepresentations from those that are static; data that reside
in different storage media are accessed by different means of
ceference; claeshes of identifiers appearing in differant
Elocks or procedures are prevented by design in scome source
languages, but similar consideration has not been given to the
naming and referencing of cataloged files and procedures in the
cperating environment of pregrams. These limitations, on the
degree of gencrality possible in computer systems of convention-
al architecture have led us to study new concepts of computer
system organization through which these limitations on pre-
gramming generality might he overcome.

In this effort, we are working at the same time on developing

T

the base language and on developing concepts of computer arch-
itecture suited te the execution of computations specified by

base language programs. Thas our work on the base language is
strongly influenced by hardware concepts derived from the ra-

gquirements of programming generality [10].

We have chosen trees with shared substructures as our univer--
6al representation for information structures because we have
found attractive hardware realizations of memory systems for
tree-structured data. Jeffery Gerts [12] has considered how
such a memory system might be designed as a hierarchy of agsso-
ciative memories. Also, the hase language is intended tg re-
"Prasent the concurrency of parts of computations in a way tnat
permits their execution in parallel. One reason for erphasizing
concurrency is that it is essential to the deseription of cer-
tain ecomputations; for example, when a response is reguired to
whichever one of sewveral independent cvents is first to CCCur .,
Farthermore, we believe that exploiting the potential con-
currency in programs will be important in realizing efficient
computer systems that cffer programming generality. This is
because concurrent execution of program parte increases the
utilization of processing hardware by providing many activities
that can be carried forward while other activities are blaocked,
pending retrieval of information frem slower parts of the com-
puter system MEmory ., o

wWhen the meaning of algorithms, expressed in scme programming
language, has been specified in precise terms, we say that a
formal semantics for the language has been given. A formal
semantics for a pProgramming language generally takes the form
of two sets of rules; ope set being a translater, and the
second set being an intergreter. The translator specifies a
transformation of any wall-formed program expressed in the
Eource - langquge (the concrete language) inte an equivalent pro-
gram expressed in a second language ~- the abstract lan uage
of the definition. The interpreter expresses the meaning of
Programs in the abstract language by giving explicit directions
for carrying ocut the computation spccified by any well-formed
abstract program.

It would be possible to specify the formal semantics of a pro-
gramming language by giving an interpreter for the concrete
Programs of the source language; the transliator is then the
identity transformation. Vet the inclusion of a translater in

. the definition scheme has important advantages. For one, the

Phrase structure of a programuing language,viewed as z set of
strings on some alphzbet,usvally does nat correspond well with
the semantic structure of programs. Thus, it is desirable to
give the semantic rulies of interpretation for a representa-
tion of the program that more naturally represents its seman-
tic strusture. Furthermore, many constructs present in aource
languages are provided for eonvenience rather than as funda-
mental linguistic features, By arranging the translator to re-
Place occurrences of thesc constructs with more basic con-
structs, a simpler abstract language is possible, and its inter-
Preter can be made more readily understandable and, therefore,
More useful as a tool for tha design and specification of

Lvw e Ak

-16-

computer languages and systems.

Our thoughta on thé definition of programming—tanguages—4n . _
terms of a base language are closely related to the formal

methods developed at the IEM Vienna Laberatory [13] and which
derive from the fdeas of McCarthy [14] and Landin- {15]:~—~— -

For the formal semantics of programming languages, a general .
model is reguired for the data on which Programs act. - We re-
gard data as consisting of elementary objects, and compound
cbijects formed by combining elemcntary objects into data
structures. Elementary objects are data items whose structure
in terms of simpler objects is not relevant to Lhe description
of algorithms. For the purpeses of this discussion, the class
E of slementary objects is .

E=zUURUW

where
Z = the class of integers)
R = a set of representations for real numbers
W = the set of all strings cn some alphabet

Data structures are often represented by directed graphs in
which elementary objects are associated with nades, and each
arc is labelled by a member of a set § of selectors. We will
use integers and strings as gselactors: i

s=zUW .

In the class of objects used by the Vienna group, the graphs
are restricted to be trees, and elementary objects are assog-
ciated only with leaf nodes. We have used a less restricted
class so an object may have distinct component objects that

share some third ohject as a common component. .

Let E be a class of elementary cbjects, and let 8 be

a ¢lass of selectors. An object 1B & directed acyclic
graph having a single root node from which all other
nodes may be reached over directed paths. Each arc is
labelled with one selectar in S, and an elamentary
object in E may be associated with each leaf node.

An example of an object is shown in Fig. B, Leaf nodas having
associated elementary cobjects are represented by clrcles with
the element of E written inside: Integers are represented by
numerals, strings are enclosed in single quotes, and reals

have decimal peints. Other nodes are represented by splid
dots, with a horizental bar if there is more than one emanating
arc. -

The node of an object reached by traversing an arc emanating
from its root node is itself the root node of an object called
A component of the original pbject. The component object con-
sists of all nodes and arecs that ean be reached by directed
paths from its root node.

-17-

FIG. 8.

L _ -18-

Some of us prefer to deneralize this class of objects in two
ways:

1} by permitting data values to be aszcciated with any
nede of the graph of a strueture

and
2) by permitting the graph to contain directed cycles.

Whether to permit cycles in the structured data objects of the

e ———

base lanquagec is an important unrosolved issue. Some congidar-

ations bearing on this matter dare discussed in a later para-
graph of this report.

Figuraz 9 shows how source languayes would be defined in tarms

of a mcunon basze language. Concrete programe in scource languages

(L1 ann L2 in the Figure) are defineg by translators into
abstract programs of the base language. For this to he
effectively possible, the structure of abstract programs can-
not reflect the peculiaritics of any particular source lanp-
guage, but must provide a set of fundamental iinguistic con~
structs in terms of which the features of these source lan-
guages may be realized. The translators themselves shcould he
specified in terms of the base language, pProbably by means of
a specialized source language. Formally, abstract programs in
the base language, and states of interpreter are elements of
the class of ohjects defined above.

The strugture of states of the interpreter for the base lan-

guage is shown in Fig. l0. Since we regard the interpreter for

the base language as a complete specification for the func-

tional operation of g computer system, 2 state of the interpre-

ter represents the totality of bPrograms, data, and control
information present in the computer system, The univerge isg
an object that represents all informakion present in the com-
puter system when the system is idle, that ia, when ne compu-
tation is in progress. The universe has data structures and
procedure structures as constitucnt ebjects. Any object is a
legitimate data structure; for example, a data structure may
have components that are preocedure structures. 2 praoceduare
structure is an object that represents a procedure expressed

in the baze language. It hacs components which are instructions
of the base language, data structures, or other procedure struc-

tures., So that multiple activations of procedures may be. ac-
commedated, a procedure structure remains unaltered during its
interprotation.

The local structure of an interpreter state contains a local
structure for gach ecurrent activation of each base language
procedurce. Each local structure hag as components, the lecal
structures of all procedure activations initiated within it.
Thus the hierarchy of local structures represents the dynamic
relationship of procedure activations.

The rcontrol! component of an interpreter state is an unarderad
set of sites of activity. a typical site of activity is

T T s e me o
Lt Pk e

-19-

ONCRETE PROGRAMS ABSTRACT PROGRAMS
¢ IN LI oR¢ IN BASE LANGUAGE

TRANSLATOR
FOR LI

- -CONCRETE PROGRAMS
IN L2

STATES
INTERPRETER

TRANSLATOR
FOR L2

FiG. 9,

!

[J]
'UNIVERSE' 'LocaL STRUCTURE' 'CONTROL'

T © Y SITES gF
S 1 ,___L| \ AcTwiTy
- | \ .

DATA

P
STRUCTURE r,_II_“
Ay

/

R L T

/ \ \
/ INSTRUCTION A \
- T S =

PROCEDURE LocaL

STRUCTURE P STRUCTURE L

R

FIG. 10,

T e e e e

..20_

represented in the figure by an asterisk at an instruction of
procedure P and an arrow to the lecal structure L for s0me
activation of P. Since geveral activations of a procedure may
exist concurrently, there may be twe or more sites of activity
involving the same instructicon of some procedure, but designat-
ing different lecal structures. Also, within one activation

of a procedure, several instructions may be active concurrently;
thus asterisks on different instructions of a procedure may
have arrows te the same locsl structure, '

Each state transiticn of the interpreter executes one instruc-
ticn for some procedure activation, at a site of activity
selected arbitrarily fram the control of the current stata.
Thus the interpreter is a nondeterministic transition system.
In the state resulting from a transition, the chosen site of °
activity is replaced by zero or more new sites of activity
according to the sequencing rules of the base language.

Interpretation of a procedure involves two objects, the proce-
dure structure P and an argument structure A, The argument
structure is formed by the calling procedure activation and
contains, as component ohjects, all information {ether than P)
required by the activation of b, In particular, the actual
parameters of the procedure activation are components of A.
In this view of procedure execution, no meaning is given to
nonlocal references occurring within a procedure structure.
Thus no side effects of Procedure executions are possible, Un-
less procedure p medifies part of its own procedure structure,
it defines an algebraic operation cn the class of all ebhjects.

A subject of major importance to us is the representation of
concurrent activities in the base language. Consideraticn of
concurrency brings in the issue of nondeterminacy -- the possi-
bility that computed results will depend on the relative tim—
ing with which the concurrent activities are carried forward.
The ability of a computer user to direcct the system to carry
out computations with a guarsntee of determinacy is very im-
portant. Most programs are intended o implement a functional
dependence of results on inputs, and determinism is egsential
to the verification of their correctness. :

There are two ways of providing a guarantee of determinacy o
the user of a computer system. They are distinguished accord-
ing te whether or not the class of base language programs is
censtrained through design of the interpreter to describe only
determinate computations. If this is the case, then any

abstract program resulting from compilation will be determintsrie .

in execution. FPurthermore, if the compiler is itself a deter-
minate procedure, then each translatable source program repre-
sents a determinate procedure. On the other hand, if the de~-
sign of the interpreter does not quarantee determinacy of
abstract programs, determinacy of source prograns, when de-
sired, must be ensurcd by the translator.

E. Program Craphs
We are considering two approaches to reprasent tha relationships

=21~

ameng instructions of a procedure structure:

1. A conventional form in which the instructicns of each
procedure structure are selected by successive integers,
and instructions are executed sequentially except when a
conditional transfer of control directs exesutier to a
new instruction seguence.

In this form, concurrency is represented by fork instructions
Wwhere activity splits into two ccncurrent stréams and iedin
instructions where two streams of activity merge into one.

2. A data flow form in which execution of an instruction
is controlled by the availability of the data values re-
quircd for its execution. For example, ecxecution of an
add instruction would be enabled as soon as the values of
BEoth operands have been computcd.

Concurrency is inherent in a data Fflow represcntation since
the creation af a computed value ray enable seyeral instruce
tions. fThe data Flow representations we are investigating are
variations and extensions of the Frogram graphs introduced by
Rodriguez [16]. We shall iilustrate our present thoughts re-
garding data flow representations by presenting program graphs
for several programs. Consider the program

begin
V=L - ¥; W i=x =
if v > w then ¥y = w ~ 2 eglse ¥ := v + 3
if y > 0 then z :=y 4+ 2 glse 2 := 0

end

A conventional machine level representation would be:

begin
fork 41 23 wo- 2y
t=-x+v 24: if y > 0 gote 15

- gote 12 0~z

Rl x - u'» w goto £6°

. 42: dein 25 yt2 -z

' if v > w goto 23 26: end
v+ 3-+ry)
goto f4

A program graph for this program is shown in Fig, ll. The

- —hodes.of_the program graph include functional cperators
drawn as circles, predicate operators drawn as diamonds and
two special nede types, gate and merge, that perform control
functions. The links may be thought of as conveying tokens

-22-

saref

Vi

F.| wmerce T é
y
>0
2
é _DGATE
F mERGE ot 12

FiG. 11.

-23- . .

between nodes of the diagram as in a Petri net. Here the
tokens have information associated with them, Tokens arriving
at or leaving functional ocperators, and those arriving st pre-
dicate operators convay values (numbers for example); these
links are drawn with small solid arrows. Tckens leaving a pre-
dicate operator convey decisions {true or false) to gate nodes
of the diagram; these links are drawn with open arrowneads.

We assumc the net cperates in a safc manner, that is, tokens

do not overtake one another, nor do they accumulate at nodes,
This may be ensured by acknowledga signals transmitted in the
reverse dircction over each Yink. Thus a waluec link may be
Tepraesented in a Petri nat by a pair of placcs: a place (drawn
45 2 sguare box) through which tokens with attached wvalues

move from source node to destination, and an ardinary place
through which “empty" tokens are returned to the source node.
Decision links may he conveniently repressnted by three places
through which ordinary tokens (not bearing values) move. a
‘token arriving at the place labeled t signals a true declzion;
a token arriving at the place labeled f signals & false deci-
sion,

When a link goes to two Or more destinations, tokens are re-
plicated at each branch point 50 that tokens with identigal
information are sent to each node. The bEranch peoints act like
wye modules, and await acknowledgment signals from each desg-
tinaticn before returning an empty token teo the source npeode.

The gate ang merge control nodes are needed so that decisions
mads by predicate cperators may affeet the Pattern of data

flow threugh functional eperators of the program graph. A
T-gate node permits a valuc-pearing token to pass through for
each true decision received on the decision link, Whenever a
false decision arrives the valuc-bearing token is not forwarded,
In cither case the gate node acknowledges both tokens received,
and when a gate forwards a token, it waits for acknowledgment
before forwarding ancther value-bearing token. The behaviar
of a gate node is described in Fig. 12. The arrival of a true
decision leads to forwarding of a value token from link 1 to
link 2. Arrival of a false decision causes g value arriving
on link 1 to be acknewledged and dizcarded. an F-gate node

is identical to the T-gate except that the sensge of the de-
cision is reversed.

A merge node permits values sent over its output link to
eriginate from different sources accerding to decisions made
during computation. The value sent aver the output Iink is
forwarded from the T- or F-labeled input value link acoording
85 the decision received is trua or false. A Petri net for
the switeh node ig shewn in Fig. 13,

Next we give an examplce showing how itcrative programs can
be represented as program graphs:

TR g A i v bt n e

N
T 3
5]
2

-24-

FiG. 13,

-25-

begin
¥y o= X
v = 0

while p{w,v} do

begin
v i= Llvli y = giy)

]
=]
o]

end

Noting that the two statcments of the body of the iteratiocn
may be performed concurrently, a conventional representation
would he similar to this:

begin
x*y
0+ v
Li: if p(w,vigoto 14
fork 12 | -
fv) ~ v

goto &3
£2: gly} ~ ¥
23: join

gote £1
ié: y + =z

end

A data flow version of th- program is provided in Pig. 14,

Two of the merge nodes serve as the junctions through which
initial values and intermediate values flow to the functional
operaztors of the bedy of the while loog. The predicate opera-
tor requires one copy of the value of variable w for each

tegt of the predicate p. These copies are generated by the
center merge node, and the associated gate node., Initiation
of operation of the program graph requires arrival of a false
decision at the decision inpuf link of each of the three

merge nodes . This is provided by the F-buff node which is a
buffer for decisions that sends a false decision as its initial
cutput, (Fig, 15.}.

An important result of Suhas Patil [17] concerning interconnec-
tions of dcterminate systems can be applied to program graphs
formed from the node types used in these two examples. We
conclude that any such program graph is a determinate repre-
Eentation of = program. Thie class of program graphs is a
revision of the clase studied earlier by Rodriguez, and is

o

~26-

{

” #1914

i
m 3ivo |-
| Vo - .
|
“ _ \va
| 31¥D 31yo 31y
;, L QI 1 1
| & A
_
3943w 3043W @'. 3ou3N l@
: 1 1 3 A A i
: mw mw A _

| ,‘ .
| _ < A 1 4408

' M

-27=-

simpler as a result of our inmproved understanding of copourrert
activities. We expect that futurc developments in the theo-
retical study of Petri nets will contribute significantly to
the building cf a satisfactory theory of program graphs.

Jack Dennis has formulated a class of program graphs suitabile
for representing certain computations on structured data [l0]).
These program graphs were limited in that ne provisions were
made for conditional execution of subgraphs or for iterative
computation. We expect to combine the concepts developed in
this class with those of Roedrigquez to obtain a general class
of program graphs encompassing,say,all ALGOI, 60 programs. Qur
final example illustrates the form this class of pregram
graphs may take.

precedure f{a,b,n)
begin
Y =90
for i := 1 step 1 through n do
Y 3= ¥y + a[i] x bfi]
return y
end

The input data for this procedure will be represented by the
argument structure shown in Fig. 18, having compenents for the
three formal paramcters of the procedure. In the program
graph shown in Fiyg. 18, a third kind of link is used and is
drawn zs a heavy line with a sclid arrowhead. Tokens passing
on these links cenvey access to objects. Execution is initiated
by arrival of a tcken at the root node P of the program graph.
This teoken ecarries access to an argument structure of the form
shown. Pour new node types are used, (Fig. 17). The select

X node converts access to an object into accees to the x=
component of the object., Thezse nodes ara used to obtain
access to the components o the argunment structure. The
second form of select node uses the integer received on link

3 to select the component object. The wvalue node cpnverts
dccess to an elementary object into the value of the ckiect,
Finally, thg.assign node raceives a data value on link Z and
transforms the object conveyed on link 1 inte an elementary
object having that value.

The repecat nedes in this Brodram graph generate multiple copias
of tokens conveying aceess o the same object, in this case the
actual paramcters of the scaglar Product procedurc. oOne token
is sent aver the output link for cach true decision received

on the decision link. Acknoewledgment 1s not given on the in-
put data link unti] a falge decigsion is received, whereupon

the nede rescts and walts for the arrival of new data.

This program graph is determinate, yet we cannet guarantee the
determinacy of any program graph censtructed from all node
types introduced here. We would like to find a set of program

JI

FIG, 15, -

I IR
i LI I n | LI T n é
FIG.!G;

! [I

SELECT

2

SELECT VALUE AssiGn | T
e I e
FIG. I7.

ey

‘8l "914

+=
A
A1V 3lv
el - . L
_ []a (e
ISEIAN CM@ AN Elpl 7
T u
i
3077A @\ r 10373s .ijwL
—lv A¥3Id3n _’.W. iv3das b v 393y
ud qd(. od
m E Wy 4y 12y
NOISSY 123738 : 123738 123735
_, .

e L2 s

-30-

graph node types and a condition on their interconneection, such
that the pregram graphs satisfying the conditicn are deter-
minate and include representations for a wide variety of pro-
grams. .

Certain cemputations are more naturally expressad in data Flow
terms than in conventional form. A typical cxample i§7& sitgge—-
tion in which several independent activities gererate and con-
sume units of data exchanged among themselves. Suppose a com-
putation is performed by two interconnected modules, (Fig, 19.).
Module 1 takes an initial value ¥ from data cell a2 and gener-
ates a sequence of values Yor ¥1,-+. ¥p that are forwarded ta
module 2 through data cell b. HModule 2 processes these valuesg
ag they become availshle, and, when all values have heen pro-
cessed, puts a cuwnlative result z ip cell c¢. Let the compu-—
taticns performed by modulee 1 and 2 be described by the
foliowing reolaticns where £ and g denote unspecified functions.

Yo = £@) Wy =0 g
yl = f(ynl w, = 9“_’_(;'?"0’
Y = Llygy? " T I y!

2 = glyy, wk)

A program graph for this cemputation is shewn in Fig. 20.
The predicate p is applied to cach value ¥Yi{ by both modules ta
determine when the last value of a sequence has been processed:

p(yi} krue, i =1, ..., k = 1

p(ykj = false

Note that this program graph alliows the two modules to act
concurrently and is formed simply by connecting together pro-
gram graphs that represent the two modules. Furthermore, the
incorporation of a first in-first out queue in the connecting
link weuld permit module 1 to continue generating values

even when module 2 has not had encugh time to use up the pre=-
vicus values. The additien of queues does not require any
change in the representaticns of the modules. These properties
are not shared by other represcntaticons such as co-routines of
processcs inter-cemmunicating by means of semaphores. Further
discussien of these points appears in a recent paper by Jack
Dennis [18] .

-

Program graphs are an attractive representation for procedures
expressed in the base language becausc the possibilities for
congurrent execution of instructions are exhibited in a natural
way. PFrogram graphs represent many procedures in their maxi-
mum parallel ferm. Also, it is easy to ippose constraints on

p— e

e el AT oS- o)
| L e e
. o
I 44na I _ |
|] (44ng !
L) o 7 “
sz L - _
LJI 1 _’qu _
A LY EONE sl@ :
g T . -~ “ _ e = 3ou3n _qlll_
| ! | ._ ’ _
ool ! L _
Aoy B L |
o ~ z JNAON 8!) ,, _
R 19 | Tnaow |
T T T T e e J
IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII -
61 04

e i

e e .- -32-

program graphs such that determinate executicn is assured withe-
out restricting the class of dsterminate procedures that can

be expressed, Finally, we have found that considering program
graphs as a machine level pepresentaticn leads to interesting
concepts for the structure of highly parallel computers [10].

F. Translation of Block-Structured Lanquages

Many important pragramming languages' for practical vomputation
are block structured; the texts of blocks and procedures are
nested, and identifjers appearing in one text may refer to vari-
ables declared in other texts. We do not plan to include in
the base language provision for directly representing reference
by a precedure to external obiects, Therefore, we must show how
the execution of bleck-structured programs may be effected .
through translation into the base language and execution by the
base language interpreter. The following discussion outlines
one way in which this may be accomplished -- a way that seems
airtractive in view aof the concepts of ecamputer organization

we are investigating. .

Consider the program shown in Fig. 21. This program has the
Elack structure shewn; the main block P encloses a precedure
declaration P and a bloeck Q. Upper case letters are used to
identify the texts of blocks or procedures. ’

If T is a text (block or procedure declaration} of a proagram,
let B(T) be the set of identifiers cccurring in T that are
locally declared. Let X(T) be the set of identifiers gocurring
in T, or any text nested within T, that refer to variables da-
clared cutside T. For the above pregram we have '

{v}
{£}

{x} B(Q)
iy} xtQ)

B{P) = {y, =z, £} B{(F
xp) = @ X(F)

1]
il

Since non-local references are excluded in the base language,

we need a scheme for making variables accessed by non-local
reference in the block-structured program accessible through

the argument structure in the base language representation.

We will discuss one method of doing this, details of which are
given in a recent paper by Jack Dennis [19]. Te illustrate .
this scheme consider the computation of apply p (4). &As objects,
the procedure structure P and the local structure L{P) at the
baginning of the computation will be as shown in Fig, 22,

Texts F and Q are represented as components of the object rep-~
resenting text P. The local structure for the activaticn of

P has one component for each identifier in the sat B{FIU)XIP)Ys —

The first step is execution of the declaration of text F. This
gives the procedure identifier f a value called a closure of
the text F (Fig. 23), fThe C'T-componcat of the closure is
the text of procedure F and is shared with the procedure struc-
ture P. The C.E-component of the closure links identifiers in
X(F) to the value these identifiers have in the current proced~
ure activation. Thus the identifier y shares the value 4 with
¥ in L(P).

-33-

p—-r P '= PROCEDURE(y)
. BEGIN REAL y,z
F9 f:= PROCEDURE(x)
BEGIN REAL x
y'=y+x
| END
p
o q: BEGIN REAL y
y (= I
APPLY f{y)
| END
z = y42
RETURN 2z
| END
FIG. 21.
| Texte | | !
q f 1 Y

N\
—
—t

{ I
TEXT Q_t TEXT F

Entering bleck © may be treated as though it were a procedure
without parameters. A new local structure L(Q) is formed and
made inferior to L(P), (Fig. 24.). This naw local structure
has a component for each identifier in BIOUX{Q} = {f, y).

Identifier £ is external, so it is given the same meaning as
f in L(P).))

After y in L(Q) is assigned the value 1, the closure of F is
applied to an argument structura having a l-component of 1 and

an E-y - component that conveys to F the correct meaning of
its external identifier, (FPfg. 25.}). ’

-

The meanings uf identifiers x and Y in text F are established
as in the case of Text Q. Since Y ig in X(F} it is linked to
the E-y - component of the arqument structure. Since X identi-
fies the first formal parameter of text F, it is linked ta the
l-component af the argument structure. In this way, execution
of the assignment in text » correctly updates the value of y in
the local structure LIP), (Fig. 26.).

G. Cycles in Structures

The class of oblects defined earlier does not permit directed
cycles te occur in the graph of an okject. The desirability
of this restriction on the class of objects has been the sub-

ject of considerable study and discussion, Arguments against
Pormitting cycles include these:

l---Cyclic structures do not seem essential to the repre-

sentaticn of the structured data types of current important
source languages.

2. When cycles occur in linked list structures, they can
usually be considered part of an implementation rather

than an essential aspect of the data structures being
represented,

3. The presence of eycles in chjects makes it difficnit
to exploit the concurrency of parts of an algorithm, -

The principal arguments in favor cof permitting eycles are:

1. Generality of data structures should not be arbitrarily ——
restricged.

2. Cyclic structures are
tain kinds of data.

impertant for representing cer-
3. Implementation of a base language using cyclic struc-
tures will not present great difficulty.

We have studied two definitive questicas to develop better

understanding of the importance of cyclic data structures to
the base language.

e R - T e e

=35-

T L{P)

p
] TEXT P |
& !

J—\O—-ﬂ-——h—-

- —
.——N—‘

TEXT G
[
i y
TEXT F : L@—‘

FIG, 23,

P R
[—— L@

I)

|

¥

=
\ﬁ—l—-n

I

e

WA T

L=4

-35-
FIG, 25.

M T

IL[F)

TL[P)

e —————)

FIG, 26,

-37-

o : = PrOCEDURE ()
: BEGIN
P [¢:= PROCEDURE(! INTEGER a
.| BEGIN
F— (F x <0 THEN RETURN |

X iz g {xd
¥ 1= APPLY f(x)
RETURN =z

T T e e - r——— —— . ..

-38-

One study [19) cencerns how cycles can arise during execution
of block-structured programs according to the schemc ocutlined
garlier, Consider the program shown in Fig. 27.

This program consists of a procedure declaration F which con-
tains an application of itself. Interpretaticn of the declara-
i tion as described above assigns identifier £ a value which is
a closure of F, and in which f appears as an cxternal refer-
ence. This creates a cycle in the lecal structure L{P), (Figq.
28).

We have found that many block-structured programs can be re-
written se thoy accomplish the ariginal computation, but with-
out the crcation of cycles, The principle is to convey clo-
fures to and from a procedure activation by passing them as
Farameters or results rather than by external references. For
example, the program given above becomes:

T e e ———

g = PROCEDURE {u)
8EGIN B
f :=PROCEOURE(h,x) PROCED h, INTEGER x -
. BEGIN
F IF »= O THEN RETURN |
| x1=2g (]
; z ;= APPLY h(h,x})
}
3 RETURN z
i
END
g APPLY f (f,u).
i END
| END
i e FIG. 29. o

This raises some interesting questions. 1In particular, we
: would like to develop a general method for rewriting ' lock-
: structured programs so that cyeles will not arise auring ex-

coution.

| .
: The second study by Tan Campbell-Grant [20] investigated an

, eéxecution model for multiprocess computations that operate on

' a data base represented as an arkbitrary directed graph. The

; arcs af the graph represent structural celations among data

: items assoviated with the nodes. 1In this medel each process
may hold several pointers by which it may access the data base.
Each pointer has an associatcd access cantrel indicator having
one of the three walues: -

ettt L _ . A et . e TP . - R

-39-

R read access
WD write data access
WS write structure access

If a pointer carries R-access to a hode, the process may apply
the pointer to read (but not aiter) the data associated with
the node. The Proecess may alsa obtain z pointer with Reaccese
to any node that cap be reached over a directeg path in the
data base frem g node for which it holds R-access, A pointer
Carrying Wh-access tg & node permits the PrLocess to alter the
data associated with the node, and to abtain a pointer with
WDh-accees to any node accessible fron the given nede. 3
pointer carrying WS-access to a2 node permits g praccss to
modify the graph of the data base by adding or delcting arcs

via directed paths starting from the given node. The three
kinds of acecess are cumulative, that is, WD-accecss includes
the privilages of R-access, and WS-access includes the priv-
ileges of Reaccess and WD-access. ’

The objective of thig study was to show hew constraints can

be implemented in an execution medel so that any computation
carried on by a set of interacting processes weuld be deter-
minate. For this PUrpese, a computation is regarded as deter-
minate if it can never happen that twe Proecesses apply pointerg
to the same data base node concurrently, uniess both processes
Possess only R-access.

The scheme used to ensure determinism irvolves a sct cof con-
straints. Eaenh constraint is an ordered pPair (A, B} where A
and B are pointers held by distinct processes 1 and 2, The

constraint (A, B) signifies that application of pointer B by
Process 2 must wait until Process 1 reduces its accesg priv-
ilege for pointer a.

By executing certain instructions defined for the model, a
Process may: access nodes by follewing directed paths in the
data base; create and tertinate subsidiary pPrccesses; and
apply pointers te read and write the data associated with
accessible nodes of the data base. The execution rules for
each instruction type includes specification of how the con-
Straint set must he modified, Campbell-Grant has shown that
the relatisn graph defined by the set of constraints wil)
a2lways be acycliec throughout any multiprocess computation by
his model, In consequence, the following condition will
always be Satisfied, where the predicate struct (X,¥) is true,
if ang only if, there is a node in the data base reachable
over directed paths from the nodes designated by pointers X

If pointers A ang B are held by distinct Processes and

struct {(A,B) = true then access {A) = R and access (B) =
R or one of (A, B or (B, A) is in the constraint get.

This is sufficient to guarantee determinate computation.

e

H. Computers and People

When computers are used in any facet of the aperation of soci-
ety, the specific technical characteristics and capabilities

of the computer system employed constrain and significantly
influence the behavior of the larger system comprising hard-
ware, software and pecople. We have learned by ncow that computer
hardware should be designed and evaluated in the context of

the software that provides the interface with the users. We
must now learn how to dezign and evaluate computer systems in
the context of the community of people that is affected by

their use.

Two related problem areas reguire attention. Ore concerns the
interaction between characteristics of computer systems and

the individual and collective behavicr of the pesople affected

by their use. The other concerns the design of ecomputer systems
PosSsescing whatever characteristics are necessary to implement
modes of operation that are, at the very least, not objection-
able from a human standpoint.

Work in the first arca has been in pregress during the last
three years, although at a low level af intensity. A few
papers by Prof. Robert M. Fanc and by some of his students are
listed below, In addition, Prof. Fano is preparing a short
monograph based on the Centennial Lectures he gave during the
Spring, 1970, at the Stevens Institute of Technology.

Work in the second area concists mainly of doctoral research

by Leo J. Rotenberg. He has developed a model of +the protec-
tion structures and access-control mechanisms of a multi-acress
computer system capable of preventing unauthorized releages

of information. The model includes spheres of protection con-
structed out of abilities to reference programs and data seg-
ments. FProcesses can make calls and return from sphere to.
spliere - through inter-sphere links. It can be shown that, under
appropriate conditions, calling spheres cannot spy on theair
callees, nor the callees on their callers, The model includes
also facilities for keeping records of critical actions (by
EYstem programmers, for instance) and for allocating responsi-
bility for whatever a Process does. Such facilities are essen-
tial to implement and enforce law requlations and centractual
agreements existing in the yser community. A brief summary of
some of this work is presented in one of the papers listed
bolow ["Surveillance Machanisms in a Secure Computer Utility®).

——

41~ o

References
oS ELElces

l. A. W. Holt ana r. Commoner, Events and Conditions, Record

of _the Project MAC Conference on Concurrent Systems and lar-iTol
Computation, ACM, New York (15707, pp 3-52,

2. C. A, Petri, Communicatinon With Automats, Supplerent 1 to
Technical Report RADC-TR-65-377, Vol. 1, Griffiss Air Force
Base, New York 1966, [Originally published in German: Xommuni-
kation mit Automaten, University of Bonn, 1962.}

3. H. J. Genrich, Simple Nonsequential Processeas,
Gesellschaft fur Mathematik und Datenverarbeitung, Bonn, 1971.

4. A. W. Holt and F. Commoncer, Events and Conditions, Pare+ 2,
Applied Data Research, Inc,, New York, N. Y.

5. 8. §. Patil, Limitations and Capabilities of Dijkstra's
Scmaphore Primitives for Coordination Among Processes, Computa=-
tion Structures Group Memo 57, Project MAC, M.I.T., Cambridge,
Mass., February 1971. .

6. E. W. Dijkstra, Co-operating Seguential Procesees, Proaram-
ming Languages, F. Genuys, Ed., Acadenmic Press, New YorK, 19&68.

7. D, E. Muller, Asvnchronous Logics and Application tp Informa-
tion Processing, Switching Theory in Space Technelogy, Stanford
Universiry Press, Stanford, California, 1963,

8. J. B. Dennis and 5. 5. patil, Speed Independent Asynchronous
Circuits, Procecdings of the Fourth Hawaii International Con-
ference on System Sciences, 1971,

9. W. W. Plummer, Asynchronous Arbiters, Computation Structures
Group Memo 56, Project MAC, M.1.T., Cambridge, Mass. , February
1871,

0. J. B. Dennis, rrogramming Generality, Paraltlelism and Com-
puter Architecture, Informat}on Processing 68, North~Helland,
Amsterdam 1969, Pp 484-392,

11. J. B. Pennis, Future Trends in Time Sharing Systems, Time-
Sharing Tnnovation for Operations Research and Decisjon-Making,
WasRington Upératiéns Researcs Couneil"IBET, pp cg A= T35

12, 7.1, Gertz, Hierarchical Associative Memories for Parallel

- Computation, Report MAC-TR-69, Project MaC, M.T.T., Cambridge,

Mass, June 1970.

13, P. Lucas and K. Walk, On the Formal Description of PL/I,
Annuzl Review in Automatie Pragramming, vol. 6, Part 3, Fergamon
Press 15659, pp 105-182.

14, o, MeCarthy, A Formal Description of a Subset of Algol,
Formal Language Descripticon Languages for Computer Programming,
North-Tinlland, Amstcrdam, 1966, pp 1-12.

~43-

References (cont,}
——_cTIEices

15. P. J, Landin, The Mechanical Evaluation of Expressions; . -
The Computer Jourrnal, Vel. 6, No. 4 {(January 1964}, pp. 308—32q.

16. J. E. Rodriguez, a Graph Model .for Paraliel Computations,
Report MAC-TR-64, Project MAC, M.I.T., Cambridge, Mass., - o
September 1969, : .

17. S. 5. Patil, Closure Properties of Interconnsctions of
Determinate System, Recerd of the Projact MAC Conference on
Concurrent Systems and Parallel Computaticn, ACM, New YOrk,

1970, pp- 107~116. -

~

18. J. B. Dennis, Co¥outines and Parallel Computatien,
Princeton Conferense on Information Sciences and Systems,
Princeton, N.J., March 1971,

1%, J. B. Cennis, On the Design and Specification of a’ Common

Base Language, Proceedings of a Symposium on Computers and
Automata, Polytechnic inst tute of Brooklyn. To Ba P 1shed. -
20. 1. Campbell-Grant, "The Controlled Execution of Parallel

Programs Operating on Structured Data", 5.M. Thesis, Dept,
of Elec¢triecal Engineering, January 1971,

Publications 1970-1971

Campbell~Grant, -I., "The Controlled Executicn of Parallel
Programs Operating on Structured Data", 5.M, Thesis, Dept.
of Electrical Engineering, January 1971,)

Dennis, J. B., Coroutines and Parallel Computation, Princeton
Conference on Information Sciences and Systems, Princeton,
N. J., March 1971,

Dennis, J.B., On the Design and Specification of a Common

Base Larnguage, Proceedings of a Svmposium on Computers and
Autemata, Polytechnic Institite of Brooklyn. To ba published,
Dennis, J. B., and Patil, s. S., Speed Independent Asynchronous
Cizrcuits, Proceedings of the Fourth Hawaii International Con-
ference on System Sciences, 1971,

Fano, R. M., "Computers in Human Society -~ For Good or Ill?",
Technology Review, March 1970, pp., 25-31.

~43-

‘Publications [cont.)

Fano, R. M., "Computers in Soclety", to be published in tho
Proceedings of the Svmposium "L'Informatica, La Cultura e La
Societa Italiana", held at the Fondazione Giovanni bgrelli,
Torine, Italy, December 9-11, 1370,

Patil, 8. 5., Limitations and Capabilities of Dijkstra's
Semaphore Primitives for Coordination Among Processas, Computa-
tion Structures G-oup Mema 57, Project MAC, M.I.T,, Cambridge,
Mass., February 1%71.

Plummer, W.W., Asynchronous Arbiters, Computation Structures
Group Mem: 56, Project MAC, M.I,.T., Cambridge, Mass,, February
1971,

Rotenberg, Leo J., "Surveillance Mechanisms in a Secure Com-
puter Utility"™, Computers ‘and Society, Vol, 2, No. 1, April
1971, ACM Speecial Interest Group on Computers and Seciety.

Vogt, Carla, "Making Computerized Knowledge Safe for Pecple”,
Technelogy Rewiew, March 1970, pp. 33-39,

